Allosteric links between the hydrophilic N-terminus and transmembrane core of human Na+ /H+ antiporter NHA2
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36177733
PubMed Central
PMC9667825
DOI
10.1002/pro.4460
Knihovny.cz E-zdroje
- Klíčová slova
- N-terminal auto-inhibition, Na+/H+ antiporter, human NHA2, phloretin, yeast,
- MeSH
- lidé MeSH
- Na(+)-H(+) antiport * chemie genetika MeSH
- protony * MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Na(+)-H(+) antiport * MeSH
- protony * MeSH
- SLC9B2 protein, human MeSH Prohlížeč
The human Na+ /H+ antiporter NHA2 (SLC9B2) transports Na+ or Li+ across the plasma membrane in exchange for protons, and is implicated in various pathologies. It is a 537 amino acids protein with an 82 residues long hydrophilic cytoplasmic N-terminus followed by a transmembrane part comprising 14 transmembrane helices. We optimized the functional expression of HsNHA2 in the plasma membrane of a salt-sensitive Saccharomyces cerevisiae strain and characterized in vivo a set of mutated or truncated versions of HsNHA2 in terms of their substrate specificity, transport activity, localization, and protein stability. We identified a highly conserved proline 246, located in the core of the protein, as being crucial for ion selectivity. The replacement of P246 with serine or threonine resulted in antiporters with altered substrate specificity that were not only highly active at acidic pH 4.0 (like the native antiporter), but also at neutral pH. P246T/S versions also exhibited increased resistance to the HsNHA2-specific inhibitor phloretin. We experimentally proved that a putative salt bridge between E215 and R432 is important for antiporter function, but also structural integrity. Truncations of the first 50-70 residues of the N-terminus doubled the transport activity of HsNHA2, while changes in the charge at positions E47, E56, K57, or K58 decreased the antiporter's transport activity. Thus, the hydrophilic N-terminal part of the protein appears to allosterically auto-inhibit cation transport of HsNHA2. Our data also show this in vivo approach to be useful for a rapid screening of SNP's effect on HsNHA2 activity.
Zobrazit více v PubMed
Padan E, Landau M. Sodium‐proton Na+/H+ antiporters: Properties and roles in health and disease. Metal Ions Life Sci. 2016;16:391–458. 10.1007/978-3-319-21756-7_12. PubMed DOI
Masrati G, Dwivedi M, Rimon A, et al. Broad phylogenetic analysis of cation/proton antiporters reveals transport determinants. Nat Commun. 2018;9:4205. 10.1038/s41467-018-06770-5. PubMed DOI PMC
Pedersen SF, Counillon L. The SLC9A‐C mammalian Na+/H+ exchanger family: Molecules, mechanisms, and physiology. Physiol Rev. 2019;99:2015–2113. 10.1152/physrev.00028.2018. PubMed DOI
Fuster DG, Zhang J, Shi M, Bobulescu IA, Andersson S, Moe OW. Characterization of the sodium/hydrogen exchanger NHA2. J Am Soc Nephrol. 2008;19:1547–1556. 10.1681/ASN.2007111245. PubMed DOI PMC
Battaglino RA, Pham L, Morse LR, et al. NHA‐oc/NHA2: A mitochondrial cation‐proton antiporter selectively expressed in osteoclasts. Bone. 2008;42:180–192. 10.1016/j.bone.2007.09.046. PubMed DOI PMC
Xiang M, Feng M, Muend S, Rao R. A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc Natl Acad Sci U S A. 2007;104:18677–18681. 10.1073/pnas.0707120104. PubMed DOI PMC
Chintapalli VR, Kato A, Henderson L, et al. Transport proteins NHA1 and NHA2 are essential for survival, but have distinct transport modalities. Proc Natl Acad Sci U S A. 2015;112:11720–11725. 10.1073/pnas.1508031112. PubMed DOI PMC
Deisl C, Simonin A, Anderegg M, et al. Sodium/hydrogen exchanger NHA2 is critical for insulin secretion in beta‐cells. Proc Natl Acad Sci U S A. 2013;110:10004–10009. 10.1073/pnas.1220009110. PubMed DOI PMC
