Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11325936
PubMed Central
PMC95208
DOI
10.1128/jb.183.10.3083-3088.2001
Knihovny.cz E-zdroje
- MeSH
- endozomální třídící komplexy pro transport MeSH
- glukosa farmakologie MeSH
- komplexy ubikvitinligas * MeSH
- ligasy metabolismus MeSH
- proteiny přenášející monosacharidy genetika metabolismus MeSH
- regulace genové exprese u hub * MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- Saccharomyces cerevisiae genetika růst a vývoj metabolismus MeSH
- ubikvitinligasy MeSH
- ubikvitiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endozomální třídící komplexy pro transport MeSH
- GAL2 protein, S cerevisiae MeSH Prohlížeč
- glukosa MeSH
- komplexy ubikvitinligas * MeSH
- ligasy MeSH
- proteiny přenášející monosacharidy MeSH
- RSP5 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny * MeSH
- ubikvitinligasy MeSH
- ubikvitiny MeSH
In Saccharomyces cerevisiae, the addition of glucose to cells growing on galactose induces internalization of the galactose transporter Gal2p and its subsequent proteolysis in the vacuole. Here we report that the essential step in Gal2p down-regulation is its ubiquitination through the Ubc1p-Ubc4p-Ubc5p triad of ubiquitin-conjugating enzymes and Npi1/Rsp5p ubiquitin-protein ligase. Moreover, Gal2p appears to be stabilized in mutant cells defective in the ubiquitin-hydrolase Npi2p/Doa4p, and the mutant phenotype can be reversed by overexpression of ubiquitin. An analysis of the fate of Gal2p in cells overexpressing wild-type ubiquitin as well as its variants incompetent to form polyubiquitin chains showed that monoubiquitination of Gal2p is sufficient to signal internalization of the protein into the endocytic pathway.
Zobrazit více v PubMed
Amerik A Y, Nowak J, Swaminathan S, Hochstrasser M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol Biol Cell. 2000;11:3365–3380. PubMed PMC
Arnason T, Ellison M J. Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol. 1994;14:7876–7883. PubMed PMC
Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K. Current protocols in molecular biology. New York, N.Y: John Wiley and Sons; 1995.
Beck T A, Schmidt A, Hall M N. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol. 1999;146:1227–1237. PubMed PMC
Bonifacino J S, Weissman A M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol. 1998;14:19–57. PubMed PMC
Chiang H-L, Schekman R, Hamamoto S. Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation. J Biol Chem. 1996;271:9934–9941. PubMed
DeJuan C, Lagunas R. Inactivation of the galactose transport system. FEBS Lett. 1986;207:258–261. PubMed
Dulic V, Egerton M, Elguindi I, Rath S, Singer B, Riezman H. Yeast endocytosis assays. Methods Enzymol. 1991;194:697–710. PubMed
Ecker D J, Khan M I, Marsh J, Butt T R, Crooke S T. Chemical synthesis and expression of a cassette adapted ubiquitin gene. J Biol Chem. 1987;262:3524–3527. PubMed
Finley D, Sadis S, Monia B P, Boucher P, Ecker D J, Crooke S T, Chau V. Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol Cell Biol. 1994;14:5501–5509. PubMed PMC
Galan J-M, Haguenauer-Tsapis R. Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J. 1997;16:5847–5884. PubMed PMC
Galan J-M, Moreau V, Andre B, Volland C, Haguenauer-Tsapis R. Ubiquitination mediated by the Npi1/Rsp5 ubiquitin-protein ligase is required for endocytosis of the uracil permease. J Biol Chem. 1996;271:10946–10952. PubMed
Gitan R S, Eide D J. Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter. Biochem J. 2000;346:329–336. PubMed PMC
Hein C, Springael J-Y, Volland C, Haguenauer-Tsapis R, Andre B. NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol. 1995;18:77–87. PubMed
Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. PubMed
Hicke L. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 1999;9:107–112. PubMed
Hicke L, Riezman H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell. 1996;84:277–287. PubMed
Hilt W, Wolf D H. Proteasomes: destruction as a program. Trends Biochem Sci. 1996;21:96–102. PubMed
Hochstrasser M, Ellison M J, Chau V, Varshavsky A. The short-lived MATα2 transcriptional regulator is ubiquitinated in vivo. Proc Natl Acad Sci USA. 1991;88:4606–4610. PubMed PMC
Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405–439. PubMed
Horak J. Yeast nutrient transporters. Biochim Biophys Acta. 1997;1331:41–79. PubMed
Horak J, Wolf D H. Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol. 1997;179:1541–1549. PubMed PMC
Ito H, Fukuda Y, Muruta K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983;153:163–168. PubMed PMC
Johnson E S, Ma P C M, Ota I M, Varshavsky A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem. 1995;270:17442–17456. PubMed
Kölling R, Hollenberg C P. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 1994;13:3261–3271. PubMed PMC
