Spatial immune heterogeneity in a mouse tumor model after immunotherapy
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-00816S
Czech Science Foundation
League against Cancer Prague
SVV 260679
Charles University
LX22NPO5103
European Union-Next Generation EU
PubMed
39624899
PubMed Central
PMC11875765
DOI
10.1111/cas.16421
Knihovny.cz E-zdroje
- Klíčová slova
- DNA repair, cancer immunotherapy, intratumoral heterogeneity, mutation, tumor microenvironment,
- MeSH
- imunoterapie * metody MeSH
- infekce papilomavirem imunologie virologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- mutace MeSH
- myši MeSH
- nádorové mikroprostředí imunologie genetika MeSH
- nádory * imunologie terapie genetika MeSH
- regulace genové exprese u nádorů MeSH
- sekvenování exomu MeSH
- únik nádoru z imunitní kontroly genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cancer immunotherapy is increasingly used in clinical practice, but its success rate is reduced by tumor escape from the immune system. This may be due to the genetic instability of tumor cells, which allows them to adapt to the immune response and leads to intratumoral immune heterogeneity. The study investigated spatial immune heterogeneity in the tumor microenvironment and its possible drivers in a mouse model of tumors induced by human papillomaviruses (HPV) following immunotherapy. Gene expression was determined by RNA sequencing and mutations by whole exome sequencing. A comparison of different tumor areas revealed heterogeneity in immune cell infiltration, gene expression, and mutation composition. While the mean numbers of mutations with every impact on gene expression or protein function were comparable in treated and control tumors, mutations with high or moderate impact were increased after immunotherapy. The genes mutated in treated tumors were significantly enriched in genes associated with ECM metabolism, degradation, and interactions, HPV infection and carcinogenesis, and immune processes such as antigen processing and presentation, Toll-like receptor signaling, and cytokine production. Gene expression analysis of DNA damage and repair factors revealed that immunotherapy upregulated Apobec1 and Apobec3 genes and downregulated genes related to homologous recombination and translesion synthesis. In conclusion, this study describes the intratumoral immune heterogeneity, that could lead to tumor immune escape, and suggests the potential mechanisms involved.
Zobrazit více v PubMed
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646‐674. doi:10.1016/j.cell.2011.02.013 PubMed DOI
Doig KD, Fellowes A, Scott P, Fox SB. Tumour mutational burden: an overview for pathologists. Pathology. 2022;54(3):249‐253. doi:10.1016/j.pathol.2021.11.008 PubMed DOI
Wilbur HC, Le DT, Agarwal P. Immunotherapy of MSI cancer: facts and hopes. Clin Cancer Res. 2024;30(8):1438‐1447. doi:10.1158/1078-0432.CCR-21-1935 PubMed DOI
Ricciuti B, Recondo G, Spurr LF, et al. Impact of DNA damage response and repair (DDR) gene mutations on efficacy of PD‐(L)1 immune checkpoint inhibition in non–small cell lung cancer. Clin Cancer Res. 2020;26(15):4135‐4142. doi:10.1158/1078-0432.CCR-19-3529 PubMed DOI
Qing T, Jun T, Lindblad KE, et al. Diverse immune response of DNA damage repair‐deficient tumors. Cell Rep Med. 2021;2(5):100276. doi:10.1016/j.xcrm.2021.100276 PubMed DOI PMC
Moon J, Kitty I, Renata K, Qin S, Zhao F, Kim W. DNA damage and its role in cancer therapeutics. Int J Mol Sci. 2023;24(5):4741. doi:10.3390/ijms24054741 PubMed DOI PMC
Fitzgerald DM, Hastings PJ, Rosenberg SM. Stress‐induced mutagenesis: implications in cancer and drug resistance. Annu Rev Cancer Biol. 2017;1(1):119‐140. doi:10.1146/annurev-cancerbio-050216-121919 PubMed DOI PMC
Kay J, Thadhani E, Samson L, Engelward B. Inflammation‐induced DNA damage, mutations and cancer. DNA Repair. 2019;83:102673. doi:10.1016/j.dnarep.2019.102673 PubMed DOI PMC
Cipponi A, Goode DL, Bedo J, et al. MTOR signaling orchestrates stress‐induced mutagenesis, facilitating adaptive evolution in cancer. Science. 2020;368(6495):1127‐1131. doi:10.1126/science.aau8768 PubMed DOI
Danesh Pazhooh R, Rahnamay Farnood P, Asemi Z, Mirsafaei L, Yousefi B, Mirzaei H. mTOR pathway and DNA damage response: a therapeutic strategy in cancer therapy. DNA Repair (Amst). 2021;104:103142. doi:10.1016/j.dnarep.2021.103142 PubMed DOI
