Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
9045811
PubMed Central
PMC178864
DOI
10.1128/jb.179.5.1541-1549.1997
Knihovny.cz E-zdroje
- MeSH
- azid sodný MeSH
- azidy farmakologie MeSH
- cykloheximid farmakologie MeSH
- cytoplazma metabolismus MeSH
- cytoskeletální proteiny * MeSH
- endocytóza * MeSH
- fungální proteiny metabolismus MeSH
- galaktosa metabolismus MeSH
- glukosa farmakologie MeSH
- inhibitory syntézy proteinů farmakologie MeSH
- proteiny přenášející monosacharidy metabolismus MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- teplota MeSH
- ubikvitiny metabolismus MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- azid sodný MeSH
- azidy MeSH
- cykloheximid MeSH
- cytoskeletální proteiny * MeSH
- END3 protein, S cerevisiae MeSH Prohlížeč
- fungální proteiny MeSH
- galaktosa MeSH
- glukosa MeSH
- inhibitory syntézy proteinů MeSH
- proteiny přenášející monosacharidy MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- ubikvitiny MeSH
When Saccharomyces cerevisiae cells growing on galactose are transferred onto glucose medium containing cycloheximide, an inhibitor of protein synthesis, a rapid reduction of Gal2p-mediated galactose uptake is observed. We show that glucose-induced inactivation of Gal2p is due to its degradation. Stabilization of Gal2p in pra1 mutant cells devoid of vacuolar proteinase activity is observed. Subcellular fractionation and indirect immunofluorescence showed that the Gal2 transporter accumulates in the vacuole of the mutant cells, directly demonstrating that its degradation requires vacuolar proteolysis. In contrast, Gal2p degradation is proteasome independent since its half-life is unaffected in pre1-1 pre2-2, cim3-1, and cim5-1 mutants defective in several subunits of the protease complex. In addition, vacuolar delivery of Gal2p was shown to be blocked in conditional end3 and end4 mutants at the nonpermissive temperature, indicating that delivery of Gal2p to the vacuole occurs via the endocytic pathway. Taken together, the results presented here demonstrate that glucose-induced proteolysis of Gal2p is dependent on endocytosis and vacuolar proteolysis and is independent of the functional proteasome. Moreover, we show that Gal2p is ubiquitinated under conditions of glucose-induced inactivation.
Zobrazit více v PubMed
Biochem Biophys Res Commun. 1994 Apr 15;200(1):45-51 PubMed
Mol Biol Cell. 1993 May;4(5):511-21 PubMed
EMBO J. 1991 Mar;10(3):555-62 PubMed
J Biol Chem. 1994 Apr 1;269(13):9833-41 PubMed
Nature. 1995 Jan 5;373(6509):78-81 PubMed
Science. 1994 Sep 2;265(5177):1454-8 PubMed
Curr Opin Cell Biol. 1993 Dec;5(6):990-6 PubMed
Cell. 1994 Oct 21;79(2):233-44 PubMed
Methods Enzymol. 1991;194:565-602 PubMed
FEBS Lett. 1993 Oct 25;333(1-2):165-8 PubMed
EMBO J. 1994 Jul 15;13(14):3261-71 PubMed
EMBO J. 1994 Dec 15;13(24):6021-30 PubMed
Biochem Biophys Res Commun. 1994 Jun 15;201(2):769-75 PubMed
J Bacteriol. 1995 Oct;177(19):5622-7 PubMed
FEBS Lett. 1996 Jan 8;378(2):177-81 PubMed
FEBS Lett. 1986 Oct 27;207(2):258-61 PubMed
Gene. 1981 Oct;15(1):81-93 PubMed
J Biol Chem. 1989 Sep 25;264(27):16037-45 PubMed
EMBO J. 1996 May 1;15(9):2069-76 PubMed
Mol Biol Cell. 1994 Nov;5(11):1185-98 PubMed
Nature. 1993 Nov 25;366(6453):358-62 PubMed
EMBO J. 1995 Jan 16;14(2):303-12 PubMed
J Biol Chem. 1995 Feb 10;270(6):2423-6 PubMed
J Biol Chem. 1992 Apr 25;267(12):8021-9 PubMed
J Biol Chem. 1991 Nov 5;266(31):21150-7 PubMed
Gene. 1989 Dec 28;85(2):313-9 PubMed
Trends Cell Biol. 1993 Aug;3(8):273-7 PubMed
Curr Opin Cell Biol. 1995 Apr;7(2):215-23 PubMed
J Bacteriol. 1986 Apr;166(1):313-8 PubMed
J Biol Chem. 1991 May 5;266(13):7963-6 PubMed
J Bacteriol. 1989 Aug;171(8):4486-93 PubMed
Trends Biochem Sci. 1996 Mar;21(3):96-102 PubMed
Mol Cell Biol. 1991 Feb;11(2):1114-24 PubMed
J Bacteriol. 1996 Apr;178(8):2245-54 PubMed
J Cell Biol. 1993 Jul;122(1):53-65 PubMed
J Biol Chem. 1995 Nov 3;270(44):26446-50 PubMed
Mol Cell Biol. 1995 Feb;15(2):731-41 PubMed
J Bacteriol. 1993 Dec;175(23):7689-96 PubMed
Nature. 1991 Mar 28;350(6316):313-8 PubMed
J Biol Chem. 1996 Apr 26;271(17):9934-41 PubMed
J Gen Microbiol. 1986 Feb;132(2):379-85 PubMed
Mol Cell Biol. 1995 Nov;15(11):5879-87 PubMed
J Biol Chem. 1995 Sep 1;270(35):20742-7 PubMed
Cell. 1994 Jul 1;77(7):1037-50 PubMed
Cell. 1996 Jan 26;84(2):277-87 PubMed
J Bacteriol. 1989 Jun;171(6):3539-44 PubMed
J Bacteriol. 1991 Mar;173(5):1817-20 PubMed
FEBS Lett. 1994 Oct 31;354(1):50-2 PubMed
FEBS Lett. 1994 Aug 1;349(2):270-4 PubMed
J Cell Biol. 1993 Jan;120(1):55-65 PubMed
Mol Biol Rep. 1995;21(1):3-10 PubMed
J Biol Chem. 1994 Jan 21;269(3):2245-51 PubMed
J Biol Chem. 1977 Sep 25;252(18):6399-402 PubMed
Science. 1996 Sep 20;273(5282):1725-8 PubMed
J Biol Chem. 1995 Feb 10;270(6):2525-34 PubMed
Crit Rev Biochem Mol Biol. 1993;28(4):259-308 PubMed
J Biol Chem. 1993 Mar 5;268(7):5115-20 PubMed
Multilevel regulation of an α-arrestin by glucose depletion controls hexose transporter endocytosis
Regulations of sugar transporters: insights from yeast
Immunity to killer toxin K1 is connected with the Golgi-to-vacuole protein degradation pathway