Leishmania HASP and SHERP Genes Are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Intramural
Grantová podpora
Wellcome Trust - United Kingdom
077503
Wellcome Trust - United Kingdom
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
28095465
PubMed Central
PMC5271408
DOI
10.1371/journal.ppat.1006130
PII: PPATHOGENS-D-15-01969
Knihovny.cz E-zdroje
- MeSH
- antigeny protozoální metabolismus MeSH
- buněčná diferenciace fyziologie MeSH
- fluorescenční protilátková technika MeSH
- hmyz - vektory parazitologie MeSH
- imunoblotting MeSH
- interakce hostitele a parazita fyziologie MeSH
- Leishmania major růst a vývoj patogenita MeSH
- leishmanióza genetika přenos MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- polymerázová řetězová reakce MeSH
- protozoální proteiny metabolismus MeSH
- Psychodidae parazitologie MeSH
- virulence fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- antigeny protozoální MeSH
- HASPA protein, Leishmania MeSH Prohlížeč
- protozoální proteiny MeSH
Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation.
Centre for Immunology and Infection Department of Biology University of York York United Kingdom
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Herwaldt BL. Leishmaniasis. Lancet. 1999;354: 1191–1199. 10.1016/S0140-6736(98)10178-2 PubMed DOI
Bañuls A-LL, Hide M, Prugnolle F. Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. Adv Parasitol. 64th ed. Elsevier; 2007;64: 1–109. PubMed
Ready PD. Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol. 2013;58: 227–50. 10.1146/annurev-ento-120811-153557 PubMed DOI
Saf’janova V. The problem of taxonomy with Leishmania. Ser Protozool Sov Acad Sci. 1982;7: 5–109.
Lainson R, Shaw JJ. Evolution, classification and geographical distribution In: Peters W, Killick-Kendrick R, editors. The leishmaniases in biology and medicine Volume I Biology and epidemiology. 1st ed London: Academic Press; 1987. pp. 1–120.
Cunningham ML, Titus RG, Turco SJ, Beverley SM. Regulation of Differentiation to the Infective Stage of the Protozoan Parasite Leishmania major by Tetrahydrobiopterin. Science (80-). 2001;292: 285–287. PubMed
Bates PA. Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol. 2008;11: 340–4. 10.1016/j.mib.2008.06.003 PubMed DOI PMC
Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5: 276 10.1186/1756-3305-5-276 PubMed DOI PMC
Walters LL, Modi GB, Chaplin GL, Tesh RB. Ultrastructural development of Leishmania chagasi in its vector, Lutzomyia longipalpis (Diptera: Psychodidae). Am Soc Trop Med Hyg. 1989;41: 295–317. PubMed
Volf J. Cihakova P. Development of different Leishmania major strains in the vector sandflies Phlebotomus papatasi and P. duboscqi. Ann Trop Med Parasitol. 1997;91: 267–280. PubMed
Wilson R, Bates MD, Dostálová A, Jecná L, Dillon RJ, Volf P, et al. Stage-specific adhesion of leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay. PLoS Negl Trop Dis. 2010;4: 1–9. PubMed PMC
Gossage SM, Rogers ME, Bates PA. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol. Elsevier; 2003;33: 1027–1034. PubMed PMC
Rogers ME, Bates PA. Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog. 2007;3: e91 10.1371/journal.ppat.0030091 PubMed DOI PMC
Sacks DL, da Silva RP. The generation of infective stage Leishmania major promastigotes is associated with the cell-surface expression and release of a developmentally regulated glycolipid. J Immunol. 1987;139: 3099–106. PubMed
Warburg A, Hamada GS, Schlein Y, Shire D. Scanning electron microscopy ofLeishmania major inPhlebotomus papatasi. Zeitschrift für Parasitenkd Parasitol Res. 1986;72: 423–431. PubMed
