Allosteric links between the hydrophilic N-terminus and transmembrane core of human Na+ /H+ antiporter NHA2

. 2022 Dec ; 31 (12) : e4460.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36177733

The human Na+ /H+ antiporter NHA2 (SLC9B2) transports Na+ or Li+ across the plasma membrane in exchange for protons, and is implicated in various pathologies. It is a 537 amino acids protein with an 82 residues long hydrophilic cytoplasmic N-terminus followed by a transmembrane part comprising 14 transmembrane helices. We optimized the functional expression of HsNHA2 in the plasma membrane of a salt-sensitive Saccharomyces cerevisiae strain and characterized in vivo a set of mutated or truncated versions of HsNHA2 in terms of their substrate specificity, transport activity, localization, and protein stability. We identified a highly conserved proline 246, located in the core of the protein, as being crucial for ion selectivity. The replacement of P246 with serine or threonine resulted in antiporters with altered substrate specificity that were not only highly active at acidic pH 4.0 (like the native antiporter), but also at neutral pH. P246T/S versions also exhibited increased resistance to the HsNHA2-specific inhibitor phloretin. We experimentally proved that a putative salt bridge between E215 and R432 is important for antiporter function, but also structural integrity. Truncations of the first 50-70 residues of the N-terminus doubled the transport activity of HsNHA2, while changes in the charge at positions E47, E56, K57, or K58 decreased the antiporter's transport activity. Thus, the hydrophilic N-terminal part of the protein appears to allosterically auto-inhibit cation transport of HsNHA2. Our data also show this in vivo approach to be useful for a rapid screening of SNP's effect on HsNHA2 activity.

Zobrazit více v PubMed

Padan E, Landau M. Sodium‐proton Na PubMed DOI

Masrati G, Dwivedi M, Rimon A, et al. Broad phylogenetic analysis of cation/proton antiporters reveals transport determinants. Nat Commun. 2018;9:4205. 10.1038/s41467-018-06770-5. PubMed DOI PMC

Pedersen SF, Counillon L. The SLC9A‐C mammalian Na PubMed DOI

Fuster DG, Zhang J, Shi M, Bobulescu IA, Andersson S, Moe OW. Characterization of the sodium/hydrogen exchanger NHA2. J Am Soc Nephrol. 2008;19:1547–1556. 10.1681/ASN.2007111245. PubMed DOI PMC

Battaglino RA, Pham L, Morse LR, et al. NHA‐oc/NHA2: A mitochondrial cation‐proton antiporter selectively expressed in osteoclasts. Bone. 2008;42:180–192. 10.1016/j.bone.2007.09.046. PubMed DOI PMC

Xiang M, Feng M, Muend S, Rao R. A human Na PubMed DOI PMC

Chintapalli VR, Kato A, Henderson L, et al. Transport proteins NHA1 and NHA2 are essential for survival, but have distinct transport modalities. Proc Natl Acad Sci U S A. 2015;112:11720–11725. 10.1073/pnas.1508031112. PubMed DOI PMC

Deisl C, Simonin A, Anderegg M, et al. Sodium/hydrogen exchanger NHA2 is critical for insulin secretion in beta‐cells. Proc Natl Acad Sci U S A. 2013;110:10004–10009. 10.1073/pnas.1220009110. PubMed DOI PMC

Deisl C, Anderegg M, Albano G, et al. Loss of sodium/hydrogen exchanger NHA2 exacerbates obesity‐ and aging‐induced glucose intolerance in mice. PLoS One. 2016;11:e0163568. 10.1371/journal.pone.0163568. PubMed DOI PMC

Liu HM, He JY, Zhang Q, et al. Improved detection of genetic loci in estimated glomerular filtration rate and type 2 diabetes using a pleiotropic cFDR method. Mol Genet Genomics. 2018;293:225–235. 10.1007/s00438-017-1381-6. PubMed DOI PMC

Kondapalli KC, Todd Alexander R, Pluznick JL, Rao R. NHA2 is expressed in distal nephron and regulated by dietary sodium. J Physiol Biochem. 2017;73:199–205. 10.1007/s13105-016-0539-8. PubMed DOI PMC