Deisl C, Anderegg M, Albano G, et al. Loss of sodium/hydrogen exchanger NHA2 exacerbates obesity‐ and aging‐induced glucose intolerance in mice. PLoS One. 2016;11:e0163568. 10.1371/journal.pone.0163568. PubMed DOI PMC
Liu HM, He JY, Zhang Q, et al. Improved detection of genetic loci in estimated glomerular filtration rate and type 2 diabetes using a pleiotropic cFDR method. Mol Genet Genomics. 2018;293:225–235. 10.1007/s00438-017-1381-6. PubMed DOI PMC
Kondapalli KC, Todd Alexander R, Pluznick JL, Rao R. NHA2 is expressed in distal nephron and regulated by dietary sodium. J Physiol Biochem. 2017;73:199–205. 10.1007/s13105-016-0539-8. PubMed DOI PMC
Anderegg MA, Albano G, Hanke D, et al. The sodium/proton exchanger NHA2 regulates blood pressure through a WNK4‐NCC dependent pathway in the kidney. Kidney Int. 2021;99:350–363. 10.1016/j.kint.2020.08.023. PubMed DOI
Prasad H, Dang DK, Kondapalli KC, Natarajan N, Cebotaru V, Rao R. NHA2 promotes cyst development in an in vitro model of polycystic kidney disease. J Physiol. 2019;597:499–519. 10.1113/JP276796. PubMed DOI PMC
Chen SR, Chen M, Deng SL, Hao XX, Wang XX, Liu YX. Sodium‐hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death Dis. 2016;7:e2152. 10.1038/cddis.2016.65. PubMed DOI PMC
Ha BG, Hong JM, Park JY, et al. Proteomic profile of osteoclast membrane proteins: Identification of Na+/H+ exchanger domain containing 2 and its role in osteoclast fusion. Proteomics. 2008;8:2625–2639. 10.1002/pmic.200701192. PubMed DOI
Lee SH, Kim T, Park ES, et al. NHE10, an osteoclast‐specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival [corrected]. Biochem Biophys Res Commun. 2008;369:320–326. 10.1016/j.bbrc.2008.01.168. PubMed DOI
Hofstetter W, Siegrist M, Simonin A, Bonny O, Fuster DG. Sodium/hydrogen exchanger NHA2 in osteoclasts: Subcellular localization and role in vitro and in vivo. Bone. 2010;47:331–340. 10.1016/j.bone.2010.04.605. PubMed DOI
Charles JF, Coury F, Sulyanto R, et al. The collection of NFATc1‐dependent transcripts in the osteoclast includes numerous genes non‐essential to physiologic bone resorption. Bone. 2012;51:902–912. 10.1016/j.bone.2012.08.113. PubMed DOI PMC
Hill JE, Myers AM, Koerner TJ, Tzagoloff A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast. 1986;2:163–167. 10.1002/yea.320020304. PubMed DOI
Kinclova O, Ramos J, Potier S, Sychrova H. Functional study of the Saccharomyces cerevisiae Nha1p C‐terminus. Mol Microbiol. 2001;40:656–668. 10.1046/j.1365-2958.2001.02412.x. PubMed DOI
Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae . Genetics. 1989;122:19–27. 10.1093/genetics/122.1.19. PubMed DOI PMC
Duskova M, Ferreira C, Lucas C, Sychrova H. Two glycerol uptake systems contribute to the high osmotolerance of Zygosaccharomyces rouxii . Mol Microbiol. 2015;97:541–559. 10.1111/mmi.13048. PubMed DOI
Matsuoka R, Fudim R, Jung S, et al. Structure, mechanism and lipid‐mediated remodeling of the mammalian Na+/H+ exchanger NHA2. Nat Struct Mol Biol. 2022;29:108–120. 10.1038/s41594-022-00738-2. PubMed DOI PMC
Varadi M, Anyango S, Deshpande M, et al. Alphafold protein structure database: Massively expanding the structural coverage of protein‐sequence space with high‐accuracy models. Nucleic Acids Res. 2022;50:D439–D444. 10.1093/nar/gkab1061. PubMed DOI PMC
Hendus‐Altenburger R, Kragelund BB, Pedersen SF. Structural dynamics and regulation of the mammalian SLC9A family of Na+/H+ exchangers. Curr Top Membr. 2014;73:69–148. 10.1016/B978-0-12-800223-0.00002-5. PubMed DOI
