Leishmania HASP and SHERP Genes Are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host

. 2017 Jan ; 13 (1) : e1006130. [epub] 20170117

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Intramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid28095465

Grantová podpora
Wellcome Trust - United Kingdom
077503 Wellcome Trust - United Kingdom
Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 28095465
PubMed Central PMC5271408
DOI 10.1371/journal.ppat.1006130
PII: PPATHOGENS-D-15-01969
Knihovny.cz E-zdroje

Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation.

Zobrazit více v PubMed

Herwaldt BL. Leishmaniasis. Lancet. 1999;354: 1191–1199. 10.1016/S0140-6736(98)10178-2 PubMed DOI

Bañuls A-LL, Hide M, Prugnolle F. Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. Adv Parasitol. 64th ed. Elsevier; 2007;64: 1–109. PubMed

Ready PD. Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol. 2013;58: 227–50. 10.1146/annurev-ento-120811-153557 PubMed DOI

Saf’janova V. The problem of taxonomy with Leishmania. Ser Protozool Sov Acad Sci. 1982;7: 5–109.

Lainson R, Shaw JJ. Evolution, classification and geographical distribution In: Peters W, Killick-Kendrick R, editors. The leishmaniases in biology and medicine Volume I Biology and epidemiology. 1st ed London: Academic Press; 1987. pp. 1–120.

Cunningham ML, Titus RG, Turco SJ, Beverley SM. Regulation of Differentiation to the Infective Stage of the Protozoan Parasite Leishmania major by Tetrahydrobiopterin. Science (80-). 2001;292: 285–287. PubMed

Bates PA. Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol. 2008;11: 340–4. 10.1016/j.mib.2008.06.003 PubMed DOI PMC

Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5: 276 10.1186/1756-3305-5-276 PubMed DOI PMC

Walters LL, Modi GB, Chaplin GL, Tesh RB. Ultrastructural development of Leishmania chagasi in its vector, Lutzomyia longipalpis (Diptera: Psychodidae). Am Soc Trop Med Hyg. 1989;41: 295–317. PubMed

Volf J. Cihakova P. Development of different Leishmania major strains in the vector sandflies Phlebotomus papatasi and P. duboscqi. Ann Trop Med Parasitol. 1997;91: 267–280. PubMed

Wilson R, Bates MD, Dostálová A, Jecná L, Dillon RJ, Volf P, et al. Stage-specific adhesion of leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay. PLoS Negl Trop Dis. 2010;4: 1–9. PubMed PMC

Gossage SM, Rogers ME, Bates PA. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol. Elsevier; 2003;33: 1027–1034. PubMed PMC

Rogers ME, Bates PA. Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog. 2007;3: e91 10.1371/journal.ppat.0030091 PubMed DOI PMC

Sacks DL, da Silva RP. The generation of infective stage Leishmania major promastigotes is associated with the cell-surface expression and release of a developmentally regulated glycolipid. J Immunol. 1987;139: 3099–106. PubMed

Warburg A, Hamada GS, Schlein Y, Shire D. Scanning electron microscopy ofLeishmania major inPhlebotomus papatasi. Zeitschrift für Parasitenkd Parasitol Res. 1986;72: 423–431. PubMed

Volf P, Hajmová M, Sádlová J, Votýpka J. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int J Parasitol. 2004;34: 1221–7. 10.1016/j.ijpara.2004.07.010 PubMed DOI

Coulson RMR, Smith DF. Isolation of genes showing increased or unique expression in the infective promastigotes of Leishmania major. Mol Biochem Parasitol. Mol Biochem Parasitol; 1990;40: 63–75. PubMed

FIinn HM, Smith DF. Genomic organisation and expression of a differentially-regulated gene family from Leishmania major. Nucleic Acids Res. Oxford Univ Press; 1992;20: 755–762. PubMed PMC

Depledge DP, MacLean LM, Hodgkinson MR, Smith BA, Jackson AP, Ma S, et al. Leishmania-Specific Surface Antigens Show Sub-Genus Sequence Variation and Immune Recognition. Milon G, editor. PLoS Negl Trop Dis. 2010;4: e829 10.1371/journal.pntd.0000829 PubMed DOI PMC

