Leishmania mexicana telomeres at high resolution: Ku80, TERT, and alternative lengthening mechanisms

. 2025 Oct 24 ; 26 (1) : 955. [epub] 20251024

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41345908

Grantová podpora
LERCO CZ.10.03.01/00/22_003/0000003 European Union's Operational Program "Just Transition"
LERCO CZ.10.03.01/00/22_003/0000003 European Union's Operational Program "Just Transition"
LERCO CZ.10.03.01/00/22_003/0000003 European Union's Operational Program "Just Transition"
LERCO CZ.10.03.01/00/22_003/0000003 European Union's Operational Program "Just Transition"
23-04769S Grantová Agentura České Republiky
23-04769S Grantová Agentura České Republiky
23-04769S Grantová Agentura České Republiky
23-04769S Grantová Agentura České Republiky
23-04769S Grantová Agentura České Republiky

Odkazy

PubMed 41345908
PubMed Central PMC12676763
DOI 10.1186/s12864-025-12154-z
PII: 10.1186/s12864-025-12154-z
Knihovny.cz E-zdroje

BACKGROUND: Telomeres are known to be important for Leishmania biology but the mechanistic of how the process of telomere maintenance contributes to genome stability remains an unanswered question. Their maintenance is most commonly facilitated by the telomerase ribonucleoprotein complex that elongates telomeres countering their natural shortening due to the incomplete DNA replication in each cell cycle. In some organisms, telomere maintenance is achieved through telomerase-independent mechanisms, such as the Alternative Lengthening of Telomeres (ALT) pathways described in yeasts with dysfunctional telomerase and some rare telomerase-negative human cancer cells. Molecular markers for the ALT pathway include presence of the heterogeneous (in their length and sequence) telomeres, high level of telomeric exchange between the sister chromatids, increased expression of Rad51 and associated proteins, and occurrence of extrachromosomal telomeric repeats that can be present in either linear or circular form. RESULTS: Here, we used third-generation sequencing techniques in combination with other approaches and analyzed telomeres of L. mexicana at unprecedented high-level resolution. We demonstrate that Ku80 ablation-driven telomere elongation varies between chromosomes, possibly due to the chromosome-specific recombination rates, which are sequence/content dependent and associated with the structure of the telomeric tandemly repeated sequence, TTAGGG. Moreover, this telomere length heterogeneity is accompanied by an increased level of C-circles, a subclass of circular telomeric DNA highly specific for ALT activity. CONCLUSIONS: Our findings underscore that L. mexicana promastigotes have an inherent ability to utilize ALT, and the loss of Ku80 and/or TERT further enhanced this trait. These proteins work together to maintain telomere integrity, inhibit recombination, and stabilize telomere lengths. Our data suggest that ALT may be a fundamental and readily activated feature of Leishmania biology, and that telomere regulation in this organism significantly differs from what has been observed in other eukaryotic model species, including iconic T. brucei.

Zobrazit více v PubMed

Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, et al. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11:200407. PubMed DOI PMC

Kostygov AY, Albanaz ATS, Butenko A, Gerasimov ES, Lukeš J, Yurchenko V. Phylogenetic framework to explore trait evolution in Trypanosomatidae. Trends Parasitol. 2024;40(2):96–9. PubMed DOI

Leishmaniasis. https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis.

Bruschi F, Gradoni L. The leishmaniases: old neglected tropical diseases. Cham, Switzerland: Springer; 2018.

Greider CW. Telomeres, telomerase and senescence. Bioessays. 1990;12(8):363–9. PubMed DOI

Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in PubMed DOI

Greider CW, Blackburn EH. The telomere terminal transferase of PubMed DOI

Lundblad V, Blackburn EH. An alternative pathway for yeast telomere maintenance rescues PubMed DOI

Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med. 1997;3(11):1271–4. PubMed DOI

Dilley RL, Greenberg RA. Alternative telomere maintenance and cancer. Trends Cancer. 2015;1(2):145–56. PubMed DOI PMC

Biessmann H, Carter SB, Mason JM. Chromosome ends in PubMed DOI PMC

López CC, Nielsen L, Edström JE. Terminal long tandem repeats in chromosomes from PubMed DOI PMC

Sohn EJ, Goralsky JA, Shay JW, Min J. The molecular mechanisms and therapeutic prospects of alternative lengthening of telomeres (ALT). Cancers. 2023;15(7):1945. PubMed DOI PMC

