Immunity to killer toxin K1 is connected with the Golgi-to-vacuole protein degradation pathway

. 2006 ; 51 (3) : 196-202.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17004650

Killer strains of Saccharomyces cerevisiae producing killer toxin K1 kill sensitive cells but are resistant to their own toxin. It is assumed that in the producer, an effective interaction between the external toxin and its plasma membrane receptor or the final effector is not possible on the grounds of a conformation change of the receptor or its absence in a membrane. Therefore, it is possible that some mutants with defects in intracellular protein transport and degradation can show a suicidal phenotype during K1 toxin production. We have examined these mutants in a collection of S. cerevisiae strains with deletions in various genes transformed by the pYX213+M1 vector carrying cDNA coding for the K1 toxin under the control of the GAL1 promoter. Determination of the quantity of dead cells in colony population showed that (1) the toxin production from the vector did not support full immunity of producing cells, (2) the suicidal phenotype was not connected with a defect in endocytosis or autophagy, (3) deletants in genes VPS1, VPS23, VPS51 and VAC8 required for the protein degradation pathway between the Golgi body and the vacuole exhibited the highest mortality. These results suggest that interacting molecule(s) on the plasma membrane in the producer might be diverted from the secretion pathway to degradation in the vacuole.

Zobrazit více v PubMed

Cell. 1999 Oct 29;99(3):283-91 PubMed

Cell. 1986 Jul 4;46(1):105-13 PubMed

Mol Biol Cell. 2003 Apr;14(4):1610-23 PubMed

Yeast. 1995 Apr 15;11(4):355-60 PubMed

Cell. 1995 Nov 17;83(4):513-6 PubMed

Mol Biol Cell. 2004 Feb;15(2):883-95 PubMed

Genetics. 2003 Mar;163(3):875-94 PubMed

J Cell Biol. 1993 Jul;122(1):53-65 PubMed

J Biol Chem. 2001 Nov 23;276(47):43939-48 PubMed

J Biol Chem. 2000 Aug 18;275(33):25840-9 PubMed

J Biol Chem. 1981 Oct 25;256(20):10420-5 PubMed

J Cell Biol. 2001 Feb 5;152(3):503-18 PubMed

Gene. 1992 Feb 1;111(1):135-9 PubMed

J Bacteriol. 1973 Mar;113(3):1193-7 PubMed

Clin Microbiol Rev. 1997 Jul;10(3):369-400 PubMed

Biochem Biophys Res Commun. 1980 Sep 30;96(2):544-50 PubMed

Proc Natl Acad Sci U S A. 1990 Aug;87(16):6228-32 PubMed

Mol Cell Biol. 1991 Jan;11(1):175-81 PubMed

Mol Microbiol. 1991 Oct;5(10):2331-8 PubMed

Mol Biol Cell. 1997 Jul;8(7):1317-27 PubMed

Mol Cell Biol. 1999 May;19(5):3588-99 PubMed

Microbiol Rev. 1984 Jun;48(2):125-56 PubMed

Eur J Epidemiol. 1988 Dec;4(4):400-8 PubMed

Mol Microbiol. 1991 Oct;5(10):2339-43 PubMed

J Biol Chem. 1987 Aug 5;262(22):10728-32 PubMed

Science. 1996 Apr 26;272(5261):533-5 PubMed

EMBO J. 1986 Dec 1;5(12):3381-9 PubMed

FEMS Yeast Res. 2004 Sep;4(8):803-13 PubMed

J Gen Microbiol. 1968 Apr;51(1):115-26 PubMed

Yeast. 1998 Jan 30;14(2):115-32 PubMed

Cell. 1984 Mar;36(3):741-51 PubMed

J Bacteriol. 1997 Mar;179(5):1541-9 PubMed

FEMS Yeast Res. 2002 Mar;2(1):73-9 PubMed

Cell. 2002 Feb 8;108(3):395-405 PubMed

EMBO J. 1984 Jan;3(1):107-11 PubMed

Zobrazit více v PubMed

GENBANK
DQ017159, DQ018726

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...