Anderegg MA, Albano G, Hanke D, et al. The sodium/proton exchanger NHA2 regulates blood pressure through a WNK4‐NCC dependent pathway in the kidney. Kidney Int. 2021;99:350–363. 10.1016/j.kint.2020.08.023. PubMed DOI

Prasad H, Dang DK, Kondapalli KC, Natarajan N, Cebotaru V, Rao R. NHA2 promotes cyst development in an in vitro model of polycystic kidney disease. J Physiol. 2019;597:499–519. 10.1113/JP276796. PubMed DOI PMC

Chen SR, Chen M, Deng SL, Hao XX, Wang XX, Liu YX. Sodium‐hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death Dis. 2016;7:e2152. 10.1038/cddis.2016.65. PubMed DOI PMC

Ha BG, Hong JM, Park JY, et al. Proteomic profile of osteoclast membrane proteins: Identification of Na PubMed DOI

Lee SH, Kim T, Park ES, et al. NHE10, an osteoclast‐specific member of the Na PubMed DOI

Hofstetter W, Siegrist M, Simonin A, Bonny O, Fuster DG. Sodium/hydrogen exchanger NHA2 in osteoclasts: Subcellular localization and role in vitro and in vivo. Bone. 2010;47:331–340. 10.1016/j.bone.2010.04.605. PubMed DOI

Charles JF, Coury F, Sulyanto R, et al. The collection of NFATc1‐dependent transcripts in the osteoclast includes numerous genes non‐essential to physiologic bone resorption. Bone. 2012;51:902–912. 10.1016/j.bone.2012.08.113. PubMed DOI PMC

Hill JE, Myers AM, Koerner TJ, Tzagoloff A. Yeast/ PubMed DOI

Kinclova O, Ramos J, Potier S, Sychrova H. Functional study of the PubMed DOI

Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in PubMed DOI PMC

Duskova M, Ferreira C, Lucas C, Sychrova H. Two glycerol uptake systems contribute to the high osmotolerance of PubMed DOI

Matsuoka R, Fudim R, Jung S, et al. Structure, mechanism and lipid‐mediated remodeling of the mammalian Na PubMed DOI PMC

Varadi M, Anyango S, Deshpande M, et al. Alphafold protein structure database: Massively expanding the structural coverage of protein‐sequence space with high‐accuracy models. Nucleic Acids Res. 2022;50:D439–D444. 10.1093/nar/gkab1061. PubMed DOI PMC

Hendus‐Altenburger R, Kragelund BB, Pedersen SF. Structural dynamics and regulation of the mammalian SLC9A family of Na PubMed DOI

Chow CW, Woodside M, Demaurex N, et al. Proline‐rich motifs of the Na PubMed DOI

Onishi I, Lin PJ, Diering GH, Williams WP, Numata M. Rack1 associates with NHE5 in focal adhesions and positively regulates the transporter activity. Cell Signal. 2007;19:194–203. 10.1016/j.cellsig.2006.06.011. PubMed DOI

Fukura N, Ohgaki R, Matsushita M, Nakamura N, Mitsui K, Kanazawa H. A membrane‐proximal region in the C‐terminal tail of NHE7 is required for its distribution in the trans‐Golgi network, distinct from NHE6 localization at endosomes. J Membr Biol. 2010;234:149–158. 10.1007/s00232-010-9242-9. PubMed DOI

Uzdavinys P, Coinçon M, Nji E, et al. Dissecting the proton transport pathway in electrogenic Na PubMed DOI PMC

Kondapalli KC, Kallay LM, Muszelik M, Rao R. Unconventional chemiosmotic coupling of NHA2, a mammalian Na PubMed DOI PMC

Schushan M, Xiang M, Bogomiakov P, Padan E, Rao R, Ben‐Tal N. Model‐guided mutagenesis drives functional studies of human NHA2, implicated in hypertension. J Mol Biol. 2010;396:1181–1196. 10.1016/j.jmb.2009.12.055. PubMed DOI PMC

Flegelova H, Haguenauer‐Tsapis R, Sychrova H. Heterologous expression of mammalian Na PubMed DOI

Flegelova H, Sychrova H. Mammalian NHE2 Na PubMed DOI

Banuelos MA, Ruiz MC, Jiménez A, Souciet JL, Potier S, Ramos J. Role of the Nha1 antiporter in regulating K PubMed DOI

