Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
K12 GM081266
NIGMS NIH HHS - United States
P41 GM103481
NIGMS NIH HHS - United States
PubMed
22539347
PubMed Central
PMC3375538
DOI
10.1074/jbc.m112.347922
PII: S0021-9258(20)49808-4
Knihovny.cz E-zdroje
- MeSH
- genetická transkripce fyziologie MeSH
- genom fyziologie MeSH
- hemoglobiny genetika metabolismus MeSH
- kathepsin D genetika metabolismus MeSH
- klíště enzymologie genetika MeSH
- posttranslační úpravy proteinů fyziologie MeSH
- proteiny členovců genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- střeva enzymologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hemoglobiny MeSH
- kathepsin D MeSH
- proteiny členovců MeSH
- rekombinantní proteiny MeSH
To identify the gut-associated tick aspartic hemoglobinase, this work focuses on the functional diversity of multiple Ixodes ricinus cathepsin D forms (IrCDs). Out of three encoding genes representing Ixodes scapularis genome paralogs, IrCD1 is the most distinct enzyme with a shortened propeptide region and a unique pattern of predicted post-translational modifications. IrCD1 gene transcription is induced by tick feeding and is restricted to the gut tissue. The hemoglobinolytic role of IrCD1 was further supported by immunolocalization of IrCD1 in the vesicles of tick gut cells. Properties of recombinantly expressed rIrCD1 are consistent with the endo-lysosomal environment because the zymogen is autoactivated and remains optimally active in acidic conditions. Hemoglobin cleavage pattern of rIrCD1 is identical to that produced by the native enzyme. The preference for hydrophobic residues at the P1 and P1' position was confirmed by screening a novel synthetic tetradecapeptidyl substrate library. Outside the S1-S1' regions, rIrCD1 tolerates most amino acids but displays a preference for tyrosine at P3 and alanine at P2'. Further analysis of the cleavage site location within the peptide substrate indicated that IrCD1 is a true endopeptidase. The role in hemoglobinolysis was verified with RNAi knockdown of IrCD1 that decreased gut extract cathepsin D activity by >90%. IrCD1 was newly characterized as a unique hemoglobinolytic cathepsin D contributing to the complex intestinal proteolytic network of mainly cysteine peptidases in ticks.
Zobrazit více v PubMed
Mans B. J. (2011) Evolution of vertebrate hemostatic and inflammatory control mechanisms in blood-feeding arthropods. J. Innate Immun. 3, 41–51 PubMed
Mans B. J., Louw A. I., Neitz A. W. (2002) Evolution of hematophagy in ticks. Common origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the genus Ornithodoros. Mol. Biol. Evol. 19, 1695–1705 PubMed
Tarnowski B. I., Coons L. B. (1989) Ultrastructure of the midgut and blood meal digestion in the adult tick Dermacentor variabilis. Exp. Appl. Acarol. 6, 263–289 PubMed
Sojka D., Franta Z., Horn M., Hajdusek O., Caffrey C. R., Mares M., Kopácek P. (2008) Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit. Vectors 1, 7. PubMed PMC
Horn M., Nussbaumerová M., Sanda M., Kovárová Z., Srba J., Franta Z., Sojka D., Bogyo M., Caffrey C. R., Kopácek P., Mares M. (2009) Hemoglobin digestion in blood-feeding ticks. Mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 16, 1053–1063 PubMed PMC
Caffrey C. R., McKerrow J. H., Salter J. P., Sajid M. (2004) Blood 'n' guts. An update on schistosome digestive peptidases. Trends Parasitol. 20, 241–248 PubMed
Delcroix M., Sajid M., Caffrey C. R., Lim K. C., Dvorák J., Hsieh I., Bahgat M., Dissous C., McKerrow J. H. (2006) A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J. Biol. Chem. 281, 39316–39329 PubMed
Williamson A. L., Brindley P. J., Knox D. P., Hotez P. J., Loukas A. (2003) Digestive proteases of blood-feeding nematodes. Trends Parasitol. 19, 417–423 PubMed
Wu D. D., Wang G. D., Irwin D. M., Zhang Y. P. (2009) A profound role for the expansion of trypsin-like serine protease family in the evolution of hematophagy in mosquito. Mol. Biol. Evol. 26, 2333–2341 PubMed
