Isocitrate dehydrogenase 2 inhibitor enasidenib synergizes daunorubicin cytotoxicity by targeting aldo-keto reductase 1C3 and ATP-binding cassette transporters

. 2022 Dec ; 96 (12) : 3265-3277. [epub] 20220816

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35972551

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000841 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/18_069/0010046 Ministerstvo Školství, Mládeže a Tělovýchovy
20-20414Y Akademie Věd České Republiky
SVV 260 549 Univerzita Karlova v Praze
SVV 260 550 Univerzita Karlova v Praze
PRIMUS/20/MED/010 Univerzita Karlova v Praze

Odkazy

PubMed 35972551
DOI 10.1007/s00204-022-03359-2
PII: 10.1007/s00204-022-03359-2
Knihovny.cz E-zdroje

Targeting mutations that trigger acute myeloid leukaemia (AML) has emerged as a refined therapeutic approach in recent years. Enasidenib (Idhifa) is the first selective inhibitor of mutated forms of isocitrate dehydrogenase 2 (IDH2) approved against relapsed/refractory AML. In addition to its use as monotherapy, a combination trial of enasidenib with standard intensive induction therapy (daunorubicin + cytarabine) is being evaluated. This study aimed to decipher enasidenib off-target molecular mechanisms involved in anthracycline resistance, such as reduction by carbonyl reducing enzymes (CREs) and drug efflux by ATP-binding cassette (ABC) transporters. We analysed the effect of enasidenib on daunorubicin (Daun) reduction by several recombinant CREs and different human cell lines expressing aldo-keto reductase 1C3 (AKR1C3) exogenously (HCT116) or endogenously (A549 and KG1a). Additionally, A431 cell models overexpressing ABCB1, ABCG2, or ABCC1 were employed to evaluate enasidenib modulation of Daun efflux. Furthermore, the potential synergism of enasidenib over Daun cytotoxicity was quantified amongst all the cell models. Enasidenib selectively inhibited AKR1C3-mediated inactivation of Daun in vitro and in cell lines expressing AKR1C3, as well as its extrusion by ABCB1, ABCG2, and ABCC1 transporters, thus synergizing Daun cytotoxicity to overcome resistance. This work provides in vitro evidence on enasidenib-mediated targeting of the anthracycline resistance actors AKR1C3 and ABC transporters under clinically achievable concentrations. Our findings may encourage its combination with intensive chemotherapy and even suggest that the effectiveness of enasidenib as monotherapy against AML could lie beyond the targeting of mIDH2.

Zobrazit více v PubMed

Ax W, Soldan M, Koch L, Maser E (2000) Development of daunorubicin resistance in tumour cells by induction of carbonyl reduction. Biochem Pharmacol 59(3):293–300. https://doi.org/10.1016/S0006-2952(99)00322-6 PubMed DOI

Bailly JD, Muller C, Jaffrézou JP et al (1995) Lack of correlation between expression and function of P-glycoprotein in acute myeloid leukemia cell lines. Leukemia 9(5):799–807 (PMID: 7769842) PubMed

Bains OS, Grigliatti TA, Reid RE, Riggs KW (2010) Naturally occurring variants of human Aldo-keto reductases with reduced in vitro metabolism of daunorubicin and doxorubicin. J Pharmacol Exp Ther 335:533–545. https://doi.org/10.1124/jpet.110.173179 PubMed DOI

Bains OS, Szeitz A, Lubieniecka JM et al (2013) A correlation between cytotoxicity and reductase-mediated metabolism in cell lines treated with doxorubicin and daunorubicin. J Pharmacol Exp Ther 347:375–387. https://doi.org/10.1124/jpet.113.206805 PubMed DOI

Barski OA, Tipparaju SM, Bhatnagar A (2008) The Aldo-Keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40:553–624. https://doi.org/10.1080/03602530802431439 PubMed DOI PMC

