Distinct Responsiveness of Tumor-Associated Macrophages to Immunotherapy of Tumors with Different Mechanisms of Major Histocompatibility Complex Class I Downregulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-00816S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000785
European Regional Development Fund
CZ.1.05/2.1.00/19.0395
European Regional Development Fund
SVV 260568
Univerzita Karlova v Praze
LM2018126
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34205330
PubMed Central
PMC8235485
DOI
10.3390/cancers13123057
PII: cancers13123057
Knihovny.cz E-zdroje
- Klíčová slova
- colony-stimulating factor-1, immunotherapy, macrophages, major histocompatibility complex, repolarization, tumor,
- Publikační typ
- časopisecké články MeSH
Tumor-associated macrophages (TAMs) plentifully infiltrate the tumor microenvironment (TME), but their role in anti-tumor immunity is controversial. Depending on the acquired polarization, they can either support tumor growth or participate in the elimination of neoplastic cells. In this study, we analyzed the TME by RNA-seq and flow cytometry and examined TAMs after ex vivo activation. Tumors with normal and either reversibly or irreversibly decreased expression of major histocompatibility complex class I (MHC-I) molecules were induced with TC-1, TC-1/A9, and TC-1/dB2m cells, respectively. We found that combined immunotherapy (IT), composed of DNA immunization and the CpG oligodeoxynucleotide (ODN) ODN1826, evoked immune reactions in the TME of TC-1- and TC-1/A9-induced tumors, while the TME of TC-1/dB2m tumors was mostly immunologically unresponsive. TAMs infiltrated both tumor types with MHC-I downregulation, but only TAMs from TC-1/A9 tumors acquired the M1 phenotype upon IT and were cytotoxic in in vitro assay. The anti-tumor effect of combined IT was markedly enhanced by a blockade of the colony-stimulating factor-1 receptor (CSF-1R), but only against TC-1/A9 tumors. Overall, TAMs from tumors with irreversible MHC-I downregulation were resistant to the stimulation of cytotoxic activity. These data suggest the dissimilarity of TAMs from different tumor types, which should be considered when utilizing TAMs in cancer IT.
Zobrazit více v PubMed
Thor Straten P., Garrido F. Targetless T Cells in Cancer Immunotherapy. J. Immunother. Cancer. 2016;4:23. doi: 10.1186/s40425-016-0127-z. PubMed DOI PMC
Najafimehr H., Hajizadeh N., Nazemalhosseini-Mojarad E., Pourhoseingholi M.A., Abdollahpour-Alitappeh M., Ashtari S., Zali M.R. The Role of Human Leukocyte Antigen Class I on Patient Survival in Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. Sci. Rep. 2020;10:728. doi: 10.1038/s41598-020-57582-x. PubMed DOI PMC
Schaafsma E., Fugle C.M., Wang X., Cheng C. Pan-Cancer Association of HLA Gene Expression with Cancer Prognosis and Immunotherapy Efficacy. Br. J. Cancer. 2021:1–11. doi: 10.1038/s41416-021-01400-2. PubMed DOI PMC
Ryschich E., Nötzel T., Hinz U., Autschbach F., Ferguson J., Simon I., Weitz J., Fröhlich B., Klar E., Büchler M.W., et al. Control of T-Cell–Mediated Immune Response by HLA Class I in Human Pancreatic Carcinoma. Clin. Cancer Res. 2005;11:498–504. PubMed