Sojka D., Francischetti I. M., Calvo E., Kotsyfakis M. (2011) Cysteine proteases from bloodfeeding arthropod ectoparasites. Adv. Exp. Med. Biol. 712, 177–191 PubMed PMC
Franta Z., Sojka D., Frantova H., Dvorak J., Horn M., Srba J., Talacko P., Mares M., Schneider E., Craik C. S., McKerrow J. H., Caffrey C. R., Kopacek P. (2011) IrCL1- the hemoglobinolytic cathepsin L of the hard tick Ixodes ricinus. Int. J. Parasitol. 41, 1253–1262 PubMed
Sojka D., Hajdusek O., Dvorák J., Sajid M., Franta Z., Schneider E. L., Craik C. S., Vancová M., Buresová V., Bogyo M., Sexton K. B., McKerrow J. H., Caffrey C. R., Kopácek P. (2007) IrAE. An asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 37, 713–724 PubMed PMC
Nijhof A. M., Balk J. A., Postigo M., Jongejan F. (2009) Selection of reference genes for quantitative RT-PCR studies in Rhipicephalus (Boophilus) microplus and Rhipicephalus appendiculatus ticks and determination of the expression profile of Bm86. BMC Mol. Biol. 10, 112. PubMed PMC
Grunclová L., Horn M., Vancová M., Sojka D., Franta Z., Mares M., Kopácek P. (2006) Two secreted cystatins of the soft tick Ornithodoros moubata. Differential expression pattern and inhibitory specificity. Biol. Chem. 387, 1635–1644 PubMed
Kopácek P., Zdychová J., Yoshiga T., Weise C., Rudenko N., Law J. H. (2003) Molecular cloning, expression, and isolation of ferritins from two tick species, Ornithodoros moubata and Ixodes ricinus. Insect Biochem. Mol. Biol. 33, 103–113 PubMed
Franta Z., Frantová H., Konvičková J., Horn M., Sojka D., Mareš M., Kopáček P. (2010) Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasit. Vectors 3, 119. PubMed PMC
Kopácek P., Weise C., Götz P. (1995) The prophenol oxidase from the wax moth Galleria mellonella. Purification and characterization of the proenzyme. Insect Biochem. Mol. Biol. 25, 1081–1091 PubMed
Hajdusek O., Sojka D., Kopacek P., Buresova V., Franta Z., Sauman I., Winzerling J., Grubhoffer L. (2009) Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc. Natl. Acad. Sci. U.S.A. 106, 1033–1038 PubMed PMC
Levashina E. A., Moita L. F., Blandin S., Vriend G., Lagueux M., Kafatos F. C. (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104, 709–718 PubMed
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997) The CLUSTAL_X windows interface. Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 PubMed PMC
Kelley L. A., Sternberg M. J. (2009) Protein structure prediction on the Web. A case study using the Phyre server. Nat. Protoc. 4, 363–371 PubMed
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E. (2004) UCSF Chimera. A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 PubMed
Sorgine M. H., Logullo C., Zingali R. B., Paiva-Silva G. O., Juliano L., Oliveira P. L. (2000) A heme-binding aspartic proteinase from the eggs of the hard tick Boophilus microplus. J. Biol. Chem. 275, 28659–28665 PubMed
Nussbaumerová M., Srp J., Mása M., Hradilek M., Sanda M., Reinis M., Horn M., Mares M. (2010) Single- and double-headed chemical probes for detection of active cathepsin D in a cancer cell proteome. ChemBioChem 11, 1538–1541 PubMed
Colaert N., Helsens K., Martens L., Vandekerckhove J., Gevaert K. (2009) Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787 PubMed
Boldbaatar D., Sikalizyo Sikasunge C., Battsetseg B., Xuan X., Fujisaki K. (2006) Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol. 36, 25–36 PubMed
Cruz C. E., Fogaça A. C., Nakayasu E. S., Angeli C. B., Belmonte R., Almeida I. C., Miranda A., Miranda M. T., Tanaka A. S., Braz G. R., Craik C. S., Schneider E., Caffrey C. R., Daffre S. (2010) Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasit. Vectors 3, 63. PubMed PMC
Metcalf P., Fusek M. (1993) Two crystal structures for cathepsin D. The lysosomal targeting signal and active site. EMBO J. 12, 1293–1302 PubMed PMC
Horimoto Y., Dee D. R., Yada R. Y. (2009) Multifunctional aspartic peptidase prosegments. N. Biotechnol. 25, 318–324 PubMed