Birtwistle J, Hayden RE, Khanim FL et al (2009) The aldo-keto reductase AKR1C3 contributes to 7,12-dimethylbenz(a)anthracene-3,4-dihydrodiol mediated oxidative DNA damage in myeloid cells: implications for leukemogenesis. Mutat Res Fundam Mol Mech Mutagen 662:67–74. https://doi.org/10.1016/j.mrfmmm.2008.12.010 DOI

Boffo S, Damato A, Alfano L, Giordano A (2018) CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res 37(1):36. https://doi.org/10.1186/s13046-018-0704-8 PubMed DOI PMC

Bose P, Vachhani P, Cortes JE (2017) Treatment of relapsed/refractory acute myeloid leukemia. Curr Treat Options Oncol 18(3):17. https://doi.org/10.1007/s11864-017-0456-2 PubMed DOI

Brown G, Hughes P (2012) Retinoid differentiation therapy for common types of acute myeloid leukemia. Leuk Res Treatment 2012:939021. https://doi.org/10.1155/2012/939021 PubMed DOI PMC

Bukum N, Novotna E, Morell A et al (2019) Buparlisib is a novel inhibitor of daunorubicin reduction mediated by aldo-keto reductase 1C3. Chem Biol Interact 302:101–107. https://doi.org/10.1016/j.cbi.2019.01.026 PubMed DOI

Bunce CM, French PJ, Durham J et al (1994) Indomethacin potentiates the induction of HL60 differentiation to neutrophils, by retinoic acid and granulocyte colony-stimulating factor, and to monocytes, by vitamin D3. Leukemia 8(4):595–604 (PMID: 7512172) PubMed

Bunce CM, Mountford JC, French PJ et al (1996) Potentiation of myeloid differentiation by anti-inflammatory agents, by steroids and by retinoic acid involves a single intracellular target, probably an enzyme of the aldoketoreductase family. Biochim Biophys Acta Mol Cell Res 1311(3):189–198. https://doi.org/10.1016/0167-4889(96)00005-5 DOI

Byrns MC, Duan L, Lee SH et al (2010) Aldo-keto reductase 1C3 expression in MCF-7 cells reveals roles in steroid hormone and prostaglandin metabolism that may explain its over-expression in breast cancer. J Steroid Biochem Mol Biol 118:177–187. https://doi.org/10.1016/j.jsbmb.2009.12.009 PubMed DOI

Capelôa T, Benyahia Z, Zampieri LX et al (2020) Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines. Semin Cell Dev Biol 98:181–191. https://doi.org/10.1016/j.semcdb.2019.05.006 PubMed DOI

Cerchione C, Romano A, Daver N et al (2021) IDH1/IDH2 inhibition in acute myeloid leukemia. Front Oncol 11:639387. https://doi.org/10.3389/fonc.2021.639387 PubMed DOI PMC

Chauhan PS, Bhushan B, Singh LC et al (2012) Expression of genes related to multiple drug resistance and apoptosis in acute leukemia: response to induction chemotherapy. Exp Mol Pathol 92(1):44–49. https://doi.org/10.1016/j.yexmp.2011.09.004 PubMed DOI

CHMP (2019) Withdrawal Assessment report—Idhifa. https://www.ema.europa.eu/en/documents/withdrawal-report/withdrawal-assessment-report-idhifa_en.pdf

Cihalova D, Ceckova M, Kucera R et al (2015) Dinaciclib, a cyclin-dependent kinase inhibitor, is a substrate of human ABCB1 and ABCG2 and an inhibitor of human ABCC1 in vitro. Biochem Pharmacol 98(3):465–472. https://doi.org/10.1016/j.bcp.2015.08.099 PubMed DOI

Cortes JE, Jonas BA, Graef T et al (2019) Clinical experience with ibrutinib alone or in combination with either cytarabine or azacitidine in patients with acute myeloid leukemia. Clin Lymphoma, Myeloma Leuk 19(8):509-515.e1. https://doi.org/10.1016/j.clml.2019.05.008 DOI