Denny PW, Gokool S, Russell DG, Field MC, Smith DF. Acylation-dependent Protein Export in Leishmania. J Biol Chem. ASBMB; 2000;275: 11017–11025. PubMed

Maclean LM, O’Toole PJ, Stark M, Marrison J, Seelenmeyer C, Nickel W, et al. Trafficking and release of Leishmania metacyclic HASPB on macrophage invasion. Cell Microbiol. 2012;14: 740–761. 10.1111/j.1462-5822.2012.01756.x PubMed DOI PMC

McKean PG, Trenholme KR, Rangarajan D, Keen JK, Smith DF. Diversity in repeat-containing surface proteins of Leishmania major. Mol Biochem Parasitol. Elsevier; 1997;86: 225–235. PubMed

Flinn HM, Rangarajan D, Smith DF. Expression of a hydrophilic surface protein in infective stages of Leishmania major. Mol Biochem Parasitol. 1994;64: 259–270. PubMed

Alce TM, Gokool S, McGhie D, Stäger S, Smith DF, Stager S. Expression of hydrophilic surface proteins in infective stages of Leishmania donovani. Mol Biochem Parasitol. Elsevier; 1999;102: 191–196. PubMed

Nugent PG, Karsani SA, Wait R, Tempero J, Smith DF. Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol. 2004;136: 51–62. 10.1016/j.molbiopara.2004.02.009 PubMed DOI

McKean PG, Delahay R, Pimenta PFP, Smith DF. Characterisation of a second protein encoded by the differentially regulated LmcDNA16 gene family of Leishmania major. Mol Biochem Parasitol. 1997;85: 221–31. PubMed

Knuepfer E, Stierhof Y-DD, McKean PG, Smith DF, Kean PGMC. Characterization of a differentially expressed protein that shows an unusual localization to intracellular membranes in Leishmania major. Biochem J. Portland Press Ltd; 2001;356: 335–344. PubMed PMC

Moore B, Miles AJ, Guerra-Giraldez C, Simpson P, Iwata M, Wallace BA, et al. Structural Basis of Molecular Recognition of the Leishmania Small Hydrophilic Endoplasmic Reticulum-associated Protein (SHERP) at Membrane Surfaces. J Biol Chem. ASBMB; 2011;286: 9246–9256. PubMed PMC

Besteiro S, Williams R a M, Morrison LS, Coombs GH, Mottram JC. Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem. 2006;281: 11384–11396. 10.1074/jbc.M512307200 PubMed DOI

Sádlová J, Price HP, Smith B a., Votýpka J, Volf P, Smith DF, et al. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol. 2010;12: 1765–79. 10.1111/j.1462-5822.2010.01507.x PubMed DOI PMC

McKean PG, Denny PW, Knuepfer E, Keen JK, Smith DF. Phenotypic changes associated with deletion and overexpression of a stage-regulated gene family in Leishmania. Cell Microbiol. 2001;3: 511–523. PubMed

Kimura M, Takatsuki A, Yamaguchi I. Blasticidin S deaminase gene from Aspergillus terreus (BSD): a new drug resistance gene for transfection of mammalian cells. Biochim Biophys Acta—Gene Struct Expr. 1994;1219: 653–659. PubMed

Colbére-Garapin F, Horodniceanu F, Kourilsky P, Garapin A-C. A new dominant hybrid selective marker for higher eukaryotic cells. J Mol Biol. 1981;150: 1–14. PubMed

Blochlinger K, Diggelmann H. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells. Mol Cell Biol. 1984;4: 2929–2931. PubMed PMC

Gómez Lahoz E, López de Haro MS, Nieto A, Esponda P. Use of puromycin N-acetyltransferase (PAC) as a new reporter gene in transgenic animals. Nucleic Acids Res. 1991;19: 3465 PubMed PMC

Price HP, Menon MR, Panethymitaki C, Goulding D, McKean PG, Smith DF. Myristoyl-CoA:protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem. 2003;278: 7206–14. 10.1074/jbc.M211391200 PubMed DOI