Chow CW, Woodside M, Demaurex N, et al. Proline‐rich motifs of the Na+/H+ exchanger 2 isoform‐binding of Src homology domain 3 and role in apical targeting in epithelia. J Biol Chem. 1999;274:10481–10488. 10.1074/jbc.274.15.10481. PubMed DOI
Onishi I, Lin PJ, Diering GH, Williams WP, Numata M. Rack1 associates with NHE5 in focal adhesions and positively regulates the transporter activity. Cell Signal. 2007;19:194–203. 10.1016/j.cellsig.2006.06.011. PubMed DOI
Fukura N, Ohgaki R, Matsushita M, Nakamura N, Mitsui K, Kanazawa H. A membrane‐proximal region in the C‐terminal tail of NHE7 is required for its distribution in the trans‐Golgi network, distinct from NHE6 localization at endosomes. J Membr Biol. 2010;234:149–158. 10.1007/s00232-010-9242-9. PubMed DOI
Uzdavinys P, Coinçon M, Nji E, et al. Dissecting the proton transport pathway in electrogenic Na+/H+ antiporters. Proc Natl Acad Sci U S A. 2017;114:E1101–E1110. 10.1073/pnas.1614521114. PubMed DOI PMC
Kondapalli KC, Kallay LM, Muszelik M, Rao R. Unconventional chemiosmotic coupling of NHA2, a mammalian Na+/H+ antiporter, to a plasma membrane H+ gradient. J Biol Chem. 2012;287:36239–36250. 10.1074/jbc.M112.403550. PubMed DOI PMC
Schushan M, Xiang M, Bogomiakov P, Padan E, Rao R, Ben‐Tal N. Model‐guided mutagenesis drives functional studies of human NHA2, implicated in hypertension. J Mol Biol. 2010;396:1181–1196. 10.1016/j.jmb.2009.12.055. PubMed DOI PMC
Flegelova H, Haguenauer‐Tsapis R, Sychrova H. Heterologous expression of mammalian Na+/H+ antiporters in Saccharomyces cerevisiae . Biochim Biophys Acta. 2006;1760:504–516. 10.1016/j.bbagen.2006.01.014. PubMed DOI
Flegelova H, Sychrova H. Mammalian NHE2 Na+/H+ exchanger mediates efflux of potassium upon heterologous expression in yeast. FEBS Lett. 2005;579:4733–4738. 10.1016/j.febslet.2005.07.046. PubMed DOI
Banuelos MA, Ruiz MC, Jiménez A, Souciet JL, Potier S, Ramos J. Role of the Nha1 antiporter in regulating K+ influx in Saccharomyces cerevisiae . Yeast. 2002;19:9–15. 10.1002/yea.799. PubMed DOI
Zhao J, Hyman L, Moore C. Formation of mRNA 3′ ends in eukaryotes: Mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev. 1999;63:405–445. 10.1128/MMBR.63.2.405-445.1999. PubMed DOI PMC
Yamanishi M, Katahira S, Matsuyama T. TPS1 terminator increases mRNA and protein yield in a Saccharomyces cerevisiae expression system. Biosci Biotechnol Biochem. 2011;75:2234–2236. 10.1271/bbb.110246. PubMed DOI
Kinclova‐Zimmermannova O, Zavrel M, Sychrova H. Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters. J Biol Chem. 2005;280:30638–30647. 10.1074/jbc.M506341200. PubMed DOI
Behzad S, Sureda A, Barreca D, Nabavi SF, Rastrelli L, Nabavi SM. Health effects of phloretin: From chemistry to medicine. Phytochem Rev. 2017;16:527–533. 10.1007/s11101-017-9500-x. DOI
Dewey FE, Murray MF, Overton JD, et al. Distribution and clinical impact of functional variants in 50,726 whole‐exome sequences from the discover study. Science. 2016;354:aaf6814. 10.1126/science.aaf6814. PubMed DOI
Su P, Wu H, Wang M, Cai L, Liu Y, Chen LM. Irbit activates NBCe1‐B by releasing the auto‐inhibition module from the transmembrane domain. J Physiol. 2021;599:1151–1172. 10.1113/JP280578. PubMed DOI PMC
Thines L, Deschamps A, Stribny J, Morsomme P. Yeast as a tool for deeper understanding of human manganese‐related diseases. Genes (Basel). 2019;10:545. 10.3390/genes10070545 PubMed DOI PMC
Stribny J, Thines L, Deschamps A, Goffin P, Morsomme P. The human Golgi protein TMEM165 transports calcium and manganese in yeast and bacterial cells. J Biol Chem. 2020;295:3865–3874. 10.1074/jbc.RA119.012249. PubMed DOI PMC
Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature. 2005;435:1197–1202. 10.1038/nature03692. PubMed DOI
