Comparison of weather station and climate reanalysis data for modelling temperature-related mortality
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/R013349/1
Medical Research Council - United Kingdom
PubMed
35338191
PubMed Central
PMC8956721
DOI
10.1038/s41598-022-09049-4
PII: 10.1038/s41598-022-09049-4
Knihovny.cz E-zdroje
- MeSH
- počasí * MeSH
- podnebí * MeSH
- teplota MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.
Air Health Science Division Health Canada Ottawa ON Canada
Center for Global Health School of Public Health Nanjing Medical University Nanjing China
Centre for Statistical Methodology London School of Hygiene and Tropical Medicine London UK
CIBER de Epidemiología y Salud Pública Madrid Spain
Department of Economics Ca' Foscari University of Venice Venice Italy
Department of Environmental Health Instituto Nacional de Saúde Dr Ricardo Jorge Porto Portugal
Department of Family Medicine and Public Health University of Tartu Tartu Estonia
Department of Geography University of Santiago de Compostela Santiago de Compostela Spain
EPIUnit Instituto de Saúde Pública Universidade do Porto Porto Portugal
Faculty of Environmental Sciences Czech University of Life Sciences Prague Czech Republic
Faculty of Medicine University of São Paulo São Paulo Brazil
Forecast Department European Centre for Medium Range Weather Forecast Reading UK
Graduate School of Health Science University of Bern Bern Switzerland
Institute of Atmospheric Physics of the Czech Academy of Sciences Prague Czech Republic
Institute of Environmental Assessment and Water Research Barcelona Spain
Institute of Social and Preventive Medicine University of Bern Bern Switzerland
Oeschger Center for Climate Change Research University of Bern Bern Switzerland
School of Epidemiology and Public Health University of Ottawa Ottawa ON Canada
School of Public Health and Social Work Queensland University of Technology Brisbane QLD Australia
School of Tropical Medicine and Global Health Nagasaki University Nagasaki Japan
Shanghai Children's Medical Center Shanghai Jiao Tong University School of Medicine Shanghai China
The Joint Research Center European Commission Ispra Italy
Zobrazit více v PubMed
Colston JM, et al. Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study. Environ. Res. 2018;165:91–109. PubMed PMC
Auffhammer M, Hsiang SM, Schlenker W, Sobel A. Using weather data and climate model output in economic analyses of climate change. Rev. Environ. Econ. Policy. 2013;7:181–198.
Weinberger KR, Spangler KR, Zanobetti A, Schwartz JD, Wellenius GA. Comparison of temperature-mortality associations estimated with different exposure metrics. Environ. Epidemiol. 2019;3:e072. PubMed PMC
Lee M, Shi L, Zanobetti A, Schwartz JD. Study on the association between ambient temperature and mortality using spatially resolved exposure data. Environ. Res. 2016;151:610–617. PubMed PMC
Lemonsu A, Viguié V, Daniel M, Masson V. Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France) Urban Clim. 2015;14:586–605.
de Cian E, Pavanello F, Randazzo T, Mistry M, Davide M. Households’ adaptation in a warming climate. Air conditioning and thermal insulation choices. Environ. Sci. Policy. 2019;100:136–157.
Wing IS, de Cian E, Mistry MN. Global vulnerability of crop yields to climate change. J. Environ. Econ. Manag. 2021 doi: 10.1016/j.jeem.2021.102462. DOI
Hersbach, H. & Dee, D. ERA5 reanalysis is in production, ECMWF Newsletter No. 147, 7. https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production. Accessed 17 Sept 2021 (2016).
Hersbach, H. et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5, ECMWF Newsletter No. 159, 1. https://www.ecmwf.int/en/newsletter/159/meteorology/global-reanalysis-goodbye-era-interim-hello-era5 Accessed 17 Sept 2021 (2019).
Royé D, Íñiguez C, Tobías A. Comparison of temperature–mortality associations using observed weather station and reanalysis data in 52 Spanish cities. Environ. Res. 2020;183:109237. PubMed
Urban A, et al. Evaluation of the ERA5 reanalysis-based Universal Thermal Climate Index on mortality data in Europe. Environ. Res. 2021;198:111227. PubMed
Adeyeye TE, et al. Estimating policy-relevant health effects of ambient heat exposures using spatially contiguous reanalysis data. Environ. Health. 2019;18:35. PubMed PMC
de Schrijver, E. et al. A comparative analysis of the temperature‐mortality risks using different weather datasets across heterogeneous regions. GeoHealth5(5), (2021). PubMed PMC
Muñoz-Sabater J, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data Discussions. 2021;2021:1–50.
Kalnay E, et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996;77:437–471.
Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013;118:1716–1733.
Gleixner S, Demissie T, Diro GT. Did ERA5 improve temperature and precipitation reanalysis over East Africa? Atmosphere. 2020;11:996.