Walters LL. Leishmania Differentiation in Natural and Unnatural Sand Fly Hosts. J Eukaryot Microbiol. 1993;40: 196–206. PubMed

Rogers ME, Ilg T, Nikolaev A V., Ferguson MAJ, Bates PA. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature. 2004;430: 463–467. 10.1038/nature02675 PubMed DOI PMC

Lei SM, Romine NM, Beetham JK. Population changes in Leishmania chagasi promastigote developmental stages due to serial passage. J Parasitol. 2010;96: 1134–8. 10.1645/GE-2566.1 PubMed DOI PMC

Kimblin N, Peters NC, Debrabant A, Secundino NC, Egen JG, Lawyer PG, et al. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. PNAS. 2008;105: 10125–10130. 10.1073/pnas.0802331105 PubMed DOI PMC

Cohen-Freue G, Holzer TR, Forney JD, McMaster WR. Global gene expression in Leishmania. Int J Parasitol. 2007;37: 1077–86. 10.1016/j.ijpara.2007.04.011 PubMed DOI

Cassola A. RNA Granules Living a Post-Transcriptional Life: the Trypanosomes’ Case. Curr Chem Biol. NIH Public Access; 2011;5: 108–117. PubMed PMC

Zinoviev A, Manor S, Shapira M. Nutritional stress affects an atypical cap-binding protein in Leishmania. RNA Biol. Taylor & Francis; 2012;9: 1450–1460. PubMed

Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, et al. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. Cold Spring Harbor Laboratory Press; 2004;14: 2308–18. PubMed PMC

Sádlová J, Svobodová M, Volf P. Leishmania major: effect of repeated passages through sandfly vectors or murine hosts. Ann Trop Med Parasitol. 1999;93: 599–611. PubMed

Sádlová J, Volf P, Victoir K, Dujardin J-C, Votýpka J. Virulent and attenuated lines of Leishmania major: DNA karyotypes and differences in metalloproteinase GP63. Folia Parasitol (Praha). 2006;53: 81–90. PubMed

Moreira D, Santarém N, Loureiro I, Tavares J, Silva AM, Amorim AM, et al. Impact of continuous axenic cultivation in Leishmania infantum virulence. PLoS Negl Trop Dis. 2012;6: e1469 10.1371/journal.pntd.0001469 PubMed DOI PMC

Turner CMR. The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiol Lett. 2006;153: 227–231. PubMed

Turner CMR, Barry JD. High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology. 1989;99: 67–75. PubMed

Vassella E, Reuner B, Yutzy B, Boshart M. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci. 1997;110 (Pt 2: 2661–71. PubMed

MacGregor P, Szöőr B, Savill NJ, Matthews KR. Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol. 2012;10: 431–8. 10.1038/nrmicro2779 PubMed DOI PMC

Brun R, Schönenberger M. Stimulating effect of citrate and cis-aconitate on the transformation ofTrypanosoma brucei bloodstream forms to procyclic forms in vitro. Zeitschrift für Parasitenkd Parasitol Res. 1981;66: 17–24. PubMed

Engstler M, Boshart M. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. Genes Dev. 2004;18: 2798–811. 10.1101/gad.323404 PubMed DOI PMC

Dean S, Marchetti R, Kirk K, Matthews KR. A surface transporter family conveys the trypanosome differentiation signal. Nature. 2009;459: 213–217. 10.1038/nature07997 PubMed DOI PMC

Baker DA. Malaria gametocytogenesis. Mol Biochem Parasitol. 2010;172: 57–65. 10.1016/j.molbiopara.2010.03.019 PubMed DOI PMC

LeBowitz JH, Smith HQ, Rusche L, Beverley SM. Coupling of poly(A) site selection and trans-splicing in Leishmania. Genes Dev. Cold Spring Harbor Lab; 1993;7: 996–1007. PubMed