Padan E. Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ homeostasis in cells. Biochim Biophys Acta. 2014;1837:1047–1062. 10.1016/j.bbabio.2013.12.007. PubMed DOI
Dong Y, Gao Y, Ilie A, et al. Structure and mechanism of the human NHE1‐CHP1 complex. Nat Commun. 2021;12:3474. 10.1038/s41467-021-23496-z. PubMed DOI PMC
Winklemann I, Matsuoka R, Meier PF, et al. Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO J. 2020;39:e105908. 10.15252/embj.2020105908. PubMed DOI PMC
Lee C, Kang HJ, Von Ballmoos C, et al. A two‐domain elevator mechanism for sodium/proton antiport. Nature. 2013;501:573–577. 10.1038/nature12484. PubMed DOI PMC
Paulino C, Wohlert D, Kapotova E, Yildiz O, Kuhlbrandt W. Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. eLife. 2014;3:e03583. 10.7554/eLife.03583. PubMed DOI PMC
Wohlert D, Kuhlbrandt W, Yildiz O. Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. eLife. 2014;3:e03579. 10.7554/eLife.03579. PubMed DOI PMC
Goswami P, Paulino C, Hizlan D, Vonck J, Yildiz Ö, Kühlbrandt W. Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1. EMBO J. 2011;30:439–449. 10.1038/emboj.2010.321. PubMed DOI PMC
Smidova A, Stankova K, Petrvalska O, et al. The activity of Saccharomyces cerevisiae Na+, K+/H+ antiporter Nha1 is negatively regulated by 14‐3‐3 protein binding at serine 481. Biochim Biophys Acta Mol Cell Res. 2019;1866:118534. 10.1016/j.bbamcr.2019.118534. PubMed DOI
Pittman JK, Sreevidya CS, Shigaki T, Ueoka‐Nakanishi H, Hirschi KD. Distinct N‐terminal regulatory domains of Ca2+/H+ antiporters. Plant Physiol. 2002;130:1054–1062. 10.1104/pp.008193. PubMed DOI PMC
Cagnac O, Baghour M, Jaime‐Pérez N, et al. Deletion of the N‐terminal domain of the yeast vacuolar Na+, K+/H+ antiporter Vnx1p improves salt tolerance in yeast and transgenic arabidopsis. Yeast. 2020;37:173–185. 10.1002/yea.3450. PubMed DOI
Visiers I, Braunheim BB, Weinstein H. Prokink: A protocol for numerical evaluation of helix distortions by proline. Protein Eng. 2000;13:603–606. 10.1093/protein/13.9.603. PubMed DOI
Counillon L, Noel J, Reithmeier RA, Pouyssegur J. Random mutagenesis reveals a novel site involved in inhibitor interaction within the fourth transmembrane segment of the Na+/H+ exchanger‐1. Biochemistry. 1997;36:2951–2959. 10.1021/bi9615405. PubMed DOI
Slepkov ER, Rainey JK, Li X, et al. Structural and functional characterization of transmembrane segment IV of the NHE1 isoform of the Na+/H+ exchanger. J Biol Chem. 2005;280:17863–17872. 10.1074/jbc.M409608200. PubMed DOI
Slepkov ER, Chow S, Lemieux MJ, Fliegel L. Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na+/H+ exchanger isoform 1. Biochem J. 2004;379:31–38. 10.1042/BJ20030884. PubMed DOI PMC
Ndayizeye M, Touret N, Fliegel L. Proline 146 is critical to the structure, function and targeting of sod2, the Na+/H+ exchanger of Schizosaccharomyces pombe . Biochim Biophys Acta. 2009;1788:983–992. 10.1016/j.bbamem.2009.01.001. PubMed DOI
Zimmermannova O, Felcmanová K, Rosas‐Santiago P, Papoušková K, Pantoja O, Sychrová H. Erv14 cargo receptor participates in regulation of plasma‐membrane potential, intracellular pH and potassium homeostasis via its interaction with K+‐specific transporters Trk1 and Tok1. BBA‐Mol Cell Res. 2019;1866:1376–1388. 10.1016/j.bbamcr.2019.05.005. PubMed DOI
Mondal R, Rimon A, Masrati G, Ben‐Tal N, Friedler A, Padan E. Towards molecular understanding of the pH dependence characterizing NhaA of which structural fold is shared by other transporters. J Mol Biol. 2021;433:167156. 10.1016/j.jmb.2021.167156. PubMed DOI
Furrer EM, Ronchetti MF, Verrey F, Pos KM. Functional characterization of a NapA Na+/H+ antiporter from Thermus thermophilus . FEBS Lett. 2007;581:572–578. 10.1016/j.febslet.2006.12.059. PubMed DOI