Russo M, Crisafulli G, Sogari A, et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science. 2019;366(6472):1473‐1480. doi:10.1126/science.aav4474 PubMed DOI
Law EK, Sieuwerts AM, LaPara K, et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER‐positive breast cancer. Sci Adv. 2016;2(10):e1601737. doi:10.1126/sciadv.1601737 PubMed DOI PMC
Schmitt C, Lucius R, Synowitz M, Held‐Feindt J, Hattermann K. APOBEC3B is expressed in human glioma, and influences cell proliferation and temozolomide resistance. Oncol Rep. 2018;40(5):2742‐2749. doi:10.3892/or.2018.6698 PubMed DOI
Anand J, Chiou L, Sciandra C, et al. Roles of trans‐lesion synthesis (TLS) DNA polymerases in tumorigenesis and cancer therapy. NAR Cancer. 2023;5(1):zcad005. doi:10.1093/narcan/zcad005 PubMed DOI PMC
Butler K, Banday AR. APOBEC3‐mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential. J Hematol Oncol. 2023;16(1):31. doi:10.1186/s13045-023-01425-5 PubMed DOI PMC
Ma W, Ho DWH, Sze KMF, et al. APOBEC3B promotes hepatocarcinogenesis and metastasis through novel deaminase‐independent activity. Mol Carcinog. 2019;58(5):643‐653. doi:10.1002/mc.22956 PubMed DOI
Wörmann SM, Zhang A, Thege FI, et al. APOBEC3A drives deaminase domain‐independent chromosomal instability to promote pancreatic cancer metastasis. Nat Can. 2021;2(12):1338‐1356. doi:10.1038/s43018-021-00268-8 PubMed DOI
Jia Q, Wu W, Wang Y, et al. Local mutational diversity drives intratumoral immune heterogeneity in non‐small cell lung cancer. Nat Commun. 2018;9(1):5361. doi:10.1038/s41467-018-07767-w PubMed DOI PMC
Lefler DS, Manobianco SA, Bashir B. Immunotherapy resistance in solid tumors: mechanisms and potential solutions. Cancer Biol Ther. 2024;25(1):2315655. doi:10.1080/15384047.2024.2315655 PubMed DOI PMC
DiMarco AV, Qin X, McKinney BJ, et al. APOBEC mutagenesis inhibits breast cancer growth through induction of T cell‐mediated antitumor immune responses. Cancer Immunol Res. 2022;10(1):70‐86. doi:10.1158/2326-6066.CIR-21-0146 PubMed DOI PMC
Smahel M, Sima P, Ludvikova V, Marinov I, Pokorna D, Vonka V. Immunisation with modified HPV16 E7 genes against mouse oncogenic TC‐1 cell sublines with downregulated expression of MHC class I molecules. Vaccine. 2003;21(11–12):1125‐1136. doi:10.1016/S0264-410X(02)00519-4 PubMed DOI
Smahel M, Polakova I, Duskova M, Ludvikova V, Kastankova I. The effect of helper epitopes and cellular localization of an antigen on the outcome of gene gun DNA immunization. Gene Ther. 2014;21(2):225‐232. doi:10.1038/gt.2013.81 PubMed DOI
Piatakova A, Polakova I, Smahelova J, Johari SD, Nunvar J, Smahel M. Distinct responsiveness of tumor‐associated macrophages to immunotherapy of tumors with different mechanisms of major histocompatibility complex class I downregulation. Cancer. 2021;13(12):3057. doi:10.3390/cancers13123057 PubMed DOI PMC
Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128. doi:10.1186/1471-2105-14-128 PubMed DOI PMC
Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90‐W97. doi:10.1093/nar/gkw377 PubMed DOI PMC
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545‐15550. doi:10.1073/pnas.0506580102 PubMed DOI PMC
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417‐425. doi:10.1016/j.cels.2015.12.004 PubMed DOI PMC
Castanza AS, Recla JM, Eby D, Thorvaldsdóttir H, Bult CJ, Mesirov JP. Extending support for mouse data in the molecular signatures database (MSigDB). Nat Methods. 2023;20(11):1619‐1620. doi:10.1038/s41592-023-02014-7 PubMed DOI PMC
Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006;38(5):500‐501. doi:10.1038/ng0506-500 PubMed DOI
Miao YR, Xia M, Luo M, Luo T, Yang M, Guo AY. ImmuCellAI‐mouse: a tool for comprehensive prediction of mouse immune cell abundance and immune microenvironment depiction. Bioinformatics. 2022;38(3):785‐791. doi:10.1093/bioinformatics/btab711 PubMed DOI
Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566‐W570. doi:10.1093/nar/gkv468 PubMed DOI PMC
Ewels PA, Peltzer A, Fillinger S, et al. The nf‐core framework for community‐curated bioinformatics pipelines. Nat Biotechnol. 2020;38(3):276‐278. doi:10.1038/s41587-020-0439-x PubMed DOI