Volf P, Hajmová M, Sádlová J, Votýpka J. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int J Parasitol. 2004;34: 1221–7. 10.1016/j.ijpara.2004.07.010 PubMed DOI
Coulson RMR, Smith DF. Isolation of genes showing increased or unique expression in the infective promastigotes of Leishmania major. Mol Biochem Parasitol. Mol Biochem Parasitol; 1990;40: 63–75. PubMed
FIinn HM, Smith DF. Genomic organisation and expression of a differentially-regulated gene family from Leishmania major. Nucleic Acids Res. Oxford Univ Press; 1992;20: 755–762. PubMed PMC
Depledge DP, MacLean LM, Hodgkinson MR, Smith BA, Jackson AP, Ma S, et al. Leishmania-Specific Surface Antigens Show Sub-Genus Sequence Variation and Immune Recognition. Milon G, editor. PLoS Negl Trop Dis. 2010;4: e829 10.1371/journal.pntd.0000829 PubMed DOI PMC
Denny PW, Gokool S, Russell DG, Field MC, Smith DF. Acylation-dependent Protein Export in Leishmania. J Biol Chem. ASBMB; 2000;275: 11017–11025. PubMed
Maclean LM, O’Toole PJ, Stark M, Marrison J, Seelenmeyer C, Nickel W, et al. Trafficking and release of Leishmania metacyclic HASPB on macrophage invasion. Cell Microbiol. 2012;14: 740–761. 10.1111/j.1462-5822.2012.01756.x PubMed DOI PMC
McKean PG, Trenholme KR, Rangarajan D, Keen JK, Smith DF. Diversity in repeat-containing surface proteins of Leishmania major. Mol Biochem Parasitol. Elsevier; 1997;86: 225–235. PubMed
Flinn HM, Rangarajan D, Smith DF. Expression of a hydrophilic surface protein in infective stages of Leishmania major. Mol Biochem Parasitol. 1994;64: 259–270. PubMed
Alce TM, Gokool S, McGhie D, Stäger S, Smith DF, Stager S. Expression of hydrophilic surface proteins in infective stages of Leishmania donovani. Mol Biochem Parasitol. Elsevier; 1999;102: 191–196. PubMed
Nugent PG, Karsani SA, Wait R, Tempero J, Smith DF. Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol. 2004;136: 51–62. 10.1016/j.molbiopara.2004.02.009 PubMed DOI
McKean PG, Delahay R, Pimenta PFP, Smith DF. Characterisation of a second protein encoded by the differentially regulated LmcDNA16 gene family of Leishmania major. Mol Biochem Parasitol. 1997;85: 221–31. PubMed
Knuepfer E, Stierhof Y-DD, McKean PG, Smith DF, Kean PGMC. Characterization of a differentially expressed protein that shows an unusual localization to intracellular membranes in Leishmania major. Biochem J. Portland Press Ltd; 2001;356: 335–344. PubMed PMC
Moore B, Miles AJ, Guerra-Giraldez C, Simpson P, Iwata M, Wallace BA, et al. Structural Basis of Molecular Recognition of the Leishmania Small Hydrophilic Endoplasmic Reticulum-associated Protein (SHERP) at Membrane Surfaces. J Biol Chem. ASBMB; 2011;286: 9246–9256. PubMed PMC
Besteiro S, Williams R a M, Morrison LS, Coombs GH, Mottram JC. Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem. 2006;281: 11384–11396. 10.1074/jbc.M512307200 PubMed DOI
Sádlová J, Price HP, Smith B a., Votýpka J, Volf P, Smith DF, et al. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol. 2010;12: 1765–79. 10.1111/j.1462-5822.2010.01507.x PubMed DOI PMC
McKean PG, Denny PW, Knuepfer E, Keen JK, Smith DF. Phenotypic changes associated with deletion and overexpression of a stage-regulated gene family in Leishmania. Cell Microbiol. 2001;3: 511–523. PubMed
Kimura M, Takatsuki A, Yamaguchi I. Blasticidin S deaminase gene from Aspergillus terreus (BSD): a new drug resistance gene for transfection of mammalian cells. Biochim Biophys Acta—Gene Struct Expr. 1994;1219: 653–659. PubMed
Colbére-Garapin F, Horodniceanu F, Kourilsky P, Garapin A-C. A new dominant hybrid selective marker for higher eukaryotic cells. J Mol Biol. 1981;150: 1–14. PubMed
Blochlinger K, Diggelmann H. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells. Mol Cell Biol. 1984;4: 2929–2931. PubMed PMC
