Multilevel regulation of an α-arrestin by glucose depletion controls hexose transporter endocytosis

. 2017 Jun 05 ; 216 (6) : 1811-1831. [epub] 20170503

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28468835

Nutrient availability controls the landscape of nutrient transporters present at the plasma membrane, notably by regulating their ubiquitylation and subsequent endocytosis. In yeast, this involves the Nedd4 ubiquitin ligase Rsp5 and arrestin-related trafficking adaptors (ARTs). ARTs are targeted by signaling pathways and warrant that cargo ubiquitylation and endocytosis appropriately respond to nutritional inputs. Here, we show that glucose deprivation regulates the ART protein Csr2/Art8 at multiple levels to trigger high-affinity glucose transporter endocytosis. Csr2 is transcriptionally induced in these conditions through the AMPK orthologue Snf1 and downstream transcriptional repressors. Upon synthesis, Csr2 becomes activated by ubiquitylation. In contrast, glucose replenishment induces CSR2 transcriptional shutdown and switches Csr2 to an inactive, deubiquitylated form. This glucose-induced deubiquitylation of Csr2 correlates with its phospho-dependent association with 14-3-3 proteins and involves protein kinase A. Thus, two glucose signaling pathways converge onto Csr2 to regulate hexose transporter endocytosis by glucose availability. These data illustrate novel mechanisms by which nutrients modulate ART activity and endocytosis.

Zobrazit více v PubMed

Alvaro C.G., O’Donnell A.F., Prosser D.C., Augustine A.A., Goldman A., Brodsky J.L., Cyert M.S., Wendland B., and Thorner J.. 2014. Specific α-arrestins negatively regulate Saccharomyces cerevisiae pheromone response by down-modulating the G-protein-coupled receptor Ste2. Mol. Cell. Biol. 34:2660–2681. 10.1128/MCB.00230-14 PubMed DOI PMC

Amerik A.Y., Li S.J., and Hochstrasser M.. 2000. Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Biol. Chem. 381:981–992. 10.1515/BC.2000.121 PubMed DOI

Apweiler E., Sameith K., Margaritis T., Brabers N., van de Pasch L., Bakker L.V., van Leenen D., Holstege F.C., and Kemmeren P.. 2012. Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis. BMC Genomics. 13:239 10.1186/1471-2164-13-239 PubMed DOI PMC

Becuwe M., Herrador A., Haguenauer-Tsapis R., Vincent O., and Léon S.. 2012a Ubiquitin-mediated regulation of endocytosis by proteins of the arrestin family. Biochem. Res. Int. 2012:242764 10.1155/2012/242764 PubMed DOI PMC

Becuwe M., Vieira N., Lara D., Gomes-Rezende J., Soares-Cunha C., Casal M., Haguenauer-Tsapis R., Vincent O., Paiva S., and Léon S.. 2012b A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. J. Cell Biol. 196:247–259. 10.1083/jcb.201109113 PubMed DOI PMC

Bermejo C., Haerizadeh F., Takanaga H., Chermak D., and Frommer W.B.. 2010. Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors. Biochem. J. 432:399–406. 10.1042/BJ20100946 PubMed DOI PMC

Blondel M.O., Morvan J., Dupré S., Urban-Grimal D., Haguenauer-Tsapis R., and Volland C.. 2004. Direct sorting of the yeast uracil permease to the endosomal system is controlled by uracil binding and Rsp5p-dependent ubiquitylation. Mol. Biol. Cell. 15:883–895. 10.1091/mbc.E03-04-0202 PubMed DOI PMC

Braun K.A., Dombek K.M., and Young E.T.. 2015. Snf1-dependent transcription confers glucose-induced decay upon the mRNA product. Mol. Cell. Biol. 36:628–644. 10.1128/MCB.00436-15 PubMed DOI PMC

Broach J.R. 2012. Nutritional control of growth and development in yeast. Genetics. 192:73–105. 10.1534/genetics.111.135731 PubMed DOI PMC

Cain N.E., and Kaiser C.A.. 2011. Transport activity-dependent intracellular sorting of the yeast general amino acid permease. Mol. Biol. Cell. 22:1919–1929. 10.1091/mbc.E10-10-0800 PubMed DOI PMC

