TP53 mutation analysis in chronic lymphocytic leukemia: comparison of different detection methods

. 2015 May ; 36 (5) : 3371-80. [epub] 20141220

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25527155

TP53 gene defects represent a strong adverse prognostic factor for patient survival and treatment resistance in chronic lymphocytic leukemia (CLL). Although various methods for TP53 mutation analysis have been reported, none of them allow the identification of all occurring sequence variants, and the most suitable methodology is still being discussed. The aim of this study was to determine the limitations of commonly used methods for TP53 mutation examination in CLL and propose an optimal approach for their detection. We examined 182 CLL patients enriched for high-risk cases using denaturing high-performance liquid chromatography (DHPLC), functional analysis of separated alleles in yeast (FASAY), and the AmpliChip p53 Research Test in parallel. The presence of T53 gene mutations was also evaluated using ultra-deep next generation sequencing (NGS) in 69 patients. In total, 79 TP53 mutations in 57 (31 %) patients were found; among them, missense substitutions predominated (68 % of detected mutations). Comparing the efficacy of the methods used, DHPLC and FASAY both combined with direct Sanger sequencing achieved the best results, identifying 95 % and 93 % of TP53-mutated patients. Nevertheless, we showed that in CLL patients carrying low-proportion TP53 mutation, the more sensitive approach, e.g., ultra-deep NGS, might be more appropriate. TP53 gene analysis using DHPLC or FASAY is a suitable approach for mutation detection. Ultra-deep NGS has the potential to overcome shortcomings of methods currently used, allows the detection of minor proportion mutations, and represents thus a promising methodology for near future.

Zobrazit více v PubMed

Pathol Oncol Res. 2002;8(4):245-51 PubMed

Bioinformatics. 2014 May 1;30(9):1198-204 PubMed

Leukemia. 2015 Apr;29(4):877-85 PubMed

Leuk Res. 2011 Jul;35(7):889-98 PubMed

Blood. 2008 Oct 15;112(8):3322-9 PubMed

J Clin Oncol. 2010 Oct 10;28(29):4473-9 PubMed

J Clin Oncol. 2011 Jul 1;29(19):2703-8 PubMed

Hematology Am Soc Hematol Educ Program. 2011;2011:104-9 PubMed

J Clin Oncol. 2011 Jun 1;29(16):2223-9 PubMed

Blood. 2008 Jun 15;111(12):5446-56 PubMed

Leukemia. 2010 Dec;24(12):2072-9 PubMed

Clin Cancer Res. 2013 Jun 1;19(11):2893-904 PubMed

Cell. 2013 Feb 14;152(4):714-26 PubMed

J Hematol Oncol. 2013 Nov 05;6:83 PubMed

Clin Cancer Res. 2012 Aug 1;18(15):4191-200 PubMed

Leukemia. 2012 Jul;26(7):1458-61 PubMed

Br J Cancer. 2010 Feb 16;102(4):719-26 PubMed

Mol Immunol. 2008 Mar;45(5):1525-9 PubMed

Leukemia. 2009 Jan;23(1):117-24 PubMed

Blood. 2009 Dec 17;114(26):5307-14 PubMed

Nat Commun. 2012 May 01;3:811 PubMed

Br J Haematol. 2014 Nov;167(4):565-9 PubMed

Br J Haematol. 2013 Nov;163(4):496-500 PubMed

Blood. 2011 Feb 3;117(5):1622-32 PubMed

Blood Rev. 2008 Jul;22(4):211-9 PubMed

J Clin Oncol. 2012 May 10;30(14 ):1647-55 PubMed

Blood. 2014 Apr 3;123(14):2139-47 PubMed

Blood. 1996 Jun 15;87(12):4990-7 PubMed

Blood Rev. 2010 May;24(3):135-41 PubMed

Blood. 2009 Sep 24;114(13):2589-97 PubMed

Hum Mutat. 2010 Sep;31(9):1020-5 PubMed

Blood. 1995 Mar 15;85(6):1580-9 PubMed

Blood. 2012 Nov 15;120(20):4191-6 PubMed

Genes Chromosomes Cancer. 2011 Apr;50(4):263-74 PubMed

Clin Cancer Res. 2009 Feb 1;15(3):995-1004 PubMed

Hum Mutat. 2007 Jun;28(6):622-9 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...