Sobinoff AP, Pickett HA. Alternative lengthening of telomeres: DNA repair pathways converge. Trends Genet. 2017;33(12):921–32. PubMed DOI

Yadav T, Zhang JM, Ouyang J, Leung W, Simoneau A, Zou L. TERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switch. Mol Cell. 2022;82(21):3985–4000. PubMed DOI PMC

Damasceno JD, Reis-Cunha J, Crouch K, Beraldi D, Lapsley C, Tosi LRO, et al. Conditional knockout of RAD51-related genes in PubMed DOI PMC

Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41(1):181–90. PubMed DOI

McClintock B. The stability of broken ends of chromosomes in PubMed DOI PMC

Muller HJ. The remaking of chromosomes. Collecting Net. 1938;13:181–98.

de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19(18):2100–10. PubMed DOI

Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495–506. PubMed DOI PMC

Stinson BM, Loparo JJ. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev Biochem. 2021;90:137–64. PubMed DOI PMC

Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci. 2021;78(10):4589–613. PubMed DOI PMC

Fell VL, Schild-Poulter C. The Ku heterodimer: function in DNA repair and beyond. Mutation Research/Reviews in Mutation Research. 2015;763:15–29. PubMed DOI

Boulton SJ, Jackson SP. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 1998;17(6):1819–28. PubMed DOI PMC

Myung K, Ghosh G, Fattah FJ, Li G, Kim H, Dutia A, et al. Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol Cell Biol. 2004;24(11):5050–9. PubMed DOI PMC

Wang Y, Ghosh G, Hendrickson EA. Ku86 represses lethal telomere deletion events in human somatic cells. Proc Natl Acad Sci U S A. 2009;106(30):12430–5. PubMed DOI PMC

Riha K, Shippen DE. Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in PubMed DOI PMC

Bundock P, van Attikum H, Hooykaas P. Increased telomere length and hypersensitivity to DNA damaging agents in an PubMed DOI PMC

Gallego ME, Jalut N, White CI. Telomerase dependence of telomere lengthening in Ku80 mutant PubMed DOI PMC

Heacock M, Spangler E, Riha K, Puizina J, Shippen DE. Molecular analysis of telomere fusions in PubMed DOI PMC

Tomaska L, Nosek J, Kramara J, Griffith JD. Telomeric circles: universal players in telomere maintenance? Nat Struct Mol Biol. 2009;16(10):1010–5. PubMed DOI PMC

Zellinger B, Akimcheva S, Puizina J, Schirato M, Riha K. Ku suppresses formation of telomeric circles and alternative telomere lengthening in PubMed DOI

Fajkus P, Peška V, Závodník M, Fojtová M, Fulnečková J, Dobias S, Kilar A, Dvořáčková M, Zachová D, Nečasová I, et al. Telomerase RNAs in land plants. Nucleic Acids Res. 2019;47(18):9842–56. PubMed DOI PMC

Závodník M, Pavlištová V, Machelová A, Lyčka M, Mozgová I, Caklová K, et al. Ku70 and CAF-1 in PubMed DOI

de Nonneville A, Salas S, Bertucci F, Sobinoff AP, Adelaide J, Guille A, et al. TOP3A amplification and ATRX inactivation are mutually exclusive events in pediatric osteosarcomas using ALT. EMBO Mol Med. 2022;14(10):e15859. PubMed DOI PMC

Conway C, McCulloch R, Ginger ML, Robinson NP, Browitt A, Barry JD. Ku is important for telomere maintenance, but not for differential expression of telomeric VSG genes, in African trypanosomes. J Biol Chem. 2002;277(24):21269–77. PubMed DOI

Janzen CJ, Lander F, Dreesen O, Cross GA. Telomere length regulation and transcriptional Silencing in Ku80-deficient PubMed DOI PMC

Poláková E, Albanaz ATS, Zakharova A, Novozhilova TS, Gerasimov ES, Yurchenko V. Ku80 is involved in telomere maintenance but dispensable for genomic stability in PubMed DOI PMC

Kachale A, Pavlíková Z, Nenarokova A, Roithová A, Durante IM, Miletínová P, et al. Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature. 2023;613(7945):751–8. PubMed DOI

Afonin DA, Gerasimov ES, Škodová-Sveráková I, Záhonová K, Gahura O, Albanaz ATS, Myšková E, Bykova A, Paris Z, Lukeš J, et al. PubMed DOI PMC