Gasparrini A, et al. Temporal variation in heat–mortality associations: A multicountry study. Environ. Health Perspect. 2015;123:1200–1207. PubMed PMC
Gasparrini A, et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health. 2017;1:e360–e367. PubMed PMC
Vicedo-Cabrera AM, et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Change. 2018;150:391–402. PubMed PMC
Gasparrini A, Armstrong B. Reducing and meta-analysing estimates from distributed lag non-linear models. BMC Med. Res. Methodol. 2013;13:1. PubMed PMC
Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 2012;31:3821–3839. PubMed PMC
Gasparrini A, Leone M. Attributable risk from distributed lag models. BMC Med. Res. Methodol. 2014;14:55. PubMed PMC
Gasparrini A, et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet. 2015;386:369–375. PubMed PMC
Schaeffer L, de Crouy-Chanel P, Wagner V, Desplat J, Pascal M. How to estimate exposure when studying the temperature-mortality relationship? A case study of the Paris area. Int. J. Biometeorol. 2016;60(1):73–83. PubMed
Gasparrini A, et al. Temporal variation in heat-mortality associations: A multicountry study. Environ. Health Perspect. 2015;123:1200–1207. PubMed PMC
Guo Y, et al. Heat wave and mortality: A multicountry, multicommunity study. Environ. Health Perspect. 2017;125:087006. PubMed PMC
Vicedo-Cabrera AM, et al. A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate. Environ. Int. 2018;111:239–246. PubMed
Vicedo-Cabrera AM, et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change. 2021;11:492–500. PubMed PMC
Steadman RG. The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. Appl. Meteorol. 1979;18:861–873.
Steadman RG. A universal scale of apparent temperature. Clim. Appl. Meteorol. 1984;23:1674–1687.
Haldane JS. The influence of high air temperatures: No. 1. J. Hygiene. 1905;5:494–513. PubMed PMC
Yaglou CP, Minaed D. Control of heat casualties at military training centers. Arch. Indust. Health. 1957;16:302–316. PubMed
Jendritzky G, de Dear R, Havenith G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012;56:421–428. PubMed
Barnett AG, Tong S, Clements ACA. What measure of temperature is the best predictor of mortality? Environ. Res. 2010;110:604–611. PubMed
Armstrong B, et al. The role of humidity in associations of high temperature with mortality: A multicountry, multicity study. Environ. Health Perspect. 2019;127:097007. PubMed PMC
Spangler KR, Weinberger KR, Wellenius GA. Suitability of gridded climate datasets for use in environmental epidemiology. J. Eposure Sci. Environ. Epidemiol. 2019;29:777–789. PubMed PMC
Dutra, E. et al. Environmental lapse rate for high‐resolution land surface downscaling: An application to ERA5. Earth Space Sci. 7(5), (2020).
R Core Team. R: A language and environment for statistical computing. (2020).
Gasparrini A. Distributed lag linear and non-linear models in {R}: the package {dlnm} J. Stat. Softw. 2011;43:1–20. PubMed PMC
Sera F, Armstrong B, Blangiardo M, Gasparrini A. An extended mixed-effects framework for meta-analysis. Stat. Med. 2019;38:5429–5444. PubMed
Vicedo-Cabrera AM, Sera F, Gasparrini A. Hands-on tutorial on a modeling framework for projections of climate change impacts on health. Epidemiology. 2019;30:321–329. PubMed PMC
Gasparrini A. Modeling exposure–lag–response associations with distributed lag non-linear models. Stat. Med. 2014;33:881–899. PubMed PMC
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag; 2016.
Petkova EP, et al. Towards more comprehensive projections of urban heat-related mortality: Estimates for New York City under multiple population, adaptation, and climate scenarios. Environ. Health Perspect. 2017;125:47–55. PubMed PMC
Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG. An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Tech. 2012;29:897–910.
Dunn RJH, et al. HadISD: A quality-controlled global synoptic report database for selected variables at long-term stations from 1973–2011. Clim. Past. 2012;8:1649–1679.
Dunn, R. J. H. et al. Development of an updated global land in situ‐based data set of temperature and precipitation extremes: HadEX3. J. Geophys. Res. Atmos. 125(16), (2020).
Muñoz Sabater, J. ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (Accessed on 05-MAR-2021) (2019). 10.24381/cds.e2161bac.
Raoult B, Bergeron C, López Alós A, Thépaut J-N, Dee D. Climate service develops user-friendly data store. ECMWF Newslett. No. 2017;151:22–27.
Hersbach H, et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020;146:1999–2049.
Hersbach, H. et al. ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (2018). 10.24381/cds.adbb2d47.
Tarek M, Brissette FP, Arsenault R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 2020;24:2527–2544.
Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models. Stat. Med. 2010;29(21):2224–2234. PubMed PMC
Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007;11:1633–1644.
Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002;21:1539–1558. PubMed