Dick G, Akslen-Hoel LK, Grøndahl F, Kjos I, Prydz K. Proteoglycan synthesis and Golgi organization in polarized epithelial cells. J Histochem Cytochem. 2012;60: 926–35. 10.1369/0022155412461256 PubMed DOI PMC

Rogers ME. The role of Leishmania proteophosphoglycans in sand fly transmission and infection of the mammalian host. Front Microbiol. 2012;3: 1–13. PubMed PMC

Peters NC, Egen JG, Secundino NCN, Debrabant A, Kamhawi S, Lawyer PG, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science (80-). American Association for the Advancement of Science; 2008;321: 970–974. PubMed PMC

Rogers ME, Kropf P, Dillon RJ, Choi B-S, Bates PA, Podinovskaia M, et al. Proteophosphoglycans Regurgitated by Leishmania-Infected Sand Flies Target the L-Arginine Metabolism of Host Macrophages to Promote Parasite Survival. PLoS Pathog. 2009;5: e1000555 10.1371/journal.ppat.1000555 PubMed DOI PMC

Sacks DL, Hieny S, Sher A. Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. J Immunol. Am Assoc Immnol; 1985;135: 564–9. PubMed

Leslie G, Barrett M, Burchmore R. Leishmania mexicana: Promastigotes migrate through osmotic gradients. Exp Parasitol. 2002;102: 117–120. PubMed

Oliveira JS, Melo MN, Gontijo NF. A sensitive method for assaying chemotaxic responses of Leishmania promastigotes. Exp Parasitol. 2000;96: 187–189. 10.1006/expr.2000.4569 PubMed DOI

Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36 Suppl 1: S1–S9. PubMed

Myskova J, Votypka J, Volf P, Myšková J, Votýpka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008;45: 133–138. PubMed

Kamhawi S, Modi GB, Pimenta PF, Rowton E, Sacks DL. The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitology. 2000;121 (Pt 1: 25–33. PubMed

Mary C, Faraut F, Lascombe L, Dumon H. Quantification of Leishmania infantum DNA by a Real-Time PCR Assay with High Sensitivity. J Clin Microbiol. 2004;42: 5249–5255. 10.1128/JCM.42.11.5249-5255.2004 PubMed DOI PMC

Price HHP, Panethymitaki C, Goulding D, Smith DF. Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes. J Cell Sci. 2005;118: 831–841. 10.1242/jcs.01624 PubMed DOI PMC

Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11: 36–42.

Depledge DP, Evans KJ, Ivens AC, Aziz N, Maroof A, Kaye PM, et al. Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds. PLoS Negl Trop Dis. 2009;3: e476 10.1371/journal.pntd.0000476 PubMed DOI PMC

Titus RG, Marchand M, Boon T, Louis JA. A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol. 1985;7: 545–555. PubMed

Lima HC, Bleyenberg JA, Titus RG. A simple method for quantifying Leishmania in tissues of infected animals. Parasitol Today. 1997;13: 80–82. PubMed

Kropf P, Kadolsky UD, Rogers M, Cloke TE, Müller I. The Leishmania Model In: Kaufmann Kabeliz, editors. Immunology of Infection. 25th ed San Diego: Academic Press; 1998. pp. 419–458.

Paape D, Aebischer T. Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development. J Proteomics. Elsevier B.V.; 2011;74: 1614–1624. PubMed

Chakraborty P, Sturgill-Koszycki S, Russell DG. Chapter 14: Isolation and Characterization of Pathogen-Containing Phagosomes. Methods in Cell Biology. 1995. pp. 261–276. PubMed

Nicolas L, Prina E, Lang T, Milon G. Real-Time PCR for Detection and Quantitation of Leishmania in Mouse Tissues. J Clin Microbiol. 2002;40: 1666–1669. 10.1128/JCM.40.5.1666-1669.2002 PubMed DOI PMC

Selvapandiyan A, Dey R, Duncan R, Nylén S, Nakhasi HL, Sacks DL, et al. Intracellular Replication-Deficient Leishmania donovani Induces Long Lasting Protective Immunity against Visceral Leishmaniasis. J Immunol. 2009;183: 1813–20. 10.4049/jimmunol.0900276 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...