Goeppert B., Frauenschuh L., Zucknick M., Roessler S., Mehrabi A., Hafezi M., Stenzinger A., Warth A., Pathil A., Renner M., et al. Major Histocompatibility Complex Class I Expression Impacts on Patient Survival and Type and Density of Immune Cells in Biliary Tract Cancer. Br. J. Cancer. 2015;113:1343–1349. doi: 10.1038/bjc.2015.337. PubMed DOI PMC
Perea F., Bernal M., Sánchez-Palencia A., Carretero J., Torres C., Bayarri C., Gómez-Morales M., Garrido F., Ruiz-Cabello F. The Absence of HLA Class I Expression in Non-Small Cell Lung Cancer Correlates with the Tumor Tissue Structure and the Pattern of T Cell Infiltration. Int. J. Cancer. 2017;140:888–899. doi: 10.1002/ijc.30489. PubMed DOI
Garrido F., Perea F., Bernal M., Sánchez-Palencia A., Aptsiauri N., Ruiz-Cabello F. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture. Vaccines. 2017;5:7. doi: 10.3390/vaccines5010007. PubMed DOI PMC
Singh M., Khong H., Dai Z., Huang X.-F., Wargo J.A., Cooper Z.A., Vasilakos J.P., Hwu P., Overwijk W.W. Effective Innate and Adaptive Antimelanoma Immunity through Localized TLR7/8 Activation. J. Immunol. 2014;193:4722–4731. doi: 10.4049/jimmunol.1401160. PubMed DOI PMC
Moynihan K.D., Irvine D.J. Roles for Innate Immunity in Combination Immunotherapies. Cancer Res. 2017;77:5215–5221. doi: 10.1158/0008-5472.CAN-17-1340. PubMed DOI PMC
Rakhmilevich A.L., Felder M., Lever L., Slowinski J., Rasmussen K., Hoefges A., van de Voort T.J., Loibner H., Korman A.J., Gillies S.D., et al. Effective Combination of Innate and Adaptive Immunotherapeutic Approaches in a Mouse Melanoma Model. J. Immunol. 2017;198:1575–1584. doi: 10.4049/jimmunol.1601255. PubMed DOI PMC
Hartl C.A., Bertschi A., Puerto R.B., Andresen C., Cheney E.M., Mittendorf E.A., Guerriero J.L., Goldberg M.S. Combination Therapy Targeting Both Innate and Adaptive Immunity Improves Survival in a Pre-Clinical Model of Ovarian Cancer. J. Immunother. Cancer. 2019;7:199. doi: 10.1186/s40425-019-0654-5. PubMed DOI PMC
Quaranta V., Schmid M.C. Macrophage-Mediated Subversion of Anti-Tumour Immunity. Cells. 2019;8:747. doi: 10.3390/cells8070747. PubMed DOI PMC
Kowal J., Kornete M., Joyce J.A. Re-Education of Macrophages as a Therapeutic Strategy in Cancer. Immunotherapy. 2019;11:677–689. doi: 10.2217/imt-2018-0156. PubMed DOI
Buhtoiarov I.N., Sondel P.M., Eickhoff J.C., Rakhmilevich A.L. Macrophages Are Essential for Antitumour Effects against Weakly Immunogenic Murine Tumours Induced by Class B CpG-Oligodeoxynucleotides. Immunology. 2007;120:412–423. doi: 10.1111/j.1365-2567.2006.02517.x. PubMed DOI PMC
Grzelak A., Polakova I., Smahelova J., Vackova J., Pekarcikova L., Tachezy R., Smahel M. Experimental Combined Immunotherapy of Tumours with Major Histocompatibility Complex Class I Downregulation. Int. J. Mol. Sci. 2018;19:3693. doi: 10.3390/ijms19113693. PubMed DOI PMC
Movahedi K., Laoui D., Gysemans C., Baeten M., Stangé G., van den Bossche J., Mack M., Pipeleers D., In’t Veld P., de Baetselier P., et al. Different Tumor Microenvironments Contain Functionally Distinct Subsets of Macrophages Derived from Ly6C (High) Monocytes. Cancer Res. 2010;70:5728–5739. doi: 10.1158/0008-5472.CAN-09-4672. PubMed DOI