Zhao J, Hyman L, Moore C. Formation of mRNA 3′ ends in eukaryotes: Mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev. 1999;63:405–445. 10.1128/MMBR.63.2.405-445.1999. PubMed DOI PMC

Yamanishi M, Katahira S, Matsuyama T. PubMed DOI

Kinclova‐Zimmermannova O, Zavrel M, Sychrova H. Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na PubMed DOI

Behzad S, Sureda A, Barreca D, Nabavi SF, Rastrelli L, Nabavi SM. Health effects of phloretin: From chemistry to medicine. Phytochem Rev. 2017;16:527–533. 10.1007/s11101-017-9500-x. DOI

Dewey FE, Murray MF, Overton JD, et al. Distribution and clinical impact of functional variants in 50,726 whole‐exome sequences from the discover study. Science. 2016;354:aaf6814. 10.1126/science.aaf6814. PubMed DOI

Su P, Wu H, Wang M, Cai L, Liu Y, Chen LM. Irbit activates NBCe1‐B by releasing the auto‐inhibition module from the transmembrane domain. J Physiol. 2021;599:1151–1172. 10.1113/JP280578. PubMed DOI PMC

Thines L, Deschamps A, Stribny J, Morsomme P. Yeast as a tool for deeper understanding of human manganese‐related diseases. Genes (Basel). 2019;10:545. 10.3390/genes10070545 PubMed DOI PMC

Stribny J, Thines L, Deschamps A, Goffin P, Morsomme P. The human Golgi protein TMEM165 transports calcium and manganese in yeast and bacterial cells. J Biol Chem. 2020;295:3865–3874. 10.1074/jbc.RA119.012249. PubMed DOI PMC

Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H. Structure of a Na PubMed DOI

Padan E. Functional and structural dynamics of NhaA, a prototype for Na PubMed DOI

Dong Y, Gao Y, Ilie A, et al. Structure and mechanism of the human NHE1‐CHP1 complex. Nat Commun. 2021;12:3474. 10.1038/s41467-021-23496-z. PubMed DOI PMC

Winklemann I, Matsuoka R, Meier PF, et al. Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO J. 2020;39:e105908. 10.15252/embj.2020105908. PubMed DOI PMC

Lee C, Kang HJ, Von Ballmoos C, et al. A two‐domain elevator mechanism for sodium/proton antiport. Nature. 2013;501:573–577. 10.1038/nature12484. PubMed DOI PMC

Paulino C, Wohlert D, Kapotova E, Yildiz O, Kuhlbrandt W. Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. eLife. 2014;3:e03583. 10.7554/eLife.03583. PubMed DOI PMC

Wohlert D, Kuhlbrandt W, Yildiz O. Structure and substrate ion binding in the sodium/proton antiporter PubMed DOI PMC

Goswami P, Paulino C, Hizlan D, Vonck J, Yildiz Ö, Kühlbrandt W. Structure of the archaeal Na PubMed DOI PMC

Smidova A, Stankova K, Petrvalska O, et al. The activity of PubMed DOI

Pittman JK, Sreevidya CS, Shigaki T, Ueoka‐Nakanishi H, Hirschi KD. Distinct N‐terminal regulatory domains of Ca PubMed DOI PMC

Cagnac O, Baghour M, Jaime‐Pérez N, et al. Deletion of the N‐terminal domain of the yeast vacuolar Na PubMed DOI

Visiers I, Braunheim BB, Weinstein H. Prokink: A protocol for numerical evaluation of helix distortions by proline. Protein Eng. 2000;13:603–606. 10.1093/protein/13.9.603. PubMed DOI

Counillon L, Noel J, Reithmeier RA, Pouyssegur J. Random mutagenesis reveals a novel site involved in inhibitor interaction within the fourth transmembrane segment of the Na PubMed DOI

Slepkov ER, Rainey JK, Li X, et al. Structural and functional characterization of transmembrane segment IV of the NHE1 isoform of the Na PubMed DOI

Slepkov ER, Chow S, Lemieux MJ, Fliegel L. Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na PubMed DOI PMC

Ndayizeye M, Touret N, Fliegel L. Proline 146 is critical to the structure, function and targeting of sod2, the Na PubMed DOI