Krampe S, Stamm O, Hollenberg C P, Boles E. Catabolite inactivation of the high-affinity transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett. 1998;441:343–347. PubMed
Lemmon S K, Traub L M. Sorting in the endosomal system in yeast and animal cells. Curr Opin Cell Biol. 2000;12:457–466. PubMed
Loayza D, Michaelis S. Role of the ubiquitin-proteasome system in the vacuolar degradation of Ste6, the a-factor transporter in Saccharomyces cerevisiae. Mol Cell Biol. 1998;18:779–789. PubMed PMC
Lucero P, Lagunas R. Catabolite inactivation of the yeast maltose transporter requires ubiquitin-ligase npi1/rsp5 and ubiquitin-hydrolase npi2/doa4. FEMS Lett. 1997;147:273–277. PubMed
Lucero P, Penalver E, Vela L, Lagunas R. Monoubiquitination is sufficient to signal internalization of the maltose transporter in Saccharomyces cerevisiae. J Bacteriol. 2000;182:241–243. PubMed PMC
Matejckova-Forejtova A, Kinclova O, Sychrova H. Degradation of Candida albicans Can1 permease expressed in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1999;176:257–262. PubMed
Matern H, Holzer H. Catabolite inactivation of the galactose uptake system. J Biol Chem. 1977;252:6399–6402. PubMed
Medintz I, Jiang H, Michels C A. The role of ubiquitin conjugation in glucose-induced proteolysis of Saccharomyces maltose permease. J Biol Chem. 1998;273:34454–34462. PubMed
Nehlin J O, Carlberg M, Ronne H. Yeast galactose permease is related to yeast and mammalian glucose transporters. Gene. 1989;85:313–319. PubMed
Papa F R, Hochstrasser M. The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature. 1993;366:313–319. PubMed
Papa F R, Amerik A Y, Hochstrasser M. Interactions of the Doa4 deubiquitinating enzyme with the yeast 26S proteasome. Mol Biol Cell. 1999;10:741–756. PubMed PMC
Pickart C M. Targeting of substrates to the 26S proteasome. FASEB J. 1997;11:1055–1066. PubMed
Plemper R K, Wolf D H. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci. 1999;24:266–270. PubMed
Ramos J, Szkutnicka K, Cirillo V P. Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. J Bacteriol. 1989;171:3539–3544. PubMed PMC
Roberg K J, Rowley N, Kaiser C A. Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J Cell Biol. 1997;137:1469–1482. PubMed PMC
Roth A F, Davis N G. Ubiquitination of the yeast a-factor receptor. J Cell Biol. 1996;143:661–674. PubMed PMC
Roth A F, Davis N G. Ubiquitination of the PEST-like endocytosis signal of the yeast a-factor receptor. J Biol Chem. 2000;275:8143–8153. PubMed
Rotin D, Staub O, Haguenauer-Tsapis R. Ubiquitination and endocytosis plasma membrane proteins: role of Nedd4/Rsp5 family of ubiquitin-protein ligase. J Membr Biol. 2000;176:1–17. PubMed
Schüle T, Rose M, Entian K-D, Thumm M, Wolf D H. Ubc8p functions in catabolite degradation of fructose-1,6-bisphosphatase. EMBO J. 2000;19:2161–2171. PubMed PMC
Seufert W, Jentsch S. Ubiquitin conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 1990;9:543–550. PubMed PMC
Shih S C, Sloper-Mould K E, Hicke L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 2000;19:187–198. PubMed PMC
Sommer T, Wolf D H. Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 1997;11:1227–1233. PubMed
Spence J, Sadis S, Haas A L, Finley D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol. 1995;15:1265–1273. PubMed PMC
Springael J-Y, Andre B. Nitrogen-regulated ubiquitination of the Gap1p permease of Saccharomyces cerevisiae. Mol Biol Cell. 1998;9:1253–1263. PubMed PMC
Springael J-Y, Galan J-M, Haguenauer-Tsapis R, Andre B. NH4+-induced down-regulation of the Saccharomyces cerevisiae Gap1 permease involves its ubiquitination with lysine-63-linked chains. J Cell Sci. 1999;112:1375–1383. PubMed
Swaminathan S, Amerik A Y, Hochstrasser M. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis. Mol Biol Cell. 1999;10:2583–2594. PubMed PMC
Szkutnicka K, Tschopp J F, Andrews L, Cirillo V P. Sequence and structure of the yeast galactose transporter. J Bacteriol. 1989;171:4486–4493. PubMed PMC
Terrel J, Shih S, Dunn R, Hicke L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell. 1998;1:193–202. PubMed
Thrower J S, Hofman L, Rechsteiner M, Pickart C M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000;19:94–102. PubMed PMC
Wang G, Yang J, Huibregtse J M. Functional domains of the Rsp5 ubiquitin-protein kinase. Mol Cell Biol. 1999;19:342–358. PubMed PMC
Wiederkehr A, Avaro S, Prescianotto-Baschong C, Haguenauer-Tsapis R, Riezman H. The F-box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae. J Cell Biol. 2000;149:397–410. PubMed PMC
Wilkinson K D. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 1997;11:1245–1256. PubMed
The Toxic Effects of Ppz1 Overexpression Involve Nha1-Mediated Deregulation of K+ and H+ Homeostasis
Multilevel regulation of an α-arrestin by glucose depletion controls hexose transporter endocytosis
Regulations of sugar transporters: insights from yeast
Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species