Trypanosomatid parasites in Austrian mosquitoes
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
I 1437
Austrian Science Fund FWF - Austria
PubMed
29672618
PubMed Central
PMC5908168
DOI
10.1371/journal.pone.0196052
PII: PONE-D-17-43045
Knihovny.cz E-resources
- MeSH
- Biodiversity MeSH
- Culicidae parasitology MeSH
- Phylogeny MeSH
- DNA, Protozoan MeSH
- DNA, Ribosomal MeSH
- Sequence Analysis, DNA MeSH
- Trypanosoma classification genetics MeSH
- Trypanosomiasis parasitology transmission MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Austria MeSH
- Names of Substances
- DNA, Protozoan MeSH
- DNA, Ribosomal MeSH
Trypanosomatid flagellates have not been studied in Austria in any detail. In this study, specific nested PCR, targeted on the ribosomal small subunit, was used to determine the occurrence and diversity of trypanosomatids in wild-caught mosquitoes sampled across Eastern Austria in the years 2014-2015. We collected a total of 29,975 mosquitoes of 19 species divided in 1680 pools. Of these, 298 (17.7%), representing 12 different mosquito species, were positive for trypanosomatid DNA. In total, seven trypanosomatid spp. were identified (three Trypanosoma, three Crithidia and one Herpetomonas species), with the highest parasite species diversity found in the mosquito host Coquillettidia richiardii. The most frequent parasite species belonged to the mammalian Trypanosoma theileri/cervi species complex (found in 105 pools; 6.3%). The avian species T. culicavium (found in 69 pools; 4.1%) was only detected in mosquitoes of the genus Culex, which corresponds to their preference for avian hosts. Monoxenous trypanosomatids of the genus Crithidia and Herpetomonas were found in 20 (1.3%) mosquito pools. One third (n = 98) of the trypanosomatid positive mosquito pools carried more than one parasite species. This is the first large scale study of trypanosomatid parasites in Austrian mosquitoes and our results are valuable in providing an overview of the diversity of these parasites in Austria.
Biological Station Lake Neusiedl Burgenland Austria
Department of Parasitology Faculty of Science Charles University Prague Czechia
Federal Ministry of Defence and Sports Division of Science Research and Development Vienna Austria
Institute of Parasitology Biology Centre of Czech Academy of Sciences České Budĕjovice Czechia
See more in PubMed
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013;29(1):43–52. doi: 10.1016/j.pt.2012.11.001 PubMed DOI
Simpson AG, Stevens JR, Lukeš J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22(4):168–74. doi: 10.1016/j.pt.2006.02.006 PubMed DOI
Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasit Vectors. 2017;10:287 doi: 10.1186/s13071-017-2204-7 PubMed DOI PMC
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195(2):115–22. doi: 10.1016/j.molbiopara.2014.05.007 PubMed DOI
Poinar G Jr, Poinar R. Evidence of vector-borne disease of early cretaceous reptiles. Vector Borne Zoonotic Dis. 2004;4(4):281–4. doi: 10.1089/vbz.2004.4.281 PubMed DOI
Wallace FG. The trypanosomatid parasites of insects and arachnids. Exp Parasitol. 1966;18(1):124–93. PubMed
Maslov DA, Lukeš J, Jirků M, Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol. 1996;75(2):197–205. PubMed
Svobodová M, Zídková L, Čepička I, Oborník M, Lukeš J, Votýpka J. PubMed DOI
Teixeira MM, Borghesan TC, Ferreira RC, Santos MA, Takata CS, Campaner M, et al. Phylogenetic validation of the genera PubMed DOI
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, et al. PubMed DOI
Barratt J, Kaufer A, Peters B, Craig D, Lawrence A, Roberts T, et al. Isolation of novel Trypanosomatid, PubMed PMC