Cripe LD, Uno H, Paietta EM et al (2010) Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: a randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood 116(20):4077–4085. https://doi.org/10.1182/blood-2010-04-277269 PubMed DOI PMC

Cusack BJ, Mushlin PS, Voulelis LD et al (1993) Daunorubicin-induced cardiac injury in the rabbit: a role for daunorubicinol? Toxicol Appl Pharmacol 118(2):177–185. https://doi.org/10.1006/taap.1993.1023 PubMed DOI

Desmond JC, Mountford JC, Drayson MT et al (2003) The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Cancer Res 63:505–512 (PMID: 12543809) PubMed

Deutsch YE, Wilkinson R, Brahim A et al (2019) Safety and efficacy of midostaurin in combination with high-dose daunorubicin in 7+3 Induction for acute myeloid leukemia with FLT3 mutation. Blood 134(Supplement_1):3896. https://doi.org/10.1182/blood-2019-129331 DOI

DiNardo CD, Stein EM, de Botton S et al (2018) Durable remissions with ivosidenib in IDH1 -mutated relapsed or refractory AML. N Engl J Med 378(25):2386–2398. https://doi.org/10.1056/nejmoa1716984 PubMed DOI

Dozmorov MG, Azzarello JT, Wren JD et al (2010) Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: Implications for prostate cancer progressioan. BMC Cancer 10:672. https://doi.org/10.1186/1471-2407-10-672 PubMed DOI PMC

Elkind NB, Szentpétery Z, Apáti Á et al (2005) Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res 65(5):1770–1777. https://doi.org/10.1158/0008-5472.CAN-04-3303 PubMed DOI

Fardel O, Yen LEAPA, Courtois A, Drenou B (1998) Differential expression and activity of P-glycoprotein and multidrug resistance-associated protein in CD34-positive KGla leukemic cells. Int J Oncol 12(2):315–319. https://doi.org/10.3892/ijo.12.2.315 PubMed DOI

Ferrazzi E, Woynarowski JM, Arakali A et al (1991) DNA damage and cytotoxicity induced by metabolites of anthracycline antibiotics, doxorubicin and idarubicin. Cancer Commun 3(6):173–180. https://doi.org/10.3727/095535491820873308 PubMed DOI

Fiorentini A, Capelli D, Saraceni F et al (2020) The time has come for targeted therapies for AML: lights and shadows. Oncol Ther 8(1):13–32. https://doi.org/10.1007/s40487-019-00108-x PubMed DOI PMC

Galkin M, Jonas BA (2019) Enasidenib in the treatment of relapsed/refractory acute myeloid leukemia: an evidence-based review of its place in therapy. Core Evid 14:3–17. https://doi.org/10.2147/ce.s172912 PubMed DOI PMC

Gillet JP, Gottesman MM (2010) Mechanisms of multidrug resistance in cancer. Methods Mol Biol 596:47–76. https://doi.org/10.1007/978-1-60761-416-6_4 PubMed DOI

Gojo I, Sadowska M, Walker A et al (2013) Clinical and laboratory studies of the novel cyclin-dependent kinase inhibitor dinaciclib (SCH 727965) in acute leukemias. Cancer Chemother Pharmacol 72(4):897–908. https://doi.org/10.1007/s00280-013-2249-z PubMed DOI PMC

Gupta R, Chandgothia M, Dahiya M et al (2016) Multi-drug resistance protein 1 as prognostic biomarker in clinical practice for acute myeloid leukemia. Int J Lab Hematol 38(5):e93–e97. https://doi.org/10.1111/ijlh.12529 PubMed DOI

Gurnari C, Pagliuca S, Visconte V (2020) Deciphering the therapeutic resistance in acute myeloid leukemia. Int J Mol Sci 21(22):8505. https://doi.org/10.3390/ijms21228505 DOI PMC

Hayden RE, Pratt G, Davies NJ et al (2009) Treatment of primary CLL cells with bezafibrate and medroxyprogesterone acetate induces apoptosis and represses the pro-proliferative signal of CD40-ligand, in part through increased 15dΔ12,14, PGJ2. Leukemia 23(2):292–304. https://doi.org/10.1038/leu.2008.283 PubMed DOI

Heibein AD, Guo B, Sprowl JA et al (2012) Role of aldo-keto reductases and other doxorubicin pharmacokinetic genes in doxorubicin resistance, DNA binding, and subcellular localization. BMC Cancer 12:1–14. https://doi.org/10.1186/1471-2407-12-381 DOI

Hofman J, Malcekova B, Skarka A et al (2014) Anthracycline resistance mediated by reductive metabolism in cancer cells: the role of aldo-keto reductase 1C3. Toxicol Appl Pharmacol 278:238–248. https://doi.org/10.1016/j.taap.2014.04.027 PubMed DOI

Hsiao SH, Lusvarghi S, Huang YH et al (2019) The FLT3 inhibitor midostaurin selectively resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Cancer Lett 445:34–44. https://doi.org/10.1016/j.canlet.2019.01.001 PubMed DOI PMC

Ji N, Yang Y, Cai CY et al (2019) Midostaurin reverses ABCB1-mediated multidrug resistance, an in vitro study. Front Oncol 9:514. https://doi.org/10.3389/fonc.2019.00514 PubMed DOI PMC

Kim Y, Jeung HK, Cheong JW et al (2020) All-trans retinoic acid synergizes with enasidenib to induce differentiation of idh2-mutant acute myeloid leukemia cells. Yonsei Med J 61(9):762–773. https://doi.org/10.3349/ymj.2020.61.9.762 PubMed DOI PMC

Kolitz JE, George SL, Dodge RK et al (2004) Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of cancer and leukemia group B. J Clin Oncol 22(21):4290–4301. https://doi.org/10.1200/JCO.2004.11.106 PubMed DOI

Kuffel MJ, Ames MM (1995) Comparative resistance of idarubicin, doxorubicin and their C-13 alcohol metabolites in human MDR1 transfected NIH-3T3 cells. Cancer Chemother Pharmacol 36(3):223–226. https://doi.org/10.1007/BF00685850 PubMed DOI

Kuffel MJ, Reid JM, Ames MM (1992) Anthracyclines and their C-13 alcohol metabolites: growth inhibition and DNA damage following incubation with human tumor cells in culture. Cancer Chemother Pharmacol 30(1):51–57. https://doi.org/10.1007/BF00686485 PubMed DOI

Ley TJ, Miller C, Ding L et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074. https://doi.org/10.1056/nejmoa1301689 PubMed DOI

Liu B, Li LJ, Gong X et al (2018) Co-expression of ATP binding cassette transporters is associated with poor prognosis in acute myeloid leukemia. Oncol Lett 15(5):6671–6677. https://doi.org/10.3892/ol.2018.8095 PubMed DOI PMC

Liu Y, He S, Chen Y et al (2020) Overview of AKR1C3: inhibitor achievements and disease insights. J Med Chem 63:11305–11329. https://doi.org/10.1021/acs.jmedchem.9b02138 PubMed DOI

Marzac C, Garrido E, Tang R et al (2011) ATP Binding Cassette transporters associated with chemoresistance: transcriptional profiling in extreme cohorts and their prognostic impact in a cohort of 281 acute myeloid leukemia patients. Haematologica 96(9):1293–1301. https://doi.org/10.3324/haematol.2010.031823 PubMed DOI PMC

Menna P, Minotti G, Salvatorelli E (2007) In vitro modeling of the structure-activity determinants of anthracycline cardiotoxicity. Cell Biol Toxicol 23:49–62. https://doi.org/10.1007/s10565-006-0143-8 PubMed DOI

Mills KI, Gilkes AF, Sweeney M et al (1998) Identification of a retinoic acid responsive aldoketoreductase expressed in HL60 leukaemic cells. FEBS Lett 440(1–2):158–162. https://doi.org/10.1016/S0014-5793(98)01435-5 PubMed DOI

Minotti G, Parlani M, Salvatorelli E et al (2001) Impairment of myocardial contractility by anticancer anthracyclines: role of secondary alcohol metabolites and evidence of reduced toxicity by a novel disaccharide analogue. Br J Pharmacol 134(6):1271–1278. https://doi.org/10.1038/sj.bjp.0704369 PubMed DOI PMC

Mordente A, Meucci E, Martorana GE et al (2001) Human heart cytosolic reductases and anthracycline cardiotoxicity. IUBMB Life 52(1–2):83–88. https://doi.org/10.1080/15216540252774829 PubMed DOI

Morell A, Čermáková L, Novotná E et al (2020a) Bruton’s tyrosine kinase inhibitors ibrutinib and acalabrutinib counteract anthracycline resistance in cancer cells expressing akr1c3. Cancers (basel) 12(12):3731. https://doi.org/10.3390/cancers12123731 DOI

Morell A, Novotná E, Milan J et al (2020b) Selective inhibition of aldo-keto reductase 1C3: a novel mechanism involved in midostaurin and daunorubicin synergism. Arch Toxicol 95(1):67–78. https://doi.org/10.1007/s00204-020-02884-2 PubMed DOI

Novotná E, Büküm N, Hofman J et al (2018a) Aldo-keto reductase 1C3 (AKR1C3): a missing piece of the puzzle in the dinaciclib interaction profile. Arch Toxicol 92:2845–2857. https://doi.org/10.1007/s00204-018-2258-0 PubMed DOI

Novotná E, Büküm N, Hofman J et al (2018b) Roscovitine and purvalanol A effectively reverse anthracycline resistance mediated by the activity of aldo-keto reductase 1C3 (AKR1C3): a promising therapeutic target for cancer treatment. Biochem Pharmacol 156:22–31. https://doi.org/10.1016/j.bcp.2018.08.001 PubMed DOI

Papaemmanuil E, Gerstung M, Bullinger L et al (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221. https://doi.org/10.1056/nejmoa1516192 PubMed DOI PMC

Patel C, Stenke L, Varma S et al (2013) Multidrug resistance in relapsed acute myeloid leukemia: evidence of biological heterogeneity. Cancer 119:3076–3083. https://doi.org/10.1002/cncr.28098 PubMed DOI

Penning TM, Jonnalagadda S, Trippier PC, Rižner TL (2021) Aldo-keto reductases and cancer drug resistance. Pharmacol Rev 73(3):1150–1171. https://doi.org/10.1124/pharmrev.120.000122 PubMed DOI PMC

Piska K, Koczurkiewicz P, Bucki A et al (2017) Metabolic carbonyl reduction of anthracyclines—role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents. Invest New Drugs 35(3):375–385. https://doi.org/10.1007/s10637-017-0443-2 PubMed DOI PMC

Quillet-Mary A, Mansat V, Duchayne E et al (1996) Daunorubicin-induced internucleosomal DNA fragmentation in acute myeloid cell lines. Leukemia 10(3):417–425 (PMID: 8642856) PubMed

Ragon BK, Kantarjian H, Jabbour E et al (2017) Buparlisib, a PI3K inhibitor, demonstrates acceptable tolerability and preliminary activity in a phase I trial of patients with advanced leukemias. Am J Hematol 92(1):7–11. https://doi.org/10.1002/ajh.24568 PubMed DOI

Robey RW, Pluchino KM, Hall MD et al (2018) Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 18(7):452–464. https://doi.org/10.1038/s41568-018-0005-8 PubMed DOI PMC

Ruiz FX, Porté S, Gallego O et al (2011) Retinaldehyde is a substrate for human aldo-keto reductases of the 1C subfamily. Biochem J 440(3):335–344. https://doi.org/10.1042/BJ20111286 PubMed DOI