Nenarokova A, Záhonová K, Krasilnikova M, Gahura O, McCulloch R, Zíková A, et al. Causes and effects of loss of classical nonhomologous end joining pathway in parasitic eukaryotes. mBio. 2019;10(4):e01541–01519. PubMed DOI PMC

Fisher TS, Zakian VA. Ku: a multifunctional protein involved in telomere maintenance. DNA Repair. 2005;4(11):1215–26. PubMed DOI

Fisher TS, Taggart AK, Zakian VA. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol. 2004;11(12):1198–205. PubMed DOI

Ting NS, Yu Y, Pohorelic B, Lees-Miller SP, Beattie TL. Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase. Nucleic Acids Res. 2005;33(7):2090–8. PubMed DOI PMC

Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 2003;17(19):2384–95. PubMed DOI PMC

Ishemgulova A, Hlaváčová J, Majerová K, Butenko A, Lukeš J, Votýpka J, et al. CRISPR/Cas9 in PubMed DOI PMC

Yurchenko V, Lukeš J, Tesařová M, Jirků M, Maslov DA. Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus PubMed DOI

Yurchenko V, Lukeš J, Xu X, Maslov DA. An integrated morphological and molecular approach to a new species description in the trypanosomatidae: the case of PubMed DOI

Ishemgulova A, Kraeva N, Hlaváčová J, Zimmer SL, Butenko A, Podešvová L, et al. A putative ATP/GTP binding protein affects PubMed DOI PMC

Signorell A, Gluenz E, Rettig J, Schneider A, Shaw MK, Gull K, et al. Perturbation of phosphatidylethanolamine synthesis affects mitochondrial morphology and cell-cycle progression in procyclic-form PubMed DOI

Beneke T, Gluenz E. LeishGEdit: a method for rapid gene knockout and tagging using CRISPR-Cas9. In: Clos J, editor. Leishmania. New York, NY: Humana Press; 2019. p. 189–210. PubMed

Kraeva N, Ishemgulova A, Lukeš J, Yurchenko V. Tetracycline-inducible gene expression system in PubMed DOI

Ishemgulova A, Kraeva N, Faktorová D, Podešvová L, Lukeš J, Yurchenko V. T7 polymerase-driven transcription is downregulated in metacyclic promastigotes and amastigotes of PubMed DOI

Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford nanopore sequencing. Genome Biol. 2019;20(1):129. PubMed DOI PMC

Bonito: A PyTorch basecaller for Oxford Nanopore reads. https://github.com/nanoporetech/bonito.

Tan KT, Slevin MK, Meyerson M, Li H. Identifying and correcting repeat-calling errors in nanopore sequencing of telomeres. Genome Biol. 2022;23(1):180. PubMed DOI PMC

Katz K, Shutov O, Lapoint R, Kimelman M, Brister JR, O’Sullivan C. The sequence read archive: a decade more of explosive growth. Nucleic Acids Res. 2022;50(D1):D387-90. PubMed DOI PMC

De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. Nanopack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34(15):2666–9. PubMed DOI PMC

Beneke T, Dobramysl U, Catta-Preta CMC, Mottram JC, Gluenz E, Wheeler RJ. Genome sequence of PubMed DOI PMC

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100. PubMed DOI PMC

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al. Twelve years of samtools and BCFtools. Gigascience. 2021;10(2):1–4. PubMed DOI PMC

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6. PubMed DOI PMC

Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–6. PubMed DOI

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9(11):e112963. PubMed DOI PMC

Haese-Hill W, Crouch K, Otto TD. Annotation and visualization of parasite, fungi and arthropod genomes with companion. Nucleic Acids Res. 2024;52(W1):W39-44. PubMed DOI PMC

Shanmugasundram A, Starns D, Böhme U, Amos B, Wilkinson PA, Harb OS, et al. TriTrypDB: an integrated functional genomics resource for kinetoplastida. PLoS Negl Trop Dis. 2023;17(1):e0011058. PubMed DOI PMC

BBTools. https://jgi.doe.gov/data-and-tools/software-tools/bbtools/.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. PubMed DOI PMC

Wald A, Wolfowitz J. An exact test for randomness in the non-parametric case based on serial correlation. Ann Math Stat. 1943;14(4):378–88. DOI

Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583–621. DOI

Vasconcelos EJ, Nunes VS, da Silva MS, Segatto M, Myler PJ, Cano MI. The putative PubMed DOI PMC

team P. RStudio: integrated development environment for R. In. Boston. USA: Posit Software, PBC; 2025.

Ginestet C. ggplot2: elegant graphics for data analysis. J R Stat Soc. 2011;174:245–245. DOI

Tham CY, Tirado-Magallanes R, Goh Y, Fullwood MJ, Koh BTH, Wang W, et al. Nanovar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing. Genome Biol. 2020;21(1):56. PubMed DOI PMC

Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods. 2018;15(6):461–8. PubMed DOI PMC

Goenka SD, Gorzynski JE, Shafin K, Fisk DG, Pesout T, Jensen TD, et al. Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencing. Nat Biotechnol. 2022;40(7):1035–41. PubMed DOI PMC

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45. PubMed DOI PMC

Henson JD, Lau LM, Koch S, La Rotta NM, Dagg RA, Reddel RR. The c-circle assay for alternative-lengthening-of-telomeres activity. Methods. 2017;114:74–84. PubMed DOI

Pal S, Dolai S, Yadav RK, Adak S. Ascorbate peroxidase from PubMed DOI PMC

de Oliveira BCD, Shiburah ME, Assis LHC, Fontes VS, Bisetegn H, Passos AO, de Oliveira LS, Alves CS, Ernst E, Martienssen R, et al. PubMed DOI

Wang N, Kjellin H, Sofiadis A, Fotouhi O, Juhlin CC, Backdahl M, et al. Genetic and epigenetic background and protein expression profiles in relation to telomerase activation in medullary thyroid carcinoma. Oncotarget. 2016;7(16):21332–46. PubMed DOI PMC

Wang W, Chen C, Wang Q, Ma JG, Li YS, Guan Z, et al. Electroacupuncture pretreatment preserves telomerase reverse transcriptase function and alleviates postoperative cognitive dysfunction by suppressing oxidative stress and neuroinflammation in aged mice. CNS Neurosci Ther. 2024;30(2):e14373. PubMed DOI PMC

Dogan F, Forsyth NR. Telomerase regulation: a role for epigenetics. Cancers. 2021;13(6):1213. PubMed DOI PMC

Kramara J, Osia B, Malkova A. Break-induced replication: the where, the why, and the how. Trends Genet. 2018;34(7):518–31. PubMed DOI PMC

Wassing IE, Esashi F. RAD51: beyond the break. Semin Cell Dev Biol. 2021;113:38–46. PubMed DOI PMC

Rosso I, Jones-Weinert C, Rossiello F, Cabrini M, Brambillasca S, Munoz-Sagredo L, Lavagnino Z, Martini E, Tedone E, Garre M, et al. Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs. Nat Commun. 2023;14(1):7086. PubMed DOI PMC

Wondimagegnhu B, Ma W, Paul T, Liao TW, Lee CY, Sanford S, et al. The molecular mechanism for TERRA recruitment and annealing to telomeres. Nucleic Acids Res. 2024;52(17):10490–503. PubMed DOI PMC

Girasol MJ, Krasilnikova M, Marques CA, Damasceno JD, Lapsley C, Lemgruber L, et al. RAD51-mediated R-loop formation acts to repair transcription-associated DNA breaks driving antigenic variation in PubMed DOI PMC

Girasol MJ, Briggs EM, Marques CA, Batista JM, Beraldi D, Burchmore R, et al. Immunoprecipitation of RNA-DNA hybrid interacting proteins in PubMed DOI PMC

Kockler ZW, Comeron JM, Malkova A. A unified alternative telomere-lengthening pathway in yeast survivor cells. Mol Cell. 2021;81(8):1816–29. PubMed DOI PMC

Mazzucco G, Huda A, Galli M, Piccini D, Giannattasio M, Pessina F, et al. Telomere damage induces internal loops that generate telomeric circles. Nat Commun. 2020;11(1):5297. PubMed DOI PMC

Lu R, Nelson CB, Rogers S, Cesare AJ, Sobinoff AP, Pickett HA. Distinct modes of telomere synthesis and extension contribute to alternative lengthening of telomeres. iScience. 2024;27(1):108655. PubMed DOI PMC

Henson JD, Cao Y, Huschtscha LI, Chang AC, Au AYM, Pickett HA, et al. DNA c-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat Biotechnol. 2009;27(12):1181–5. PubMed DOI