Wang B., Li Q., Qin L., Zhao S., Wang J., Chen X. Transition of Tumor-Associated Macrophages from MHC Class II (Hi) to MHC Class II (Low) Mediates Tumor Progression in Mice. BMC Immunol. 2011;12:43. doi: 10.1186/1471-2172-12-43. PubMed DOI PMC
Lum H.D., Buhtoiarov I.N., Schmidt B.E., Berke G., Paulnock D.M., Sondel P.M., Rakhmilevich A.L. Tumoristatic Effects of Anti-CD40 MAb-Activated Macrophages Involve Nitric Oxide and Tumour Necrosis Factor-Alpha. Immunology. 2006;118:261–270. doi: 10.1111/j.1365-2567.2006.02366.x. PubMed DOI PMC
Ellyard J.I., Quah B.J.C., Simson L., Parish C.R. Alternatively Activated Macrophage Possess Antitumor Cytotoxicity That Is Induced by IL-4 and Mediated by Arginase-1. J. Immunother. 2010;33:443–452. doi: 10.1097/CJI.0b013e3181cd8746. PubMed DOI
Peranzoni E., Lemoine J., Vimeux L., Feuillet V., Barrin S., Kantari-Mimoun C., Bercovici N., Guérin M., Biton J., Ouakrim H., et al. Macrophages Impede CD8 T Cells from Reaching Tumor Cells and Limit the Efficacy of Anti-PD-1 Treatment. Proc. Natl. Acad. Sci. USA. 2018;115:E4041–E4050. doi: 10.1073/pnas.1720948115. PubMed DOI PMC
Thoreau M., Penny H.L., Tan K., Regnier F., Weiss J.M., Lee B., Johannes L., Dransart E., Le Bon A., Abastado J.-P., et al. Vaccine-Induced Tumor Regression Requires a Dynamic Cooperation between T Cells and Myeloid Cells at the Tumor Site. Oncotarget. 2015;6:27832–27846. doi: 10.18632/oncotarget.4940. PubMed DOI PMC
Stanley E.R., Chitu V. CSF-1 Receptor Signaling in Myeloid Cells. Cold Spring Harb. Perspect. Biol. 2014;6 doi: 10.1101/cshperspect.a021857. PubMed DOI PMC
Zhu Y., Knolhoff B.L., Meyer M.A., Nywening T.M., West B.L., Luo J., Wang-Gillam A., Goedegebuure S.P., Linehan D.C., DeNardo D.G. CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T-Cell Checkpoint Immunotherapy in Pancreatic Cancer Models. Cancer Res. 2014;74:5057–5069. doi: 10.1158/0008-5472.CAN-13-3723. PubMed DOI PMC
Ao J.-Y., Zhu X.-D., Chai Z.-T., Cai H., Zhang Y.-Y., Zhang K.-Z., Kong L.-Q., Zhang N., Ye B.-G., Ma D.-N., et al. Colony-Stimulating Factor 1 Receptor Blockade Inhibits Tumor Growth by Altering the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma. Mol. Cancer Ther. 2017;16:1544–1554. doi: 10.1158/1535-7163.MCT-16-0866. PubMed DOI
Wiehagen K.R., Girgis N.M., Yamada D.H., Smith A.A., Chan S.R., Grewal I.S., Quigley M., Verona R.I. Combination of CD40 Agonism and CSF-1R Blockade Reconditions Tumor-Associated Macrophages and Drives Potent Antitumor Immunity. Cancer Immunol. Res. 2017;5:1109–1121. doi: 10.1158/2326-6066.CIR-17-0258. PubMed DOI
Zhang L., Li Z., Skrzypczynska K.M., Fang Q., Zhang W., O’Brien S.A., He Y., Wang L., Zhang Q., Kim A., et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer. Cell. 2020;181:442–459.e29. doi: 10.1016/j.cell.2020.03.048. PubMed DOI
Lin K.Y., Guarnieri F.G., Staveley-O’Carroll K.F., Levitsky H.I., August J.T., Pardoll D.M., Wu T.C. Treatment of Established Tumors with a Novel Vaccine That Enhances Major Histocompatibility Class II Presentation of Tumor Antigen. Cancer Res. 1996;56:21–26. PubMed
Smahel M., Síma P., Ludvíková V., Marinov I., Pokorná D., Vonka V. Immunisation with Modified HPV16 E7 Genes against Mouse Oncogenic TC-1 Cell Sublines with Downregulated Expression of MHC Class I Molecules. Vaccine. 2003;21:1125–1136. doi: 10.1016/S0264-410X(02)00519-4. PubMed DOI