Gómez Lahoz E, López de Haro MS, Nieto A, Esponda P. Use of puromycin N-acetyltransferase (PAC) as a new reporter gene in transgenic animals. Nucleic Acids Res. 1991;19: 3465 PubMed PMC
Price HP, Menon MR, Panethymitaki C, Goulding D, McKean PG, Smith DF. Myristoyl-CoA:protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem. 2003;278: 7206–14. 10.1074/jbc.M211391200 PubMed DOI
Walters LL. Leishmania Differentiation in Natural and Unnatural Sand Fly Hosts. J Eukaryot Microbiol. 1993;40: 196–206. PubMed
Rogers ME, Ilg T, Nikolaev A V., Ferguson MAJ, Bates PA. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature. 2004;430: 463–467. 10.1038/nature02675 PubMed DOI PMC
Lei SM, Romine NM, Beetham JK. Population changes in Leishmania chagasi promastigote developmental stages due to serial passage. J Parasitol. 2010;96: 1134–8. 10.1645/GE-2566.1 PubMed DOI PMC
Kimblin N, Peters NC, Debrabant A, Secundino NC, Egen JG, Lawyer PG, et al. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. PNAS. 2008;105: 10125–10130. 10.1073/pnas.0802331105 PubMed DOI PMC
Cohen-Freue G, Holzer TR, Forney JD, McMaster WR. Global gene expression in Leishmania. Int J Parasitol. 2007;37: 1077–86. 10.1016/j.ijpara.2007.04.011 PubMed DOI
Cassola A. RNA Granules Living a Post-Transcriptional Life: the Trypanosomes’ Case. Curr Chem Biol. NIH Public Access; 2011;5: 108–117. PubMed PMC
Zinoviev A, Manor S, Shapira M. Nutritional stress affects an atypical cap-binding protein in Leishmania. RNA Biol. Taylor & Francis; 2012;9: 1450–1460. PubMed
Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, et al. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. Cold Spring Harbor Laboratory Press; 2004;14: 2308–18. PubMed PMC
Sádlová J, Svobodová M, Volf P. Leishmania major: effect of repeated passages through sandfly vectors or murine hosts. Ann Trop Med Parasitol. 1999;93: 599–611. PubMed
Sádlová J, Volf P, Victoir K, Dujardin J-C, Votýpka J. Virulent and attenuated lines of Leishmania major: DNA karyotypes and differences in metalloproteinase GP63. Folia Parasitol (Praha). 2006;53: 81–90. PubMed
Moreira D, Santarém N, Loureiro I, Tavares J, Silva AM, Amorim AM, et al. Impact of continuous axenic cultivation in Leishmania infantum virulence. PLoS Negl Trop Dis. 2012;6: e1469 10.1371/journal.pntd.0001469 PubMed DOI PMC
Turner CMR. The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiol Lett. 2006;153: 227–231. PubMed
Turner CMR, Barry JD. High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology. 1989;99: 67–75. PubMed
Vassella E, Reuner B, Yutzy B, Boshart M. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci. 1997;110 (Pt 2: 2661–71. PubMed
MacGregor P, Szöőr B, Savill NJ, Matthews KR. Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol. 2012;10: 431–8. 10.1038/nrmicro2779 PubMed DOI PMC
Brun R, Schönenberger M. Stimulating effect of citrate and cis-aconitate on the transformation ofTrypanosoma brucei bloodstream forms to procyclic forms in vitro. Zeitschrift für Parasitenkd Parasitol Res. 1981;66: 17–24. PubMed
Engstler M, Boshart M. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. Genes Dev. 2004;18: 2798–811. 10.1101/gad.323404 PubMed DOI PMC
Dean S, Marchetti R, Kirk K, Matthews KR. A surface transporter family conveys the trypanosome differentiation signal. Nature. 2009;459: 213–217. 10.1038/nature07997 PubMed DOI PMC
Baker DA. Malaria gametocytogenesis. Mol Biochem Parasitol. 2010;172: 57–65. 10.1016/j.molbiopara.2010.03.019 PubMed DOI PMC
LeBowitz JH, Smith HQ, Rusche L, Beverley SM. Coupling of poly(A) site selection and trans-splicing in Leishmania. Genes Dev. Cold Spring Harbor Lab; 1993;7: 996–1007. PubMed