Logullo C., Vaz Ida S., Sorgine M. H., Paiva-Silva G. O., Faria F. S., Zingali R. B., De Lima M. F., Abreu L., Oliveira E. F., Alves E. W., Masuda H., Gonzales J. C., Masuda A., Oliveira P. L. (1998) Isolation of an aspartic proteinase precursor from the egg of a hard tick, Boophilus microplus. Parasitology 116, 525–532 PubMed
Dunn B. M. (2002) Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem. Rev. 102, 4431–4458 PubMed
Baranski T. J., Koelsch G., Hartsuck J. A., Kornfeld S. (1991) Mapping and molecular modeling of a recognition domain for lysosomal enzyme targeting. J. Biol. Chem. 266, 23365–23372 PubMed
Steet R., Lee W. S., Kornfeld S. (2005) Identification of the minimal lysosomal enzyme recognition domain in cathepsin D. J. Biol. Chem. 280, 33318–33323 PubMed
Knight C. G., Barrett A. J. (1976) Interaction of human cathepsin D with the inhibitor pepstatin. Biochem. J. 155, 117–125 PubMed PMC
Mares M., Meloun B., Pavlik M., Kostka V., Baudys M. (1989) Primary structure of cathepsin D inhibitor from potatoes and its structure relationship to soybean trypsin inhibitor family. FEBS Lett. 251, 94–98 PubMed
Hurst M., Faulds D. (2000) Lopinavir. Drugs 60, 1371–1379 PubMed
James G. T. (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal. Biochem. 86, 574–579 PubMed
Aoyagi T., Takeuchi T., Matsuzaki A., Kawamura K., Kondo S. (1969) Leupeptins, new protease inhibitors from Actinomycetes. J. Antibiot. 22, 283–286 PubMed
Barrett A. J., Kembhavi A. A., Brown M. A., Kirschke H., Knight C. G., Tamai M., Hanada K. (1982) l- trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogs as inhibitors of cysteine proteinases including cathepsins B, H, and L. Biochem. J. 201, 189–198 PubMed PMC
Auld D. S. (1988) Use of chelating agents to inhibit enzymes. Methods Enzymol. 158, 110–114 PubMed
Hajdusek O., Almazán C., Loosova G., Villar M., Canales M., Grubhoffer L., Kopacek P., de la Fuente J. (2010) Characterization of ferritin 2 for the control of tick infestations. Vaccine 28, 2993–2998 PubMed
Akov S., Samish M., Galun R. (1976) Protease activity in female Ornithodoros tholozani ticks. Acta Trop. 33, 37–52 PubMed
Vundla W. R., Brossard M., Pearson D. J., Labongo V. L. (1992) Characterization of aspartic proteinases from the gut of the tick, Rhipicephalus appendiculatus neuman. Insect Biochem. Mol. Biol. 22, 405–410
Mendiola J., Alonso M., Marquetti M. C., Finlay C. (1996) Boophilus microplus, Multiple proteolytic activities in the midgut. Exp. Parasitol. 82, 27–33 PubMed
Lara F. A., Lins U., Bechara G. H., Oliveira P. L. (2005) Tracing heme in a living cell. Hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol. 208, 3093–3101 PubMed
Doherty G. J., McMahon H. T. (2009) Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 PubMed
Renard G., Lara F. A., de Cardoso F. C., Miguens F. C., Dansa-Petretski M., Termignoni C., Masuda A. (2002) Expression and immunolocalization of a Boophilus microplus cathepsin L-like enzyme. Insect Mol. Biol. 11, 325–328 PubMed
Luzio J. P., Parkinson M. D., Gray S. R., Bright N. A. (2009) The delivery of endocytosed cargo to lysosomes. Biochem. Soc. Trans. 37, 1019–1021 PubMed
Gabay T., Ginsburg H. (1993) Hemoglobin denaturation and iron release in acidified red blood cell lysate. A possible source of iron for intraerythrocytic malaria parasites. Exp. Parasitol. 77, 261–272 PubMed
Liu P., Marzahn M. R., Robbins A. H., Gutiérrez-de-Terán H., Rodríguez D., McClung S. H., Stevens S. M., Jr., Yowell C. A., Dame J. B., McKenna R., Dunn B. M. (2009) Recombinant plasmepsin 1 from the human malaria parasite Plasmodium falciparum. Enzymatic characterization, active site inhibitor design, and structural analysis. Biochemistry 48, 4086–4099 PubMed PMC
Pimenta D. C., Oliveira A., Juliano M. A., Juliano L. (2001) Substrate specificity of human cathepsin D using internally quenched fluorescent peptides derived from reactive site loop of kallistatin. Biochim. Biophys. Acta 1544, 113–122 PubMed
Hartsuck J. A., Koelsch G., Remington S. J. (1992) The high resolution crystal structure of porcine pepsinogen. Proteins 13, 1–25 PubMed
Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome
RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks