Optimal heat stress metric for modelling heat-related mortality varies from country to country
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37874919
PubMed Central
PMC10410159
DOI
10.1002/joc.8160
Knihovny.cz E-zdroje
- Klíčová slova
- climate and health, dry heat, heat stress, heat-related mortality, humid heat,
- Publikační typ
- časopisecké články MeSH
Combined heat and humidity is frequently described as the main driver of human heat-related mortality, more so than dry-bulb temperature alone. While based on physiological thinking, this assumption has not been robustly supported by epidemiological evidence. By performing the first systematic comparison of eight heat stress metrics (i.e., temperature combined with humidity and other climate variables) with warm-season mortality, in 604 locations over 39 countries, we find that the optimal metric for modelling mortality varies from country to country. Temperature metrics with no or little humidity modification associates best with mortality in ~40% of the studied countries. Apparent temperature (combined temperature, humidity and wind speed) dominates in another 40% of countries. There is no obvious climate grouping in these results. We recommend, where possible, that researchers use the optimal metric for each country. However, dry-bulb temperature performs similarly to humidity-based heat stress metrics in estimating heat-related mortality in present-day climate.
Air Health Science Division Heatlh Canada Ottawa Canada
Cabot Institute for the Environment University of Bristol Bristol UK
Centre for Statistical Methodology London School of Hygiene and Tropical Medicine London UK
Climate and Environmental Physics Physics Institute University of Bern Bern Switzerland
Climate Research Foundation Madrid Spain
Department of Economics Ca' Foscari University of Venice Venice Italy
Department of Epidemiology Instituto Nacional de Saúde Dr Ricardo Jorge Lisbon Portugal
Faculty of Environmental Sciences Czech University of Life Sciences Prague Czech Republic
Forecast Department European Centre for Medium Range Weather Forecast Reading UK
Institute of Atmospheric Physics Czech Academy of Sciences Prague Czech Republic
Institute of Social and Preventive Medicine University of Bern Bern Switzerland
Oeschger Center for Climate Change Research University of Bern Bern Switzerland
School of Epidemiology and Public Health Faculty of Medicine University of Ottawa Ottawa Canada
School of Geographical Sciences University of Bristol Bristol UK
Spanish Consortium for Research on Epidemiology and Public Health Spain
Zobrazit více v PubMed
Anderson, B.G. & Bell, M.L. (2012) Weather‐related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology, 20(2), 205–213. Available from: 10.1097/ede.0b013e318190ee08 PubMed DOI PMC
Anderson, G.B. , Bell, M.L. & Peng, R.D. (2013) Methods to calculate the heat index as an exposure metric in environmental health research. Environmental Health Perspectives, 121(10), 1111–1119. Available from: 10.1289/ehp.1206273 PubMed DOI PMC
Armstrong, B. , Sera, F. , Vicedo‐Cabrera, A.M. , Abrutzky, R. , Åström, D.O. , Bell, M.L. et al. (2019) The role of humidity in associations of high temperature with mortality: a multi‐city multi‐country study. Environmental Health Perspectives, 127(9), 1–8. Available from: 10.1289/EHP5430 PubMed DOI PMC
Armstrong, B.G. , Chalabi, Z. , Fenn, B. , Hajat, S. , Kovats, S. , Milojevic, A. et al. (2011) Association of mortality with high temperatures in a temperate climate: England and Wales. Journal of Epidemiology and Community Health, 65(4), 340–345. Available from: 10.1136/jech.2009.093161 PubMed DOI
Barnett, A.G. , Tong, S. & Clements, A.C.A. (2010) What measure of temperature is the best predictor of mortality? Environmental Research, 110(6), 604–611. Available from: 10.1016/j.envres.2010.05.006 PubMed DOI
Basu, R. & Ostro, B.D. (2008) A multicounty analysis identifying the populations vulnerable to mortality associated with high ambient temperature in California. American Journal of Epidemiology, 168(6), 632–637. Available from: 10.1093/aje/kwn170 PubMed DOI
Bouchama, A. , Abuyassin, B. , Lehe, C. , Laitano, O. , Jay, O. , O'Connor, F.G. et al. (2022) Classic and exertional heatstroke. Nature Reviews. Disease Primers, 8(1), 8. Available from: 10.1038/s41572-021-00334-6 PubMed DOI
Buonocore, C. , De Vecchi, R. , Scalco, V. & Lamberts, R. (2018) Influence of relative air humidity and movement on human thermal perception in classrooms in a hot and humid climate. Building and Environment, 146, 98–106. Available from: 10.1016/j.buildenv.2018.09.036 DOI
Burnham, K.P. & Anderson, D.R. (1998) Model selection and inference: a practical information‐theoretic approach, 1st edition. US: Springer.
Buzan, J.R. & Huber, M. (2020) Moist heat stress on a hotter earth. Annual Review of Earth and Planetary Sciences, 48, 623–655. Available from: 10.1146/annurev-earth-053018-060100 DOI
Buzan, J.R. , Oleson, K. & Huber, M. (2015) Implementation and comparison of a suite of heat stress metrics within the community land model version 4.5. Geoscientific Model Development, 8(2), 151–170. Available from: 10.5194/gmd-8-151-2015 DOI
Casanueva, A. , Kotlarski, S. , Herrera, S. , Fischer, A. , Kjellstrom, T. & Schwierz, C. (2019) Climate projections of a multi‐variate heat stress index: the role of downscaling and bias correction. Geoscientific Model Development, 12, 3419–3438. Available from: 10.5194/gmd-12-3419-2019 DOI
Crowe, J. , Wesseling, C. , Solano, B.R. , Umaña, M.P. , Ramírez, A.R. , Kjellstrom, T. et al. (2013) Heat exposure in sugarcane harvesters in Costa Rica. American Journal of Industrial Medicine, 56(10), 1157–1164. Available from: 10.1002/ajim.22204 PubMed DOI
Davies‐Jones, R. (2008) An efficient and accurate method for computing the wet‐bulb temperature along pseudoadiabats. Monthly Weather Review, 136(7), 2764–2785. Available from: 10.1175/2007MWR2224.1 DOI
de Schrijver, E. , Folly, C.L. , Schneider, R. , Royé, D. , Franco, O.H. , Gasparrini, A. et al. (2021) A comparative analysis of the temperature‐mortality risks using different weather datasets across heterogeneous regions. GeoHealth, 5(5), 1–14. Available from: 10.1029/2020gh000363 PubMed DOI PMC
Dixon, W.G. , Beukenhorst, A.L. , Yimer, B.B. , Cook, L. , Gasparrini, A. , El‐Hay, T. et al. (2019) How the weather affects the pain of citizen scientists using a smartphone app. Npj Digital Medicine, 2(1), 1–9. Available from: 10.1038/s41746-019-0180-3 PubMed DOI PMC
Dunne, J.P. , Stouffer, R.J. & John, J.G. (2013) Reductions in labour capacity from heat stress under climate warming. Nature Climate Change, 3(6), 563–566. Available from: 10.1038/nclimate1827 DOI
Ebi, K.L. , Capon, A. , Berry, P. , Broderick, C. , Dear, R.D. , Havenith, G. et al. (2021) Hot weather and heat extremes : health risks. Lancet, 398(10301), 698–708. Available from: 10.1016/S0140-6736(21)01208-3 PubMed DOI
European Commission . (2022) Destination Earth—new digital twin of the Earth will help tackle climate change and protect nature. https://ec.europa.eu/commission/presscorner/detail/en/IP_22_1977
Fiala, D. , Havenith, G. , Bröde, P. , Kampmann, B. & Jendritzky, G. (2012) UTCI‐Fiala multi‐node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56(3), 429–441. Available from: 10.1007/s00484-011-0424-7 PubMed DOI
Gasparrini, A. & Armstrong, B. (2013) Reducing and meta‐analysing estimates from distributed lag non‐linear models. BMC Medical Research Methodology, 13(1), 1–10. Available from: 10.1186/1471-2288-13-1 PubMed DOI PMC
Gasparrini, A. , Armstrong, B. & Kenward, M.G. (2012) Multivariate meta‐analysis for non‐linear and other multi‐parameter associations. Statistics in Medicine, 31(29), 3821–3839. Available from: 10.1002/sim.5471 PubMed DOI PMC
Gasparrini, A. , Guo, Y. , Hashizume, M. , Kinney, P.L. , Petkova, E.P. , Lavigne, E. et al. (2015) Temporal variation in heat‐mortality associations : a multicountry study. Environmental Health Perspectives, 123(11), 1200–1207. Available from: 10.1289/ehp.1409070 PubMed DOI PMC
Gasparrini, A. , Guo, Y. , Hashizume, M. , Lavigne, E. , Zanobetti, A. , Schwartz, J. et al. (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 386(9991), 369–375. Available from: 10.1016/S0140-6736(14)62114-0 PubMed DOI PMC
Gasparrini, A. & Leone, M. (2014) Attributable risk from distributed lag models. BMC Medical Research Methodology, 14(55), 1–8. Available from: 10.1186/1471-2288-14-55 PubMed DOI PMC
Gasparrinia, A. , Armstrong, B. & Kenward, M.G. (2010) Distributed lag non‐linear models. Statistics in Medicine, 29(21), 2224–2234. Available from: 10.1002/sim.3940 PubMed DOI PMC
Grimmond, C.S.B. & Oke, T.R. (1991) An evapotranspiration‐interception model for urban areas. Water Resources Research, 27(7), 1739–1755.