Calvo M.B., Figueroa A., Pulido E.G., Campelo R.G., and Aparicio L.A.. 2010. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int. J. Endocrinol. 2010:205357 10.1155/2010/205357 PubMed DOI PMC

Čáp M., Stěpánek L., Harant K., Váchová L., and Palková Z.. 2012. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol. Cell. 46:436–448. 10.1016/j.molcel.2012.04.001 PubMed DOI

Čáp M., Váchová L., and Palková Z.. 2015. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis. Cell Cycle. 14:3488–3497. 10.1080/15384101.2015.1093706 PubMed DOI PMC

Cox J., and Mann M.. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26:1367–1372. 10.1038/nbt.1511 PubMed DOI

Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., and Mann M.. 2011. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10:1794–1805. 10.1021/pr101065j PubMed DOI

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., and Mann M.. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 13:2513–2526. 10.1074/mcp.M113.031591 PubMed DOI PMC

Craig R., Cortens J.P., and Beavis R.C.. 2004. Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 3:1234–1242. 10.1021/pr049882h PubMed DOI

Crapeau M., Merhi A., and André B.. 2014. Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins. J. Biol. Chem. 289:22103–22116. 10.1074/jbc.M114.582320 PubMed DOI PMC

Cushman S.W., and Wardzala L.J.. 1980. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255:4758–4762. PubMed

Czech M.P., and Buxton J.M.. 1993. Insulin action on the internalization of the GLUT4 glucose transporter in isolated rat adipocytes. J. Biol. Chem. 268:9187–9190. PubMed

Diderich J.A., Schuurmans J.M., Van Gaalen M.C., Kruckeberg A.L., and Van Dam K.. 2001. Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast. 18:1515–1524. 10.1002/yea.779 PubMed DOI

Dotimas J.R., Lee A.W., Schmider A.B., Carroll S.H., Shah A., Bilen J., Elliott K.R., Myers R.B., Soberman R.J., Yoshioka J., and Lee R.T.. 2016. Diabetes regulates fructose absorption through thioredoxin-interacting protein. eLife. 5:5 10.7554/eLife.18313 PubMed DOI PMC

Draheim K.M., Chen H.B., Tao Q., Moore N., Roche M., and Lyle S.. 2010. ARRDC3 suppresses breast cancer progression by negatively regulating integrin beta4. Oncogene. 29:5032–5047. 10.1038/onc.2010.250 PubMed DOI PMC

Erpapazoglou Z., Dhaoui M., Pantazopoulou M., Giordano F., Mari M., Léon S., Raposo G., Reggiori F., and Haguenauer-Tsapis R.. 2012. A dual role for K63-linked ubiquitin chains in multivesicular body biogenesis and cargo sorting. Mol. Biol. Cell. 23:2170–2183. 10.1091/mbc.E11-10-0891 PubMed DOI PMC

Ferreira C., van Voorst F., Martins A., Neves L., Oliveira R., Kielland-Brandt M.C., Lucas C., and Brandt A.. 2005. A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol. Biol. Cell. 16:2068–2076. 10.1091/mbc.E04-10-0884 PubMed DOI PMC

Gancedo J.M. 2008. The early steps of glucose signalling in yeast. FEMS Microbiol. Rev. 32:673–704. 10.1111/j.1574-6976.2008.00117.x PubMed DOI

Gelperin D., Weigle J., Nelson K., Roseboom P., Irie K., Matsumoto K., and Lemmon S.. 1995. 14-3-3 proteins: potential roles in vesicular transport and Ras signaling in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U S A. 92:11539–11543. 10.1073/pnas.92.25.11539 PubMed DOI PMC

Ghaddar K., Merhi A., Saliba E., Krammer E.M., Prévost M., and André B.. 2014. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases. Mol. Cell. Biol. 34:4447–4463. 10.1128/MCB.00699-14 PubMed DOI PMC

Gwizdek C., Iglesias N., Rodriguez M.S., Ossareh-Nazari B., Hobeika M., Divita G., Stutz F., and Dargemont C.. 2006. Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Proc. Natl. Acad. Sci. U S A. 103:16376–16381. 10.1073/pnas.0607941103 PubMed DOI PMC

Harreman M., Taschner M., Sigurdsson S., Anindya R., Reid J., Somesh B., Kong S.E., Banks C.A., Conaway R.C., Conaway J.W., and Svejstrup J.Q.. 2009. Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc. Natl. Acad. Sci. U S A. 106:20705–20710. 10.1073/pnas.0907052106 PubMed DOI PMC