Zimmermannova O, Felcmanová K, Rosas‐Santiago P, Papoušková K, Pantoja O, Sychrová H. Erv14 cargo receptor participates in regulation of plasma‐membrane potential, intracellular pH and potassium homeostasis via its interaction with K PubMed DOI

Mondal R, Rimon A, Masrati G, Ben‐Tal N, Friedler A, Padan E. Towards molecular understanding of the pH dependence characterizing NhaA of which structural fold is shared by other transporters. J Mol Biol. 2021;433:167156. 10.1016/j.jmb.2021.167156. PubMed DOI

Furrer EM, Ronchetti MF, Verrey F, Pos KM. Functional characterization of a NapA Na PubMed DOI

Inoue H, Noumi T, Tsuchiya T, Kanazawa H. Essential aspartic acid residues, Asp‐133, Asp‐163 and Asp‐164, in the transmembrane helices of a Na PubMed DOI

Kuwabara N, Inoue H, Tsuboi Y, Mitsui K, Matsushita M, Kanazawa H. Structure‐function relationship of the fifth transmembrane domain in the Na PubMed DOI

Chen J, Li Q, Ye Y, Huang Z, Ruan Z, Jin N. Phloretin as both a substrate and inhibitor of tyrosinase: Inhibitory activity and mechanism. Spectrochim Acta A Mol Biomol Spectrosc. 2020;226:117642. 10.1016/j.saa.2019.117642. PubMed DOI

Lin ST, Tu SH, Yang PS, et al. Apple polyphenol phloretin inhibits colorectal cancer cell growth via inhibition of the type 2 glucose transporter and activation of p53‐mediated signaling. J Agric Food Chem. 2016;64:6826–6837. 10.1021/acs.jafc.6b02861. PubMed DOI

Liu L, Xie H, Zhao S, Huang X. The GLUT1‐mtORC1 axis affects odontogenic differentiation of human dental pulp stem cells. Tissue Cell. 2022;76:101766. 10.1016/j.tice.2022.101766. PubMed DOI

Casado‐Diaz A, Rodríguez‐Ramos Á, Torrecillas‐Baena B, Dorado G, Quesada‐Gómez JM, Gálvez‐Moreno MÁ. Flavonoid phloretin inhibits adipogenesis and increases OPG expression in adipocytes derived from human bone‐marrow mesenchymal stromal‐cells. Nutrients. 2021;13:4185. 10.3390/nu13114185. PubMed DOI PMC

Wu KH, Ho CT, Chen ZF, et al. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J Food Drug Anal. 2018;26:221–231. 10.1016/j.jfda.2017.03.009. PubMed DOI PMC

Vadavanath Prabhakaran V, Kozhiparambil Gopalan R. Phloretin alleviates arsenic trioxide‐induced apoptosis of H9c2 cardiomyoblasts via downregulation in Ca PubMed DOI

Friesner RA, Banks JL, Murphy RB, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–1749. 10.1021/jm0306430. PubMed DOI

Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein‐ligand complexes. J Med Chem. 2006;49:6177–6196. 10.1021/jm051256o. PubMed DOI

Sipos L, von Heijne G. Predicting the topology of eukaryotic membrane proteins. Eur J Biochem. 1993;213:1333–1340. 10.1111/j.1432-1033.1993.tb17885.x. PubMed DOI

von Heijne G. Membrane‐protein topology. Nat Rev Mol Cell Biol. 2006;7:909–918. 10.1038/nrm2063. PubMed DOI

Baker JA, Wong WC, Eisenhaber B, Warwicker J, Eisenhaber F. Erratum to: Charged residues next to transmembrane regions revisited: “positive‐inside rule” is complemented by the “negative inside depletion/outside enrichment rule”. BMC Biol. 2017;15:72. 10.1186/s12915-017-0410-6. PubMed DOI PMC

Maresova L, Sychrova H. Physiological characterization of PubMed DOI

Horak J, Wolf DH. Glucose‐induced monoubiquitination of the PubMed DOI PMC

Ashkenazy H, Abadi S, Martz E, et al. Consurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44:W344–W350. 10.1093/nar/gkw408. PubMed DOI PMC

Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–234. 10.1007/s10822-013-9644-8. PubMed DOI

Olsson MH, Sondergaard CR, Rostkowski M, Jensen JH. Propka3: Consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput. 2011;7:525–537. 10.1021/ct100578z. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...