Cano MI, Dungan JM, Agabian N, Blackburn EH. Telomerase in kinetoplastid parasitic protozoa. Proc Natl Acad Sci U S A. 1999;96(7):3616–21. PubMed DOI PMC

Chiurillo MA, Beck AE, Devos T, Myler PJ, Stuart K, Ramirez JL. Cloning and characterization of PubMed DOI

Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, Bason N, et al. Telomeric expression sites are highly conserved in PubMed DOI PMC

Krasilnikova M, Marques CA, Briggs EM, Lapsley C, Hamilton G, Beraldi D, et al. Nanopore sequencing reveals that DNA replication compartmentalisation dictates genome stability and instability in PubMed DOI PMC

Horn D, Spence C, Ingram AK. Telomere maintenance and length regulation in PubMed DOI PMC

Abbas AH, Silva Pereira S, D’Archivio S, Wickstead B, Morrison LJ, Hall N, Hertz-Fowler C, Darby AC, Jackson AP. The structure of a conserved telomeric region associated with variant antigen loci in the blood parasite PubMed DOI PMC

Fu G, Barker DC. Characterisation of PubMed DOI PMC

Conte FF, Cano MI. Genomic organization of telomeric and subtelomeric sequences of PubMed DOI

Assis LHC, Andrade-Silva D, Shiburah ME, de Oliveira BCD, Paiva SC, Abuchery BE, et al. Cell cycle, telomeres, and telomerase in PubMed DOI PMC

Mender I, Shay JW. Telomere restriction fragment (TRF) analysis. Bio-Protocol. 2015;5(22):e1658. PubMed DOI PMC

Cano MI. Telomere biology of trypanosomatids: more questions than answers. Trends Parasitol. 2001;17(9):425–9. PubMed DOI

Wincker P, Ravel C, Blaineau C, Pages M, Jauffret Y, Dedet JP, et al. The PubMed DOI PMC

Britto C, Ravel C, Bastien P, Blaineau C, Pages M, Dedet JP, et al. Conserved linkage groups associated with large-scale chromosomal rearrangements between old world and new world PubMed DOI

Lemon LD, Morris DK, Bertuch AA. Loss of PubMed DOI PMC

Polotnianka RM, Li J, Lustig AJ. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol. 1998;8(14):831–4. PubMed DOI

Gravel S, Larrivee M, Labrecque P, Wellinger RJ. Yeast Ku as a regulator of chromosomal DNA end structure. Science. 1998;280(5364):741–4. PubMed DOI

Baumann P, Cech TR. Protection of telomeres by the Ku protein in fission yeast. Mol Biol Cell. 2000;11(10):3265–75. PubMed DOI PMC

Subramanian L, Moser BA, Nakamura TM. Recombination-based telomere maintenance is dependent on Tel1-MRN and Rap1 and inhibited by telomerase, Taz1, and Ku in fission yeast. Mol Cell Biol. 2008;28(5):1443–55. PubMed DOI PMC

Bussotti G, Piel L, Pescher P, Domagalska MA, Rajan KS, Cohen-Chalamish S, et al. Genome instability drives epistatic adaptation in the human pathogen PubMed DOI PMC

Rabbani MAG, Tonini ML, Afrin M, Li B. POLIE suppresses telomerase-mediated telomere G-strand extension and helps ensure proper telomere C-strand synthesis in trypanosomes. Nucleic Acids Res. 2022;50(4):2036–50. PubMed DOI PMC

Helia O, Matúšová B, Havlová K, Hýsková A, Lyčka M, Beying N, et al. Chromosome engineering points to the PubMed DOI PMC

Alpizar-Sosa EA, Kumordzi Y, Wei W, Whitfield PD, Barrett MP, Denny PW. Genome deletions to overcome the directed loss of gene function in PubMed DOI PMC

Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, Kostygov AY, et al. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae. BMC Genomics. 2023;24(1):471. PubMed DOI PMC

Seo B, Kim C, Hills M, Sung S, Kim H, Kim E, et al. Telomere maintenance through recruitment of internal genomic regions. Nat Commun. 2015;6:8189. PubMed DOI PMC

Fajkus P, Kilar A, Nelson ADL, Holá M, Peška V, Goffová I, et al. Evolution of plant telomerase rnas: farther to the past, deeper to the roots. Nucleic Acids Res. 2021;49(13):7680–94. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...