Hatakeyama R., Kamiya M., Takahara T., and Maeda T.. 2010. Endocytosis of the aspartic acid/glutamic acid transporter Dip5 is triggered by substrate-dependent recruitment of the Rsp5 ubiquitin ligase via the arrestin-like protein Aly2. Mol. Cell. Biol. 30:5598–5607. 10.1128/MCB.00464-10 PubMed DOI PMC

Hein C., Springael J.Y., Volland C., Haguenauer-Tsapis R., and André B.. 1995. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol. 18:77–87. 10.1111/j.1365-2958.1995.mmi_18010077.x PubMed DOI

Horak J., and Wolf D.H.. 1997. Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J. Bacteriol. 179:1541–1549. 10.1128/jb.179.5.1541-1549.1997 PubMed DOI PMC

Horak J., and Wolf D.H.. 2001. Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J. Bacteriol. 183:3083–3088. 10.1128/JB.183.10.3083-3088.2001 PubMed DOI PMC

Hu C.D., Chinenov Y., and Kerppola T.K.. 2002. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell. 9:789–798. 10.1016/S1097-2765(02)00496-3 PubMed DOI

Hubner N.C., and Mann M.. 2011. Extracting gene function from protein-protein interactions using Quantitative BAC InteraCtomics (QUBIC). Methods. 53:453–459. 10.1016/j.ymeth.2010.12.016 PubMed DOI

Jensen L.T., Carroll M.C., Hall M.D., Harvey C.J., Beese S.E., and Culotta V.C.. 2009. Down-regulation of a manganese transporter in the face of metal toxicity. Mol. Biol. Cell. 20:2810–2819. 10.1091/mbc.E08-10-1084 PubMed DOI PMC

Jhun B.H., Rampal A.L., Liu H., Lachaal M., and Jung C.Y.. 1992. Effects of insulin on steady state kinetics of GLUT4 subcellular distribution in rat adipocytes. Evidence of constitutive GLUT4 recycling. J. Biol. Chem. 267:17710–17715. PubMed

Kakiuchi K., Yamauchi Y., Taoka M., Iwago M., Fujita T., Ito T., Song S.Y., Sakai A., Isobe T., and Ichimura T.. 2007. Proteomic analysis of in vivo 14-3-3 interactions in the yeast Saccharomyces cerevisiae. Biochemistry. 46:7781–7792. 10.1021/bi700501t PubMed DOI

Karachaliou M., Amillis S., Evangelinos M., Kokotos A.C., Yalelis V., and Diallinas G.. 2013. The arrestin-like protein ArtA is essential for ubiquitination and endocytosis of the UapA transporter in response to both broad-range and specific signals. Mol. Microbiol. 88:301–317. 10.1111/mmi.12184 PubMed DOI

Karnieli E., Zarnowski M.J., Hissin P.J., Simpson I.A., Salans L.B., and Cushman S.W.. 1981. Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. Time course, reversal, insulin concentration dependency, and relationship to glucose transport activity. J. Biol. Chem. 256:4772–4777. PubMed

Kee Y., Lyon N., and Huibregtse J.M.. 2005. The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J. 24:2414–2424. 10.1038/sj.emboj.7600710 PubMed DOI PMC

Kee Y., Muñoz W., Lyon N., and Huibregtse J.M.. 2006. The deubiquitinating enzyme Ubp2 modulates Rsp5-dependent Lys63-linked polyubiquitin conjugates in Saccharomyces cerevisiae. J. Biol. Chem. 281:36724–36731. 10.1074/jbc.M608756200 PubMed DOI

Keener J.M., and Babst M.. 2013. Quality control and substrate-dependent downregulation of the nutrient transporter Fur4. Traffic. 14:412–427. 10.1111/tra.12039 PubMed DOI PMC

Khanday F.A., Saha M., and Bhat P.J.. 2002. Molecular characterization of MRG19 of Saccharomyces cerevisiae. Implication in the regulation of galactose and nonfermentable carbon source utilization. Eur. J. Biochem. 269:5840–5850. 10.1046/j.1432-1033.2002.03303.x PubMed DOI