Guo, Y. , Gasparrini, A. , Armstrong, B. , Li, S. , Tawatsupa, B. , Tobias, A. et al. (2014) Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology, 25(6), 781–789. Available from: 10.1097/ede.0000000000000165 PubMed DOI PMC
Guo, Y. , Gasparrini, A. , Li, S. , Sera, F. , Vicedo‐Cabrera, A.M. , de Sousa Zanotti Stagliorio Coelho, M. et al. (2018) Quantifying excess deaths related to heatwaves under climate change scenarios: a multicountry time series modelling study. PLoS Medicine, 15(7), 1–17. Available from: 10.1371/journal.pmed.1002629 PubMed DOI PMC
Hersbach, H. , Bell, B. , Berrisford, P. , Hirahara, S. , Horányi, A. , Muñoz‐Sabater, J. et al. (2020) The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. Available from: 10.1002/qj.3803 DOI
Im, E.S. , Pal, J.S. & Eltahir, E.A.B. (2017) Deadly heat waves projected in the densely populated agricultural regions of South Asia. Science Advances, 3(8), 1–8. Available from: 10.1126/sciadv.1603322 PubMed DOI PMC
Iungman, T. , Cirach, M. , Marando, F. , Barboza, E.P. , Khomenko, S. , Masselot, P. et al. (2023) Cooling cities through urban green infrastructure : a health impact assessment of European cities. Lancet, 401(10376), 577–589. Available from: 10.1016/S0140-6736(22)02585-5 PubMed DOI
Jendritzky, G. , de Dear, R. & Havenith, G. (2012) UTCI‐why another thermal index? International Journal of Biometeorology, 56, 421–428. Available from: 10.1007/s00484-011-0513-7 PubMed DOI
Kalkstein, L.S. & Valimont, K.M. (1986) An evaluation of summer discomfort in the United States using a relative climatological index. Bulletin of the American Meteorological Society, 67(7), 842–848.