Shiraki T, Kamiya N, Shiki S et al (2005) α, β-Unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor γ. J Biol Chem 280:14145–14153. https://doi.org/10.1074/jbc.M500901200 PubMed DOI

Škarydová L, Živná L, Xiong G et al (2009) AKR1C3 as a potential target for the inhibitory effect of dietary flavonoids. Chem Biol Interact 178(1–3):138–144. https://doi.org/10.1016/j.cbi.2008.10.015 PubMed DOI

Skarydova L, Nobilis M, Wsól V (2013) Role of carbonyl reducing enzymes in the phase I biotransformation of the non-steroidal anti-inflammatory drug nabumetone in vitro. Xenobiotica 43(4):346–354. https://doi.org/10.3109/00498254.2012.720048 PubMed DOI

Song MK, Park BB, Uhm JE (2021) Targeted therapeutic approach based on understanding of aberrant molecular pathways leading to leukemic proliferation in patients with acute myeloid leukemia. Int J Mol Sci 22(11):5789. https://doi.org/10.3390/ijms22115789 PubMed DOI PMC

Stein EM, DiNardo CD, Fathi AT et al (2019) Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood 133(7):676–687. https://doi.org/10.1182/blood-2018-08-869008 PubMed DOI PMC

Stein EM, DiNardo CD, Fathi AT et al (2021) Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: a phase 1 study. Blood 137(13):1792–1803. https://doi.org/10.1182/blood.2020007233 PubMed DOI PMC

Thol F, Heuser M (2021) Treatment for relapsed/refractory acute myeloid leukemia. HemaSphere 5(6):e572. https://doi.org/10.1097/HS9.0000000000000572 PubMed DOI PMC

Thol F, Schlenk RF, Heuser M, Ganser A (2015) How I treat refractory and early relapsed acute myeloid leukemia. Blood 126(3):319–327. https://doi.org/10.1182/blood-2014-10-551911 PubMed DOI

Vadlapatla R, Vadlapudi A, Pal D, Mitra A (2013) Mechanisms of drug resistance in cancer chemotherapy: coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr Pharm Des 19(40):7126–7140. https://doi.org/10.2174/13816128113199990493 PubMed DOI

Vasconcelos FC, de Souza PS, Hancio T et al (2021) Update on drug transporter proteins in acute myeloid leukemia: pathological implication and clinical setting. Crit Rev Oncol Hematol 160:103281. https://doi.org/10.1016/j.critrevonc.2021.103281 PubMed DOI

Verma K, Zang T, Gupta N et al (2016) Selective AKR1C3 inhibitors potentiate chemotherapeutic activity in multiple acute myeloid leukemia (AML) cell lines. ACS Med Chem Lett 7:774–779. https://doi.org/10.1021/acsmedchemlett.6b00163 PubMed DOI PMC

Verma K, Zang T, Penning TM, Trippier PC (2019) Potent and highly selective Aldo—Keto reductase 1C3 (AKR1C3) inhibitors act as chemotherapeutic potentiators in acute myeloid leukemia and t-cell acute lymphoblastic leukemia. J Med Chem 62(7):3590–3616. https://doi.org/10.1021/acs.jmedchem.9b00090 PubMed DOI PMC

Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated idh1 and idh2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234. https://doi.org/10.1016/j.ccr.2010.01.020 PubMed DOI PMC

Yen K, Travins J, Wang F et al (2017) AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov 7(5):478–493. https://doi.org/10.1158/2159-8290.CD-16-1034 PubMed DOI

Zhang H, Patel A, Ma SL et al (2014) In vitro, in vivo and ex vivo characterization of ibrutinib: a potent inhibitor of the efflux function of the transporter MRP1. Br J Pharmacol 171(24):5845–5857. https://doi.org/10.1111/bph.12889 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...