Kim J.H., Polish J., and Johnston M.. 2003. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol. Cell. Biol. 23:5208–5216. 10.1128/MCB.23.15.5208-5216.2003 PubMed DOI PMC

Ko C.H., Liang H., and Gaber R.F.. 1993. Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:638–648. 10.1128/MCB.13.1.638 PubMed DOI PMC

Kouranti I., McLean J.R., Feoktistova A., Liang P., Johnson A.E., Roberts-Galbraith R.H., and Gould K.L.. 2010. A global census of fission yeast deubiquitinating enzyme localization and interaction networks reveals distinct compartmentalization profiles and overlapping functions in endocytosis and polarity. PLoS Biol. 8:8 10.1371/journal.pbio.1000471 PubMed DOI PMC

Kraakman L., Lemaire K., Ma P., Teunissen A.W., Donaton M.C., Van Dijck P., Winderickx J., de Winde J.H., and Thevelein J.M.. 1999. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol. Microbiol. 32:1002–1012. 10.1046/j.1365-2958.1999.01413.x PubMed DOI

Kruckeberg A.L. 1996. The hexose transporter family of Saccharomyces cerevisiae. Arch. Microbiol. 166:283–292. 10.1007/s002030050385 PubMed DOI

Kruckeberg A.L., Ye L., Berden J.A., and van Dam K.. 1999. Functional expression, quantification and cellular localization of the Hxt2 hexose transporter of Saccharomyces cerevisiae tagged with the green fluorescent protein. Biochem. J. 339:299–307. 10.1042/bj3390299 PubMed DOI PMC

Liang H., and Gaber R.F.. 1996. A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Mol. Biol. Cell. 7:1953–1966. 10.1091/mbc.7.12.1953 PubMed DOI PMC

Lin C.H., MacGurn J.A., Chu T., Stefan C.J., and Emr S.D.. 2008. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell. 135:714–725. 10.1016/j.cell.2008.09.025 PubMed DOI

Lindegren C.C., Spiegelman S., and Lindegren G.. 1944. Mendelian inheritance of adaptive enzymes. Proc. Natl. Acad. Sci. U S A. 30:346–352. 10.1073/pnas.30.11.346 PubMed DOI PMC

Llopis-Torregrosa V., Ferri-Blázquez A., Adam-Artigues A., Deffontaines E., van Heusden G.P., and Yenush L.. 2016. Regulation of the yeast Hxt6 hexose transporter by the Rod1 α-arrestin, the Snf1 protein kinase, and the Bmh2 14-3-3 protein. J. Biol. Chem. 291:14973–14985. 10.1074/jbc.M116.733923 PubMed DOI PMC

Lodi T., Fontanesi F., and Guiard B.. 2002. Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1. Mol. Genet. Genomics. 266:838–847. 10.1007/s00438-001-0604-y PubMed DOI

Lucero P., and Lagunas R.. 1997. Catabolite inactivation of the yeast maltose transporter requires ubiquitin-ligase npi1/rsp5 and ubiquitin-hydrolase npi2/doa4. FEMS Microbiol. Lett. 147:273–277. 10.1111/j.1574-6968.1997.tb10253.x PubMed DOI

MacGurn J.A., Hsu P.C., Smolka M.B., and Emr S.D.. 2011. TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell. 147:1104–1117. 10.1016/j.cell.2011.09.054 PubMed DOI

MacGurn J.A., Hsu P.C., and Emr S.D.. 2012. Ubiquitin and membrane protein turnover: from cradle to grave. Annu. Rev. Biochem. 81:231–259. 10.1146/annurev-biochem-060210-093619 PubMed DOI

Martin S., Millar C.A., Lyttle C.T., Meerloo T., Marsh B.J., Gould G.W., and James D.E.. 2000. Effects of insulin on intracellular GLUT4 vesicles in adipocytes: evidence for a secretory mode of regulation. J. Cell Sci. 113:3427–3438. PubMed

Medintz I., Jiang H., Han E.K., Cui W., and Michels C.A.. 1996. Characterization of the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. J. Bacteriol. 178:2245–2254. 10.1128/jb.178.8.2245-2254.1996 PubMed DOI PMC

Medintz I., Jiang H., and Michels C.A.. 1998. The role of ubiquitin conjugation in glucose-induced proteolysis of Saccharomyces maltose permease. J. Biol. Chem. 273:34454–34462. 10.1074/jbc.273.51.34454 PubMed DOI