Inoue H, Noumi T, Tsuchiya T, Kanazawa H. Essential aspartic acid residues, Asp‐133, Asp‐163 and Asp‐164, in the transmembrane helices of a Na+/H+ antiporter (NhaA) from Escherichia coli . FEBS Lett. 1995;363:264–268. 10.1016/0014-5793(95)00331-3. PubMed DOI
Kuwabara N, Inoue H, Tsuboi Y, Mitsui K, Matsushita M, Kanazawa H. Structure‐function relationship of the fifth transmembrane domain in the Na+/H+ antiporter of Helicobacter pylori: Topology and function of the residues, including two consecutive essential aspartate residues. Biochemistry. 2006;45:14834–14842. 10.1021/bi061048d. PubMed DOI
Chen J, Li Q, Ye Y, Huang Z, Ruan Z, Jin N. Phloretin as both a substrate and inhibitor of tyrosinase: Inhibitory activity and mechanism. Spectrochim Acta A Mol Biomol Spectrosc. 2020;226:117642. 10.1016/j.saa.2019.117642. PubMed DOI
Lin ST, Tu SH, Yang PS, et al. Apple polyphenol phloretin inhibits colorectal cancer cell growth via inhibition of the type 2 glucose transporter and activation of p53‐mediated signaling. J Agric Food Chem. 2016;64:6826–6837. 10.1021/acs.jafc.6b02861. PubMed DOI
Liu L, Xie H, Zhao S, Huang X. The GLUT1‐mtORC1 axis affects odontogenic differentiation of human dental pulp stem cells. Tissue Cell. 2022;76:101766. 10.1016/j.tice.2022.101766. PubMed DOI
Casado‐Diaz A, Rodríguez‐Ramos Á, Torrecillas‐Baena B, Dorado G, Quesada‐Gómez JM, Gálvez‐Moreno MÁ. Flavonoid phloretin inhibits adipogenesis and increases OPG expression in adipocytes derived from human bone‐marrow mesenchymal stromal‐cells. Nutrients. 2021;13:4185. 10.3390/nu13114185. PubMed DOI PMC
Wu KH, Ho CT, Chen ZF, et al. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J Food Drug Anal. 2018;26:221–231. 10.1016/j.jfda.2017.03.009. PubMed DOI PMC
Vadavanath Prabhakaran V, Kozhiparambil Gopalan R. Phloretin alleviates arsenic trioxide‐induced apoptosis of H9c2 cardiomyoblasts via downregulation in Ca2+/calcineurin/NFATc pathway and inflammatory cytokine release. Cardiovasc Toxicol. 2021;21:642–654. 10.1007/s12012-021-09655-0. PubMed DOI
Friesner RA, Banks JL, Murphy RB, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–1749. 10.1021/jm0306430. PubMed DOI
Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein‐ligand complexes. J Med Chem. 2006;49:6177–6196. 10.1021/jm051256o. PubMed DOI
Sipos L, von Heijne G. Predicting the topology of eukaryotic membrane proteins. Eur J Biochem. 1993;213:1333–1340. 10.1111/j.1432-1033.1993.tb17885.x. PubMed DOI
von Heijne G. Membrane‐protein topology. Nat Rev Mol Cell Biol. 2006;7:909–918. 10.1038/nrm2063. PubMed DOI
Baker JA, Wong WC, Eisenhaber B, Warwicker J, Eisenhaber F. Erratum to: Charged residues next to transmembrane regions revisited: “positive‐inside rule” is complemented by the “negative inside depletion/outside enrichment rule”. BMC Biol. 2017;15:72. 10.1186/s12915-017-0410-6. PubMed DOI PMC
Maresova L, Sychrova H. Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Mol Microbiol. 2005;55:588–600. 10.1111/j.1365-2958.2004.04410.x. PubMed DOI
Horak J, Wolf DH. Glucose‐induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J Bacteriol. 2001;183:3083–3088. 10.1128/JB.183.10.3083-3088.2001. PubMed DOI PMC
Ashkenazy H, Abadi S, Martz E, et al. Consurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44:W344–W350. 10.1093/nar/gkw408. PubMed DOI PMC
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–234. 10.1007/s10822-013-9644-8. PubMed DOI
Olsson MH, Sondergaard CR, Rostkowski M, Jensen JH. Propka3: Consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput. 2011;7:525–537. 10.1021/ct100578z. PubMed DOI
The Role of Cornichons in the Biogenesis and Functioning of Monovalent-Cation Transport Systems