Immunity to killer toxin K1 is connected with the Golgi-to-vacuole protein degradation pathway
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17004650
DOI
10.1007/bf02932122
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- delece genu * MeSH
- fenotyp MeSH
- genetické vektory MeSH
- Golgiho aparát metabolismus MeSH
- killer faktory kvasinek MeSH
- molekulární sekvence - údaje MeSH
- proteiny genetika metabolismus farmakologie MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- transformace genetická genetika MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- killer faktory kvasinek MeSH
- proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Killer strains of Saccharomyces cerevisiae producing killer toxin K1 kill sensitive cells but are resistant to their own toxin. It is assumed that in the producer, an effective interaction between the external toxin and its plasma membrane receptor or the final effector is not possible on the grounds of a conformation change of the receptor or its absence in a membrane. Therefore, it is possible that some mutants with defects in intracellular protein transport and degradation can show a suicidal phenotype during K1 toxin production. We have examined these mutants in a collection of S. cerevisiae strains with deletions in various genes transformed by the pYX213+M1 vector carrying cDNA coding for the K1 toxin under the control of the GAL1 promoter. Determination of the quantity of dead cells in colony population showed that (1) the toxin production from the vector did not support full immunity of producing cells, (2) the suicidal phenotype was not connected with a defect in endocytosis or autophagy, (3) deletants in genes VPS1, VPS23, VPS51 and VAC8 required for the protein degradation pathway between the Golgi body and the vacuole exhibited the highest mortality. These results suggest that interacting molecule(s) on the plasma membrane in the producer might be diverted from the secretion pathway to degradation in the vacuole.
Zobrazit více v PubMed
Cell. 1999 Oct 29;99(3):283-91 PubMed
Cell. 1986 Jul 4;46(1):105-13 PubMed
Mol Biol Cell. 2003 Apr;14(4):1610-23 PubMed
Yeast. 1995 Apr 15;11(4):355-60 PubMed
Cell. 1995 Nov 17;83(4):513-6 PubMed
Mol Biol Cell. 2004 Feb;15(2):883-95 PubMed
Genetics. 2003 Mar;163(3):875-94 PubMed
J Cell Biol. 1993 Jul;122(1):53-65 PubMed
J Biol Chem. 2001 Nov 23;276(47):43939-48 PubMed
J Biol Chem. 2000 Aug 18;275(33):25840-9 PubMed
J Biol Chem. 1981 Oct 25;256(20):10420-5 PubMed
J Cell Biol. 2001 Feb 5;152(3):503-18 PubMed
Gene. 1992 Feb 1;111(1):135-9 PubMed
J Bacteriol. 1973 Mar;113(3):1193-7 PubMed
Clin Microbiol Rev. 1997 Jul;10(3):369-400 PubMed
Biochem Biophys Res Commun. 1980 Sep 30;96(2):544-50 PubMed
Proc Natl Acad Sci U S A. 1990 Aug;87(16):6228-32 PubMed
Mol Cell Biol. 1991 Jan;11(1):175-81 PubMed
Mol Microbiol. 1991 Oct;5(10):2331-8 PubMed
Mol Biol Cell. 1997 Jul;8(7):1317-27 PubMed
Mol Cell Biol. 1999 May;19(5):3588-99 PubMed
Microbiol Rev. 1984 Jun;48(2):125-56 PubMed
Eur J Epidemiol. 1988 Dec;4(4):400-8 PubMed
Mol Microbiol. 1991 Oct;5(10):2339-43 PubMed
J Biol Chem. 1987 Aug 5;262(22):10728-32 PubMed
Science. 1996 Apr 26;272(5261):533-5 PubMed
EMBO J. 1986 Dec 1;5(12):3381-9 PubMed
FEMS Yeast Res. 2004 Sep;4(8):803-13 PubMed
J Gen Microbiol. 1968 Apr;51(1):115-26 PubMed
Yeast. 1998 Jan 30;14(2):115-32 PubMed
Cell. 1984 Mar;36(3):741-51 PubMed
J Bacteriol. 1997 Mar;179(5):1541-9 PubMed
FEMS Yeast Res. 2002 Mar;2(1):73-9 PubMed
Cell. 2002 Feb 8;108(3):395-405 PubMed
EMBO J. 1984 Jan;3(1):107-11 PubMed
GENBANK
DQ017159, DQ018726