Merhi A., and André B.. 2012. Internal amino acids promote Gap1 permease ubiquitylation via TORC1/Npr1/14-3-3-dependent control of the Bul arrestin-like adaptors. Mol. Cell. Biol. 32:4510–4522. 10.1128/MCB.00463-12 PubMed DOI PMC

Mok J., Kim P.M., Lam H.Y., Piccirillo S., Zhou X., Jeschke G.R., Sheridan D.L., Parker S.A., Desai V., Jwa M., et al. . 2010. Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci. Signal. 3:ra12 10.1126/scisignal.2000482 PubMed DOI PMC

Morrison J.A., Pike L.A., Sams S.B., Sharma V., Zhou Q., Severson J.J., Tan A.C., Wood W.M., and Haugen B.R.. 2014. Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol. Cancer. 13:62 10.1186/1476-4598-13-62 PubMed DOI PMC

Müller M., Schmidt O., Angelova M., Faserl K., Weys S., Kremser L., Pfaffenwimmer T., Dalik T., Kraft C., Trajanoski Z., et al. . 2015. The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation. eLife. 4:e07736 10.7554/eLife.07736 PubMed DOI PMC

Mumberg D., Müller R., and Funk M.. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 156:119–122. 10.1016/0378-1119(95)00037-7 PubMed DOI

Munn A.L., Stevenson B.J., Geli M.I., and Riezman H.. 1995. end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell. 6:1721–1742. 10.1091/mbc.6.12.1721 PubMed DOI PMC

Nikko E., and Pelham H.R.. 2009. Arrestin-mediated endocytosis of yeast plasma membrane transporters. Traffic. 10:1856–1867. 10.1111/j.1600-0854.2009.00990.x PubMed DOI PMC

Nikko E., Sullivan J.A., and Pelham H.R.. 2008. Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1. EMBO Rep. 9:1216–1221. 10.1038/embor.2008.199 PubMed DOI PMC

O’Donnell A.F., Apffel A., Gardner R.G., and Cyert M.S.. 2010. Alpha-arrestins Aly1 and Aly2 regulate intracellular trafficking in response to nutrient signaling. Mol. Biol. Cell. 21:3552–3566. 10.1091/mbc.E10-07-0636 PubMed DOI PMC

O’Donnell A.F., McCartney R.R., Chandrashekarappa D.G., Zhang B.B., Thorner J., and Schmidt M.C.. 2015. 2-Deoxyglucose impairs Saccharomyces cerevisiae growth by stimulating Snf1-regulated and α-arrestin-mediated trafficking of hexose transporters 1 and 3. Mol. Cell. Biol. 35:939–955. 10.1128/MCB.01183-14 PubMed DOI PMC

Oeffinger M., Wei K.E., Rogers R., DeGrasse J.A., Chait B.T., Aitchison J.D., and Rout M.P.. 2007. Comprehensive analysis of diverse ribonucleoprotein complexes. Nat. Methods. 4:951–956. 10.1038/nmeth1101 PubMed DOI

Ozcan S., and Johnston M.. 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15:1564–1572. 10.1128/MCB.15.3.1564 PubMed DOI PMC

Ozcan S., and Johnston M.. 1996. Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose. Mol. Cell. Biol. 16:5536–5545. 10.1128/MCB.16.10.5536 PubMed DOI PMC

Ozcan S., and Johnston M.. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63:554–569. PubMed PMC

Paiva S., Kruckeberg A.L., and Casal M.. 2002. Utilization of green fluorescent protein as a marker for studying the expression and turnover of the monocarboxylate permease Jen1p of Saccharomyces cerevisiae. Biochem. J. 363:737–744. 10.1042/bj3630737 PubMed DOI PMC

Paiva S., Vieira N., Nondier I., Haguenauer-Tsapis R., Casal M., and Urban-Grimal D.. 2009. Glucose-induced ubiquitylation and endocytosis of the yeast Jen1 transporter: role of lysine 63-linked ubiquitin chains. J. Biol. Chem. 284:19228–19236. 10.1074/jbc.M109.008318 PubMed DOI PMC

Palková Z., Wilkinson D., and Váchová L.. 2014. Aging and differentiation in yeast populations: elders with different properties and functions. FEMS Yeast Res. 14:96–108. 10.1111/1567-1364.12103 PubMed DOI