Dick G, Akslen-Hoel LK, Grøndahl F, Kjos I, Prydz K. Proteoglycan synthesis and Golgi organization in polarized epithelial cells. J Histochem Cytochem. 2012;60: 926–35. 10.1369/0022155412461256 PubMed DOI PMC
Rogers ME. The role of Leishmania proteophosphoglycans in sand fly transmission and infection of the mammalian host. Front Microbiol. 2012;3: 1–13. PubMed PMC
Peters NC, Egen JG, Secundino NCN, Debrabant A, Kamhawi S, Lawyer PG, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science (80-). American Association for the Advancement of Science; 2008;321: 970–974. PubMed PMC
Rogers ME, Kropf P, Dillon RJ, Choi B-S, Bates PA, Podinovskaia M, et al. Proteophosphoglycans Regurgitated by Leishmania-Infected Sand Flies Target the L-Arginine Metabolism of Host Macrophages to Promote Parasite Survival. PLoS Pathog. 2009;5: e1000555 10.1371/journal.ppat.1000555 PubMed DOI PMC
Sacks DL, Hieny S, Sher A. Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. J Immunol. Am Assoc Immnol; 1985;135: 564–9. PubMed
Leslie G, Barrett M, Burchmore R. Leishmania mexicana: Promastigotes migrate through osmotic gradients. Exp Parasitol. 2002;102: 117–120. PubMed
Oliveira JS, Melo MN, Gontijo NF. A sensitive method for assaying chemotaxic responses of Leishmania promastigotes. Exp Parasitol. 2000;96: 187–189. 10.1006/expr.2000.4569 PubMed DOI
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36 Suppl 1: S1–S9. PubMed
Myskova J, Votypka J, Volf P, Myšková J, Votýpka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008;45: 133–138. PubMed
Kamhawi S, Modi GB, Pimenta PF, Rowton E, Sacks DL. The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitology. 2000;121 (Pt 1: 25–33. PubMed
Mary C, Faraut F, Lascombe L, Dumon H. Quantification of Leishmania infantum DNA by a Real-Time PCR Assay with High Sensitivity. J Clin Microbiol. 2004;42: 5249–5255. 10.1128/JCM.42.11.5249-5255.2004 PubMed DOI PMC
Price HHP, Panethymitaki C, Goulding D, Smith DF. Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes. J Cell Sci. 2005;118: 831–841. 10.1242/jcs.01624 PubMed DOI PMC
Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11: 36–42.
Depledge DP, Evans KJ, Ivens AC, Aziz N, Maroof A, Kaye PM, et al. Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds. PLoS Negl Trop Dis. 2009;3: e476 10.1371/journal.pntd.0000476 PubMed DOI PMC
Titus RG, Marchand M, Boon T, Louis JA. A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol. 1985;7: 545–555. PubMed
Lima HC, Bleyenberg JA, Titus RG. A simple method for quantifying Leishmania in tissues of infected animals. Parasitol Today. 1997;13: 80–82. PubMed
Kropf P, Kadolsky UD, Rogers M, Cloke TE, Müller I. The Leishmania Model In: Kaufmann Kabeliz, editors. Immunology of Infection. 25th ed San Diego: Academic Press; 1998. pp. 419–458.
Paape D, Aebischer T. Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development. J Proteomics. Elsevier B.V.; 2011;74: 1614–1624. PubMed
Chakraborty P, Sturgill-Koszycki S, Russell DG. Chapter 14: Isolation and Characterization of Pathogen-Containing Phagosomes. Methods in Cell Biology. 1995. pp. 261–276. PubMed
Nicolas L, Prina E, Lang T, Milon G. Real-Time PCR for Detection and Quantitation of Leishmania in Mouse Tissues. J Clin Microbiol. 2002;40: 1666–1669. 10.1128/JCM.40.5.1666-1669.2002 PubMed DOI PMC
Selvapandiyan A, Dey R, Duncan R, Nylén S, Nakhasi HL, Sacks DL, et al. Intracellular Replication-Deficient Leishmania donovani Induces Long Lasting Protective Immunity against Visceral Leishmaniasis. J Immunol. 2009;183: 1813–20. 10.4049/jimmunol.0900276 PubMed DOI
Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research