Garnham P. Some natural protozoal parasites of mosquitoes with special reference to
Wallace F. Flagellate parasites of mosquitoes with special reference to
Votýpka J, Ray DS, Lukeš J. PubMed DOI
Fampa PC, Corrêa-da-Silva MS, Lima DC, Oliveira SM, Motta MCM, Saraiva EM. Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines. Int J Parasitol. 2003;33(10):1019–26. PubMed
Svobodová M, Volf P, Votýpka J. Trypanosomatids in ornithophilic bloodsucking Diptera. Med Vet Entomol. 2015;29(4):444–7. doi: 10.1111/mve.12130 PubMed DOI
Podlipaev S, Votýpka J, Jirků M, Svobodova M, Lukeš J. PubMed DOI
Zídková L, Cepicka I, Votýpka J, Svobodová M. PubMed
d’Avila-Levy CM, Boucinha C, Kostygov A, Santos HLC, Morelli KA, Grybchuk-Ieremenko A, et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz. 2015;110(8):956–65. doi: 10.1590/0074-02760150253 PubMed DOI PMC
Votýpka J, d’Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re) description. Trends Parasitol. 2015;31(10):460–9. doi: 10.1016/j.pt.2015.06.015 PubMed DOI
Kostygov AY, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA, Votýpka J, et al. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. MBio. 2016;7(2):e01985–15. doi: 10.1128/mBio.01985-15 PubMed DOI PMC
Hamilton PT, Votýpka J, Dostálová A, Yurchenko V, Bird NH, Lukeš J, et al. Infection dynamics and immune response in a newly described PubMed DOI PMC
Kozminsky E, Kraeva N, Ishemgulova A, Dobáková E, Lukeš J, Kment P, et al. Host-specificity of monoxenous trypanosomatids: statistical analysis of the distribution and transmission patterns of the parasites from neotropical Heteroptera. Protist. 2015;166(5):551–68. doi: 10.1016/j.protis.2015.08.004 PubMed DOI
Votýpka J, Maslov DA, Yurchenko V, Jirků M, Kment P, Lun Z-R, et al. Probing into the diversity of trypanosomatid flagellates parasitizing insect hosts in South-West China reveals both endemism and global dispersal. Mol Phylogenet Evol. 2010;54(1):243–53. doi: 10.1016/j.ympev.2009.10.014 PubMed DOI
Flegontov P, Votýpka J, Skalický T, Logacheva MD, Penin AA, Tanifuji G, et al. PubMed DOI
Fernandes AP, Nelson K, Beverley SM. Evolution of nuclear ribosomal-RNAS in kinetoplastid protozoa—perspectives on the age and origins of parasitism. Proc Natl Acad Sci USA. 1993;90(24):11608–12. PubMed PMC
Losos GJ, Ikede B. Review of pathology of diseases in domestic and laboratory animals caused by
Van den Ingh T, Zwart D, Van Miert A, Schotman A. Clinico-pathological and pathomorphological observations in
Buguet A, Cespuglio R, Bouteille B. African sleeping sickness Sleep med: Springer; 2015. p. 159–65.
Hedley L, Fink D, Sparkes D, Chiodini PL. African sleeping sickness. Br J Hosp Med (Lond). 2016;77(Sup10):C157–C60. PubMed
Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010;375(9723):1388–402. doi: 10.1016/S0140-6736(10)60061-X PubMed DOI
Schmunis GA, Yadon ZE. Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop. 2010;115(1–2):14–21. doi: 10.1016/j.actatropica.2009.11.003 PubMed DOI
Grybchuk-Ieremenko A, Losev A, Kostygov AY, Lukeš J, Yurchenko V. High prevalence of trypanosome co-infections in freshwater fishes. Folia Parasitol. 2014;61:495–504. PubMed
Svobodová M, Weidinger K, Peške L, Volf P, Votýpka J, Voříšek P. Trypanosomes and haemosporidia in the buzzard ( PubMed DOI
Votýpka J, Lukeš J, Oborník M. Phylogenetic relationship of
Votýpka J, Oborník M, Volf P, Svobodová M, Lukeš J. PubMed
Votýpka J, Svobodová M. PubMed DOI
Zídková L, Čepička I, Szabová J, Svobodová M. Biodiversity of avian trypanosomes. Infect Genet Evol. 2012;12. PubMed
Böse R, Friedhoff K, Olbrich S, Büscher G, Domeyer I. Transmission of PubMed
Hoare CA. The trypanosomes of mammals. Oxford: BlackwellScientific Publications; 1972.