Parikh H., Carlsson E., Chutkow W.A., Johansson L.E., Storgaard H., Poulsen P., Saxena R., Ladd C., Schulze P.C., Mazzini M.J., et al. . 2007. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med. 4:e158 10.1371/journal.pmed.0040158 PubMed DOI PMC

Patwari P., and Lee R.T.. 2012. An expanded family of arrestins regulate metabolism. Trends Endocrinol. Metab. 23:216–222. 10.1016/j.tem.2012.03.003 PubMed DOI PMC

Patwari P., Emilsson V., Schadt E.E., Chutkow W.A., Lee S., Marsili A., Zhang Y., Dobrin R., Cohen D.E., Larsen P.R., et al. . 2011. The arrestin domain-containing 3 protein regulates body mass and energy expenditure. Cell Metab. 14:671–683. 10.1016/j.cmet.2011.08.011 PubMed DOI PMC

Peng J., Schwartz D., Elias J.E., Thoreen C.C., Cheng D., Marsischky G., Roelofs J., Finley D., and Gygi S.P.. 2003. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21:921–926. 10.1038/nbt849 PubMed DOI

Piper R.C., Dikic I., and Lukacs G.L.. 2014. Ubiquitin-dependent sorting in endocytosis. Cold Spring Harb. Perspect. Biol. 6:6 10.1101/cshperspect.a016808 PubMed DOI PMC

Podholová K., Plocek V., Rešetárová S., Kučerová H., Hlaváček O., Váchová L., and Palková Z.. 2016. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies. Oncotarget. 7:15299–15314. PubMed PMC

Polo S., and Di Fiore P.P.. 2008. Finding the right partner: science or ART? Cell. 135:590–592. 10.1016/j.cell.2008.10.032 PubMed DOI

Reifenberger E., Boles E., and Ciriacy M.. 1997. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem. 245:324–333. 10.1111/j.1432-1033.1997.00324.x PubMed DOI

Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., and Séraphin B.. 1999. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17:1030–1032. 10.1038/13732 PubMed DOI

Roy A., Kim Y.B., Cho K.H., and Kim J.H.. 2014. Glucose starvation-induced turnover of the yeast glucose transporter Hxt1. Biochim. Biophys. Acta. 1840:2878–2885. 10.1016/j.bbagen.2014.05.004 PubMed DOI PMC

Roy A., Dement A.D., Cho K.H., and Kim J.H.. 2015. Assessing glucose uptake through the yeast hexose transporter 1 (Hxt1). PLoS One. 10:e0121985 10.1371/journal.pone.0121985 PubMed DOI PMC

Ryder J.W., Yang J., Galuska D., Rincón J., Björnholm M., Krook A., Lund S., Pedersen O., Wallberg-Henriksson H., Zierath J.R., and Holman G.D.. 2000. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes. 49:647–654. 10.2337/diabetes.49.4.647 PubMed DOI

Santt O., Pfirrmann T., Braun B., Juretschke J., Kimmig P., Scheel H., Hofmann K., Thumm M., and Wolf D.H.. 2008. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol. Biol. Cell. 19:3323–3333. 10.1091/mbc.E08-03-0328 PubMed DOI PMC

Shen L., O’Shea J.M., Kaadige M.R., Cunha S., Wilde B.R., Cohen A.L., Welm A.L., and Ayer D.E.. 2015. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc. Natl. Acad. Sci. U S A. 112:5425–5430. 10.1073/pnas.1501555112 PubMed DOI PMC

Sheth S.S., Bodnar J.S., Ghazalpour A., Thipphavong C.K., Tsutsumi S., Tward A.D., Demant P., Kodama T., Aburatani H., and Lusis A.J.. 2006. Hepatocellular carcinoma in Txnip-deficient mice. Oncogene. 25:3528–3536. 10.1038/sj.onc.1209394 PubMed DOI

Smets B., Ghillebert R., De Snijder P., Binda M., Swinnen E., De Virgilio C., and Winderickx J.. 2010. Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr. Genet. 56:1–32. 10.1007/s00294-009-0287-1 PubMed DOI