Lhotakova K., Grzelak A., Polakova I., Vackova J., Smahel M. Establishment and Characterization of a Mouse Tumor Cell Line with Irreversible Downregulation of MHC Class I Molecules. Oncol. Rep. 2019;42:2826–2835. doi: 10.3892/or.2019.7356. PubMed DOI
Smahel M., Polakova I., Duskova M., Ludvikova V., Kastankova I. The Effect of Helper Epitopes and Cellular Localization of an Antigen on the Outcome of Gene Gun DNA Immunization. Gene Ther. 2014;21:225–232. doi: 10.1038/gt.2013.81. PubMed DOI
Smahel M., Síma P., Ludvíková V., Vonka V. Modified HPV16 E7 Genes as DNA Vaccine against E7-Containing Oncogenic Cells. Virology. 2001;281:231–238. doi: 10.1006/viro.2000.0794. PubMed DOI
Alexander J., Sidney J., Southwood S., Ruppert J., Oseroff C., Maewal A., Snoke K., Serra H.M., Kubo R.T., Sette A. Development of High Potency Universal DR-Restricted Helper Epitopes by Modification of High Affinity DR-Blocking Peptides. Immunity. 1994;1:751–761. doi: 10.1016/S1074-7613(94)80017-0. PubMed DOI
Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Chen E.Y., Tan C.M., Kou Y., Duan Q., Wang Z., Meirelles G.V., Clark N.R., Ma’ayan A. Enrichr: Interactive and Collaborative HTML5 Gene List Enrichment Analysis Tool. BMC Bioinform. 2013;14:128. doi: 10.1186/1471-2105-14-128. PubMed DOI PMC
Kuleshov M.V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z., Koplev S., Jenkins S.L., Jagodnik K.M., Lachmann A., et al. Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update. Nucleic Acids Res. 2016;44:W90–W97. doi: 10.1093/nar/gkw377. PubMed DOI PMC
Angelova M., Charoentong P., Hackl H., Fischer M.L., Snajder R., Krogsdam A.M., Waldner M.J., Bindea G., Mlecnik B., Galon J., et al. Characterization of the Immunophenotypes and Antigenomes of Colorectal Cancers Reveals Distinct Tumor Escape Mechanisms and Novel Targets for Immunotherapy. Genome Biol. 2015;16:64. doi: 10.1186/s13059-015-0620-6. PubMed DOI PMC
Charoentong P., Finotello F., Angelova M., Mayer C., Efremova M., Rieder D., Hackl H., Trajanoski Z. Pan-Cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 2017;18:248–262. doi: 10.1016/j.celrep.2016.12.019. PubMed DOI
Thorsson V., Gibbs D.L., Brown S.D., Wolf D., Bortone D.S., Ou Yang T.-H., Porta-Pardo E., Gao G.F., Plaisier C.L., Eddy J.A., et al. The Immune Landscape of Cancer. Immunity. 2018;48:812–830.e14. doi: 10.1016/j.immuni.2018.03.023. PubMed DOI PMC
Metsalu T., Vilo J. ClustVis: A Web Tool for Visualizing Clustering of Multivariate Data Using Principal Component Analysis and Heatmap. Nucleic Acids Res. 2015;43:W566–W570. doi: 10.1093/nar/gkv468. PubMed DOI PMC
Kaštánková I., Poláková I., Dušková M., Šmahel M. Combined Cancer Immunotherapy Against Aurora Kinase A. J. Immunother. 2016;39:160–170. doi: 10.1097/CJI.0000000000000120. PubMed DOI
Ferrari M., Fornasiero M.C., Isetta A.M. MTT Colorimetric Assay for Testing Macrophage Cytotoxic Activity in Vitro. J. Immunol. Methods. 1990;131:165–172. doi: 10.1016/0022-1759(90)90187-Z. PubMed DOI
Corraliza I.M., Campo M.L., Soler G., Modolell M. Determination of Arginase Activity in Macrophages: A Micromethod. J. Immunol. Methods. 1994;174:231–235. doi: 10.1016/0022-1759(94)90027-2. PubMed DOI