Rodrigues A, Paiva F, Campaner M, Stevens J, Noyes H, Teixeira M. Phylogeny of PubMed
Sehgal RN, Jones HI, Smith TB. Host specificity and incidence of PubMed
Šlapeta J, Morin-Adeline V, Thompson P, McDonell D, Shiels M, Gilchrist K, et al. Intercontinental distribution of a new trypanosome species from Australian endemic Regent Honeyeater ( PubMed DOI
Bennett GF. On the specificity and transmission of some avian trypanosomes. Can J Zool. 1961;39(1):17–33.
Baker J. Studies on PubMed
Svobodová M, Dolnik OV, Čepička I, Rádrová J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasit Vectors. 2017;10(1):224 doi: 10.1186/s13071-017-2158-9 PubMed DOI PMC
Votýpka J, Szabová J, Rádrová J, Zídková L, Svobodová M. PubMed DOI
Bennett GF. Development of trypanosomes of the PubMed
Volf P, Hajmova M, Sádlová J, Votýpka J. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int J Parasitol. 2004;34(11):1221–7. doi: 10.1016/j.ijpara.2004.07.010 PubMed DOI
Bennett GF.
Stabler RM, Holt PA, Kitzmiller NJ. PubMed
Molyneux D, Cooper J, Smith W. Studies on the pathology of an avian trypanosome ( PubMed
Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C. Mosquitoes and their control. Heidelberg: Springer; 2010.
Zittra C, Flechl E, Kothmayer M, Vitecek S, Rossiter H, Zechmeister T. Ecological characterization and molecular differentiation of PubMed PMC
Seward EA, Votýpka J, Kment P, Lukeš J, Kelly S. Description of PubMed DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. doi: 10.1093/bioinformatics/bts199 PubMed DOI PMC
Lassmann T, Sonnhammer ELL. Kalign—an accurate and fast multiple sequence alignment algorithm. Bmc Bioinformatics. 2005;6. PubMed PMC
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Guindon S, Dufayard JF, Hordijk W, Lefort V, Gascuel O. PhyML: Fast and Accurate Phylogeny Reconstruction by Maximum Likelihood. Infect Genet Evol. 2009;9(3):384–5.
Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–8. PubMed
Holmstad PR, Anwar A, Iezhova T, Skorping A. Standard sampling techniques underestimate prevalence of avian hematozoa in willow ptarmigan ( PubMed DOI
Merino S, Potti J. High prevalence of hematozoa in nestlings of a passerine species, the pied flycatcher (
Shurulinkov P, Ilieva M. Spatial and temporal differences in the blood parasite fauna of passerine birds during the spring migration in Bulgaria. Parasit Res. 2009;104(6):1453. PubMed
Zittra C, Vitecek S, Obwaller AG, Rossiter H, Eigner B, Zechmeister T, et al. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae). Parasit Vectors. 2017;10(1):205 doi: 10.1186/s13071-017-2140-6 PubMed DOI PMC
Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N. Host-feeding patterns of mosquitoes in Germany. Parasit Vectors. 2016;9. PubMed PMC
Schonenberger AC, Wagner S, Tuten HC, Schaffner F, Torgerson P, Furrer S, et al. Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. Med Vet Entomol. 2016;30(1):39–52. doi: 10.1111/mve.12155 PubMed DOI
Friedhoff K, Petrich J, Hoffmann M, Büscher G. Trypanosomes in cervidae in Germany. Zentralbl Bakteriol Mikrobiol Hyg A. 1984;256(3):286–7. PubMed
Wita I, Kingston N.
Podlipaev S. [Catalogue of world fauna of Trypanosomatidae (Protozoa)]. Proc Zool Inst, Leningrad: 1990:1–178. (in Russian)
Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. Molecular revision of the genus PubMed DOI
Yurchenko V, Votýpka J, Tesarová M, Klepetková H, Kraeva N, Jirků M, et al. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus PubMed
Van Dyken M, Bolling BG, Moore CG, Blair CD, Beaty BJ, Black WC, et al. Molecular evidence for trypanosomatids in PubMed DOI
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, et al. Genome of PubMed DOI PMC
Schlafer D. PubMed
The Roles of Mosquitoes in the Circulation of Monoxenous Trypanosomatids in Temperate Climates
Development of two species of the Trypanosoma theileri complex in tabanids
Trypanosomes of the Trypanosoma theileri Group: Phylogeny and New Potential Vectors
An unexpected diversity of trypanosomatids in fecal samples of great apes