Garcia M, Juhos S, Larsson M, et al. Sarek: a portable workflow for whole‐genome sequencing analysis of germline and somatic variants. F1000Res. 2020;9:63. doi:10.12688/f1000research.16665.2 PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25(14):1754‐1760. doi:10.1093/bioinformatics/btp324 PubMed DOI PMC
Garrison E, Marth G. Haplotype‐based variant detection from short‐read sequencing. arXiv. Preprint posted online July 20, 2012 2012. doi:10.48550/arXiv.1207.3907 DOI
Degasperi A, Amarante TD, Czarnecki J, et al. A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies. Nat Can. 2020;1(2):249‐263. doi:10.1038/s43018-020-0027-5 PubMed DOI PMC
Grzelak A, Polakova I, Smahelova J, et al. Experimental combined immunotherapy of tumours with major histocompatibility complex class I downregulation. Int J Mol Sci. 2018;19(11):3693. doi:10.3390/ijms19113693 PubMed DOI PMC
Li J, Dong T, Wu Z, Zhu D, Gu H. The effects of MYC on tumor immunity and immunotherapy. Cell Death Dis. 2023;9(1):103. doi:10.1038/s41420-023-01403-3 PubMed DOI PMC
Afolabi HA, Salleh SM, Zakaria Z, et al. A GNAS gene mutation's independent expression in the growth of colorectal cancer: a systematic review and meta‐analysis. Cancer. 2022;14(22):5480. doi:10.3390/cancers14225480 PubMed DOI PMC
Peng X, Liu X, Hu W, et al. HOXC11 drives lung adenocarcinoma progression through transcriptional regulation of SPHK1. Cell Death Dis. 2023;14(2):1‐13. doi:10.1038/s41419-023-05673-8 PubMed DOI PMC
Xia L, Feng M, Ren Y, et al. DSE inhibits melanoma progression by regulating tumor immune cell infiltration and VCAN. Cell Death Dis. 2023;9(1):1‐10. doi:10.1038/s41420-023-01676-8 PubMed DOI PMC
Hirani P, McDermott J, Rajeeve V, et al. Versican associates with tumor immune phenotype and limits T‐cell trafficking via chondroitin sulfate. Cancer Res Commun. 2024;4(4):970‐985. doi:10.1158/2767-9764.CRC-23-0548 PubMed DOI PMC
Pudełko A, Wisowski G, Olczyk K, Koźma EM. The dual role of the glycosaminoglycan chondroitin‐6‐sulfate in the development, progression and metastasis of cancer. FEBS J. 2019;286(10):1815‐1837. doi:10.1111/febs.14748 PubMed DOI PMC
Zaretsky JM, Garcia‐Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD‐1 blockade in melanoma. N Engl J Med. 2016;375(9):819‐829. doi:10.1056/NEJMoa1604958 PubMed DOI PMC
Shin DS, Zaretsky JM, Escuin‐Ordinas H, et al. Primary resistance to PD‐1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188‐201. doi:10.1158/2159-8290.CD-16-1223 PubMed DOI PMC
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol. 2021;102(3):001540. doi:10.1099/jgv.0.001540 PubMed DOI PMC
Chin Y, Gumilar KE, Li XG, et al. Targeting HSF1 for cancer treatment: mechanisms and inhibitor development. Theranostics. 2023;13(7):2281‐2300. doi:10.7150/thno.82431 PubMed DOI PMC
Rokavec M, Wu W, Luo JL. IL6‐mediated suppression of miR‐200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Mol Cell. 2012;45(6):777‐789. doi:10.1016/j.molcel.2012.01.015 PubMed DOI PMC
Yang T, Ren C, Lu C, et al. Phosphorylation of HSF1 by PIM2 induces PD‐L1 expression and promotes tumor growth in breast cancer. Cancer Res. 2019;79(20):5233‐5244. doi:10.1158/0008-5472.CAN-19-0063 PubMed DOI
Lhotakova K, Grzelak A, Polakova I, Vackova J, Smahel M. Establishment and characterization of a mouse tumor cell line with irreversible downregulation of MHC class I molecules. Oncol Rep. 2019;42(6):2826‐2835. doi:10.3892/or.2019.7356 PubMed DOI
Feng Z, Hu W, Chen JX, et al. Preferential DNA damage and poor repair determine ras gene mutational hotspot in human cancer. J Natl Cancer Inst. 2002;94(20):1527‐1536. doi:10.1093/jnci/94.20.1527 PubMed DOI
Riva G, Albano C, Gugliesi F, et al. HPV meets APOBEC: new players in head and neck cancer. Int J Mol Sci. 2021;22(3):1402. doi:10.3390/ijms22031402 PubMed DOI PMC
Petljak M, Dananberg A, Chu K, et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature. 2022;607(7920):799‐807. doi:10.1038/s41586-022-04972-y PubMed DOI PMC
Sprooten J, Vanmeerbeek I, Datsi A, et al. Lymph node and tumor‐associated PD‐L1+ macrophages antagonize dendritic cell vaccines by suppressing CD8+ T cells. Cell Rep Med. 2024;5(1):101377. doi:10.1016/j.xcrm.2023.101377 PubMed DOI PMC
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197‐218. doi:10.1038/s41573-018-0007-y PubMed DOI
Duan Q, Zhang H, Zheng J, Zhang L. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer. 2020;6(7):605‐618. doi:10.1016/j.trecan.2020.02.022 PubMed DOI