Kent, S.T. , McClure, L.A. , Zaitchik, B.F. , Smith, T.T. & Gohlke, J.M. (2014) Heat waves and health outcomes in Alabama (USA): the importance of heat wave definition. Environmental Health Perspectives, 122(2), 151–158. Available from: 10.1289/ehp.1307262 PubMed DOI PMC
Kottek, M. , Grieser, J. , Beck, C. , Rudolf, B. & Rubel, F. (2006) World map of the Köppen‐Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. Available from: 10.1127/0941-2948/2006/0130 DOI
Kunkel, K.E. , Changnon, S.A. , Reinke, B.C. & Arritt, R.W. (1996) The July 1995 heat wave in the Midwest: a climatic perspective and critical weather factors. Bulletin of the American Meteorological Society, 77(7), 1507–1518. Available from: 10.1175/1520-0477(1996)077<1507:TJHWIT>2.0.CO;2 DOI
Li, X. (2019) WetBulb. https://github.com/smartlixx/WetBulb/blob/master/WetBulb.py
Lo, Y.T.E. , Mitchell, D.M. , Gasparrini, A. , Vicedo‐cabrera, A.M. , Ebi, K.L. , Frumhoff, P.C. et al. (2019) Increasing mitigation ambition to meet the Paris agreement' s temperature goal avoids substantial heat‐related mortality in U.S. cities. Science Advances, 5(6), 1–9. Available from: 10.1126/sciadv.aau4373 PubMed DOI PMC
Lo, Y.T.E. , Mitchell, D.M. , Thompson, R. , O'Connell, E. & Gasparrini, A. (2022) Estimating heat‐related mortality in near real time for public health. Environmental Research, 17, 1–12. Available from: 10.1088/1748-9326/ac4cf4 PubMed DOI PMC
London School of Hygiene and Tropical Medicine . (2021) MCC Collaborative Research Network. https://mccstudy.lshtm.ac.uk/
Ma, W. , Chen, R. & Kan, H. (2014) Temperature‐related mortality in 17 large Chinese cities: how heat and cold affect mortality in China. Environmental Research, 134, 127–133. Available from: 10.1016/j.envres.2014.07.007 PubMed DOI
Mistry, M.N. , Schneider, R. , Masselot, P. , Royé, D. , Armstrong, B. , Kyselý, J. et al. (2022) Comparison of weather station and climate reanalysis data for modelling temperature‐related mortality. Scientific Reports, 12(5178), 1–14. Available from: 10.1038/s41598-022-09049-4 PubMed DOI PMC
Mitchell, D. (2021) Climate attribution of heat mortality. Nature Climate Change, 11(6), 467–468. Available from: 10.1038/s41558-021-01049-y DOI
Mora, C. , Dousset, B. , Caldwell, I.R. , Powell, F.E. , Geronimo, R.C. , Bielecki, C.R. et al. (2017) Global risk of deadly heat. Nature Climate Change, 7(7), 501–506. Available from: 10.1038/nclimate3322 DOI
Pal, J.S. & Eltahir, E.A.B. (2016) Future temperature in Southwest Asia projected to exceed a threshold for human adaptability. Nature Climate Change, 6(2), 197–200. Available from: 10.1038/nclimate2833 DOI
Parkes, B. , Buzan, J.R. & Huber, M. (2022) Heat stress in Africa under high intensity climate change. International Journal of Biometeorology, 66, 1531–1545. Available from: 10.1007/s00484-022-02295-1 PubMed DOI PMC
Petkova, E.P. , Gasparrini, A. & Kinney, P.L. (2014) Heat and mortality in New York city since the beginning of the 20th century. Epidemiology, 25(4), 554–560. Available from: 10.1097/ede.0000000000000123 PubMed DOI PMC
Philip, S.Y. , Kew, S.F. , Oldenborgh, G.J.V. , Yang, W. , Vecchi, G.A. , Anslow, F.S. et al. (2022) Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021. Earth System Dynamics, 2022, 1689–1713. Available from: 10.5194/esd-13-1689-2022 DOI
Quinn, A. & Shaman, J. (2017) Health symptoms in relation to temperature, humidity, and self‐ reported perceptions of climate in New York City residential environments. International Journal of Biometeorology, 61(7), 1209–1220. Available from: 10.1007/s00484-016-1299-4 PubMed DOI PMC
Raymond, C. , Matthews, T. & Horton, R.M. (2020) The emergence of heat and humidity too severe for human tolerance. Science Advances, 6(19), 1–8. Available from: 10.1126/sciadv.aaw1838 PubMed DOI PMC
Raymond, C. , Matthews, T. , Horton, R.M. , Fischer, E.M. , Fueglistaler, S. , Ivanovich, C. et al. (2021) On the controlling factors for globally extreme humid heat. Geophysical Research Letters, 48(23), 1–11. Available from: 10.1029/2021GL096082 DOI