Jablonski K.A., Amici S.A., Webb L.M., de Ruiz-Rosado J.D., Popovich P.G., Partida-Sanchez S., Guerau-de-Arellano M. Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS ONE. 2015;10:e0145342. doi: 10.1371/journal.pone.0145342. PubMed DOI PMC
Routes J.M., Morris K., Ellison M.C., Ryan S. Macrophages Kill Human Papillomavirus Type 16 E6-Expressing Tumor Cells by Tumor Necrosis Factor Alpha- and Nitric Oxide-Dependent Mechanisms. J. Virol. 2005;79:116–123. doi: 10.1128/JVI.79.1.116-123.2005. PubMed DOI PMC
Chang C.I., Liao J.C., Kuo L. Arginase Modulates Nitric Oxide Production in Activated Macrophages. Am. J. Physiol. 1998;274:H342–H348. doi: 10.1152/ajpheart.1998.274.1.H342. PubMed DOI
Mori M. Regulation of Nitric Oxide Synthesis and Apoptosis by Arginase and Arginine Recycling. J. Nutr. 2007;137:1616S–1620S. doi: 10.1093/jn/137.6.1616S. PubMed DOI
Zou S., Wang X., Liu P., Ke C., Xu S. Arginine Metabolism and Deprivation in Cancer Therapy. Biomed. Pharmacother. 2019;118:109210. doi: 10.1016/j.biopha.2019.109210. PubMed DOI
Mosser D.M., Edwards J.P. Exploring the Full Spectrum of Macrophage Activation. Nat. Rev. Immunol. 2008;8:958–969. doi: 10.1038/nri2448. PubMed DOI PMC
Hanahan D., Weinberg R.A. Hallmarks of Cancer: The next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Reinis M., Símová J., Bubeník J. Inhibitory Effects of Unmethylated CpG Oligodeoxynucleotides on MHC Class I-Deficient and -Proficient HPV16-Associated Tumours. Int. J. Cancer. 2006;118:1836–1842. doi: 10.1002/ijc.21546. PubMed DOI
Šmahel M., Poláková I., Sobotková E., Vajdová E. Systemic Administration of CpG Oligodeoxynucleotide and Levamisole as Adjuvants for Gene-Gun-Delivered Antitumor DNA Vaccines. Clin. Dev. Immunol. 2011;2011 doi: 10.1155/2011/176759. PubMed DOI PMC
Galon J., Bruni D. Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nat. Rev. Drug Discov. 2019;18:197–218. doi: 10.1038/s41573-018-0007-y. PubMed DOI
Cui S., Reichner J.S., Mateo R.B., Albina J.E. Activated Murine Macrophages Induce Apoptosis in Tumor Cells through Nitric Oxide-Dependent or -Independent Mechanisms. Cancer Res. 1994;54:2462–2467. PubMed
Tate D.J., Patterson J.R., Velasco-Gonzalez C., Carroll E.N., Trinh J., Edwards D., Aiyar A., Finkel-Jimenez B., Zea A.H. Interferon-Gamma-Induced Nitric Oxide Inhibits the Proliferation of Murine Renal Cell Carcinoma Cells. Int. J. Biol. Sci. 2012;8:1109–1120. doi: 10.7150/ijbs.4694. PubMed DOI PMC
Rahat M.A., Hemmerlein B. Macrophage-Tumor Cell Interactions Regulate the Function of Nitric Oxide. Front. Physiol. 2013;4:144. doi: 10.3389/fphys.2013.00144. PubMed DOI PMC
Van den Bossche J., Baardman J., Otto N.A., van der Velden S., Neele A.E., van den Berg S.M., Luque-Martin R., Chen H.-J., Boshuizen M.C.S., Ahmed M., et al. Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Rep. 2016;17:684–696. doi: 10.1016/j.celrep.2016.09.008. PubMed DOI
Rodriguez P.C., Quiceno D.G., Zabaleta J., Ortiz B., Zea A.H., Piazuelo M.B., Delgado A., Correa P., Brayer J., Sotomayor E.M., et al. Arginase I Production in the Tumor Microenvironment by Mature Myeloid Cells Inhibits T-Cell Receptor Expression and Antigen-Specific T-Cell Responses. Cancer Res. 2004;64:5839–5849. doi: 10.1158/0008-5472.CAN-04-0465. PubMed DOI