Snowdon C., and van der Merwe G.. 2012. Regulation of Hxt3 and Hxt7 turnover converges on the Vid30 complex and requires inactivation of the Ras/cAMP/PKA pathway in Saccharomyces cerevisiae. PLoS One. 7:e50458 10.1371/journal.pone.0050458 PubMed DOI PMC

Snowdon C., Schierholtz R., Poliszczuk P., Hughes S., and van der Merwe G.. 2009. ETP1/YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol. FEMS Yeast Res. 9:372–380. 10.1111/j.1567-1364.2009.00497.x PubMed DOI

Spielewoy N., Flick K., Kalashnikova T.I., Walker J.R., and Wittenberg C.. 2004. Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signaling pathways. Mol. Cell. Biol. 24:8994–9005. 10.1128/MCB.24.20.8994-9005.2004 PubMed DOI PMC

Sung M.K., and Huh W.K.. 2007. Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae. Yeast. 24:767–775. 10.1002/yea.1504 PubMed DOI

Toda T., Cameron S., Sass P., Zoller M., Scott J.D., McMullen B., Hurwitz M., Krebs E.G., and Wigler M.. 1987. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1371–1377. 10.1128/MCB.7.4.1371 PubMed DOI PMC

Váchová L., Chernyavskiy O., Strachotová D., Bianchini P., Burdíková Z., Fercíková I., Kubínová L., and Palková Z.. 2009. Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ. Microbiol. 11:1866–1877. 10.1111/j.1462-2920.2009.01911.x PubMed DOI

Vida T.A., and Emr S.D.. 1995. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128:779–792. 10.1083/jcb.128.5.779 PubMed DOI PMC

Weinberg J.S., and Drubin D.G.. 2014. Regulation of clathrin-mediated endocytosis by dynamic ubiquitination and deubiquitination. Curr. Biol. 24:951–959. 10.1016/j.cub.2014.03.038 PubMed DOI PMC

Westholm J.O., Nordberg N., Murén E., Ameur A., Komorowski J., and Ronne H.. 2008. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics. 9:601 10.1186/1471-2164-9-601 PubMed DOI PMC

Wijesekara N., Tung A., Thong F., and Klip A.. 2006. Muscle cell depolarization induces a gain in surface GLUT4 via reduced endocytosis independently of AMPK. Am. J. Physiol. Endocrinol. Metab. 290:E1276–E1286. 10.1152/ajpendo.00573.2005 PubMed DOI

Wu N., Zheng B., Shaywitz A., Dagon Y., Tower C., Bellinger G., Shen C.H., Wen J., Asara J., McGraw T.E., et al. . 2013. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell. 49:1167–1175. 10.1016/j.molcel.2013.01.035 PubMed DOI PMC

Xu P., Duong D.M., Seyfried N.T., Cheng D., Xie Y., Robert J., Rush J., Hochstrasser M., Finley D., and Peng J.. 2009. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. 137:133–145. 10.1016/j.cell.2009.01.041 PubMed DOI PMC

Ye L., Berden J.A., van Dam K., and Kruckeberg A.L.. 2001. Expression and activity of the Hxt7 high-affinity hexose transporter of Saccharomyces cerevisiae. Yeast. 18:1257–1267. 10.1002/yea.771 PubMed DOI

Yun J., Rago C., Cheong I., Pagliarini R., Angenendt P., Rajagopalan H., Schmidt K., Willson J.K., Markowitz S., Zhou S., et al. . 2009. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 325:1555–1559. 10.1126/science.1174229 PubMed DOI PMC

Zaman S., Lippman S.I., Schneper L., Slonim N., and Broach J.R.. 2009. Glucose regulates transcription in yeast through a network of signaling pathways. Mol. Syst. Biol. 5:245 10.1038/msb.2009.2 PubMed DOI PMC

Zierath J.R., He L., Gumà A., Odegoard Wahlström E., Klip A., and Wallberg-Henriksson H.. 1996. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia. 39:1180–1189. 10.1007/BF02658504 PubMed DOI

Ziv I., Matiuhin Y., Kirkpatrick D.S., Erpapazoglou Z., Leon S., Pantazopoulou M., Kim W., Gygi S.P., Haguenauer-Tsapis R., Reis N., et al. . 2011. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol. Cell. Proteomics. 10:009753 10.1074/mcp.M111.009753 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways

. 2024 ; 11 () : 1327014. [epub] 20240124

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...