Reid, C.E. , O'Neill, M.S. , Gronlund, C.J. , Brines, S.J. , Brown, D.G. , Diez‐Roux, A.V. et al. (2009) Mapping community determinants of heat vulnerability. Environmental Health Perspectives, 117(11), 1730–1736. Available from: 10.1289/ehp.0900683 PubMed DOI PMC
Ross, M.E. , Vicedo‐Cabrera, A.M. , Kopp, R.E. , Song, L. , Goldfarb, D.S. , Pulido, J. et al. (2018) Assessment of the combination of temperature and relative humidity on kidney stone presentations. Environmental Research, 162, 97–105. Available from: 10.1016/j.envres.2017.12.020 PubMed DOI PMC
Russo, S. , Sillmann, J. & Sterl, A. (2017) Humid heat waves at different warming levels. Scientific Reports, 7(7477), 1–7. Available from: 10.1038/s41598-017-07536-7 PubMed DOI PMC
Schwingshackl, C. , Sillmann, J. , Vicedo‐Cabrera, A.M. , Sandstad, M. & Aunan, K. (2021) Heat stress indicators in CMIP6: estimating future trends and exceedances of impact‐relevant thresholds. Earth's Future, 9(3), 1–17. Available from: 10.1029/2020EF001885 DOI
Sherwood, S.C. & Huber, M. (2010) An adaptability limit to climate change due to heat stress. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9552–9555. Available from: 10.1073/pnas.0913352107 PubMed DOI PMC
Simon, H.B. (1993) Hyperthermia. The New England Journal of Medicine, 329(7), 483–487. Available from: 10.1056/nejm199308123290708 PubMed DOI
Steadman, R.G. (1979) The assessment of sultriness. Part I: a temperature‐humidity index based on human physiology and clothing science. Journal of Applied Meteorology and Climatology, 18(7), 861–873. Available from: 10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2 DOI
Thompson, V. , Kennedy‐asser, A.T. , Vosper, E. , Lo, Y.T.E. , Huntingford, C. , Andrews, O. et al. (2022) The 2021 western North America heat wave among the most extreme events ever recorded globally. Science Advances, 8, 1–10. Available from: 10.1126/sciadv.abm6860 PubMed DOI PMC
United Nations Statistics Division . (1999) Standard country or area codes for statistical use (M49). The Interne. Available from: https://unstats.un.org/unsd/methodology/m49/
Urban, A. , Di Napoli, C. , Cloke, H.L. , Kyselý, J. , Pappenberger, F. , Sera, F. et al. (2021) Evaluation of the ERA5 reanalysis‐based universal thermal climate index on mortality data in Europe. Environmental Research, 198(111227) 1–12. Available from: 10.1016/j.envres.2021.111227 PubMed DOI
Vanos, J.K. , Baldwin, J.W. , Jay, O. & Ebi, K.L. (2020) Simplicity lacks robustness when projecting heat‐health outcomes in a changing climate. Nature Communications, 11(6079), 10–14. Available from: 10.1038/s41467-020-19994-1 PubMed DOI PMC
Vecellio, D.J. , Wolf, S.T. , Cottle, R.M. & Kenney, W.L. (2022) Evaluating the 35°C wet‐bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT project). Journal of Applied Physiology, 132(2), 340–345. Available from: 10.1152/japplphysiol.00738.2021 PubMed DOI PMC
Vicedo‐Cabrera, A.M. , Scovronick, N. , Sera, F. , Royé, D. , Schneider, R. , Tobias, A. et al. (2021) The burden of heat‐related mortality attributable to recent human‐induced climate change. Nature Climate Change, 11, 492–500. Available from: 10.1038/s41558-021-01058-x PubMed DOI PMC
Wehrli, K. , Guillod, B.P. , Hauser, M. , Leclair, M. & Seneviratne, S.I. (2019) Identifying key driving processes of major recent heat waves. Journal of Geophysical Research – Atmospheres, 124(22), 11746–11765. Available from: 10.1029/2019JD030635 DOI
Weinberger, K.R. , Haykin, L. , Eliot, M.N. , Schwartz, J.D. , Gasparrini, A. & Wellenius, G.A. (2017) Projected temperature‐related deaths in ten large U.S. metropolitan areas under different climate change scenarios. Environmental Research, 107, 196–204. Available from: 10.1016/j.envint.2017.07.006 PubMed DOI PMC
Wouters, H. , Keune, J. , Petrova, I.Y. , Heerwaarden, C.C.V. , Teuling, A.J. , Pal, J.S. et al. (2022) Soil drought can mitigate deadly heat stress thanks to a reduction of air humidity. Science Advances, 8, 1–11. Available from: 10.1126/sciadv.abe6653 PubMed DOI PMC