Mirlekar B., Pylayeva-Gupta Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers. 2021;13:167. doi: 10.3390/cancers13020167. PubMed DOI PMC
Rahim S.S., Khan N., Boddupalli C.S., Hasnain S.E., Mukhopadhyay S. Interleukin-10 (IL-10) Mediated Suppression of IL-12 Production in RAW 264.7 Cells Also Involves c-Rel Transcription Factor. Immunology. 2005;114:313–321. doi: 10.1111/j.1365-2567.2005.02107.x. PubMed DOI PMC
Banerjee S., Halder K., Ghosh S., Bose A., Majumdar S. The Combination of a Novel Immunomodulator with a Regulatory T Cell Suppressing Antibody (DTA-1) Regress Advanced Stage B16F10 Solid Tumor by Repolarizing Tumor Associated Macrophages in Situ. Oncoimmunology. 2015;4:e995559. doi: 10.1080/2162402X.2014.995559. PubMed DOI PMC
Chen S., Wang X., Wu X., Wei M.Q., Zhang B., Liu X., Wang Y. IL-10 Signalling Blockade at the Time of Immunization Inhibits Human Papillomavirus 16 E7 Transformed TC-1 Tumour Cells Growth in Mice. Cell Immunol. 2014;290:145–151. doi: 10.1016/j.cellimm.2014.06.002. PubMed DOI
Bialkowski L., van der Jeught K., Bevers S., Tjok Joe P., Renmans D., Heirman C., Aerts J.L., Thielemans K. Immune Checkpoint Blockade Combined with IL-6 and TGF-β Inhibition Improves the Therapeutic Outcome of MRNA-Based Immunotherapy. Int. J. Cancer. 2018;143:686–698. doi: 10.1002/ijc.31331. PubMed DOI
Chu X., Li Y., Huang W., Feng X., Sun P., Yao Y., Yang X., Sun W., Bai H., Liu C., et al. Combined Immunization against TGF-Β1 Enhances HPV16 E7-Specific Vaccine-Elicited Antitumour Immunity in Mice with Grafted TC-1 Tumours. Artif. Cells Nanomed. Biotechnol. 2018;46:1199–1209. doi: 10.1080/21691401.2018.1482306. PubMed DOI
Gyori D., Lim E.L., Grant F.M., Spensberger D., Roychoudhuri R., Shuttleworth S.J., Okkenhaug K., Stephens L.R., Hawkins P.T. Compensation between CSF1R+ Macrophages and Foxp3+ Treg Cells Drives Resistance to Tumor Immunotherapy. JCI Insight. 2018;3:e120631. doi: 10.1172/jci.insight.120631. PubMed DOI PMC
Kumar V., Donthireddy L., Marvel D., Condamine T., Wang F., Lavilla-Alonso S., Hashimoto A., Vonteddu P., Behera R., Goins M.A., et al. Cancer-Associated Fibroblasts Neutralize the Anti-Tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell. 2017;32:654–668.e5. doi: 10.1016/j.ccell.2017.10.005. PubMed DOI PMC
Loeuillard E., Yang J., Buckarma E., Wang J., Liu Y., Conboy C., Pavelko K.D., Li Y., O’Brien D., Wang C., et al. Targeting Tumor-Associated Macrophages and Granulocytic Myeloid-Derived Suppressor Cells Augments PD-1 Blockade in Cholangiocarcinoma. J. Clin. Investig. 2020;130:5380–5396. doi: 10.1172/JCI137110. PubMed DOI PMC
Marchesi M., Andersson E., Villabona L., Seliger B., Lundqvist A., Kiessling R., Masucci G.V. HLA-Dependent Tumour Development: A Role for Tumour Associate Macrophages? J. Transl. Med. 2013;11:247. doi: 10.1186/1479-5876-11-247. PubMed DOI PMC
Dammeijer F., Lievense L.A., Kaijen-Lambers M.E., van Nimwegen M., Bezemer K., Hegmans J.P., van Hall T., Hendriks R.W., Aerts J.G. Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy. Cancer Immunol. Res. 2017;5:535–546. doi: 10.1158/2326-6066.CIR-16-0309. PubMed DOI