Experimental Combined Immunotherapy of Tumours with Major Histocompatibility Complex Class I Downregulation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA16-04477S
Grantová Agentura České Republiky
LQ1604
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015040
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/1.1.00/02.0109
European Regional Development Fund
CZ.1.05/2.1.00/19.0400
European Regional Development Fund
CZ.1.05/2.1.00/19.0395
European Regional Development Fund
PubMed
30469401
PubMed Central
PMC6274939
DOI
10.3390/ijms19113693
PII: ijms19113693
Knihovny.cz E-zdroje
- Klíčová slova
- CpG ODN, DNA immunization, MHC-I, cancer immunotherapy, tumor-associated macrophages, α-galactosylceramide,
- MeSH
- adjuvancia imunologická terapeutické užití MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- down regulace MeSH
- experimentální nádory terapie MeSH
- galaktosylceramidy imunologie MeSH
- histokompatibilita - antigeny třídy I imunologie MeSH
- imunoterapie metody MeSH
- makrofágy imunologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- oligodeoxyribonukleotidy imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adjuvancia imunologická MeSH
- galaktosylceramidy MeSH
- histokompatibilita - antigeny třídy I MeSH
- oligodeoxyribonukleotidy MeSH
Combined immunotherapy constitutes a novel, advanced strategy in cancer treatment. In this study, we investigated immunotherapy in the mouse TC-1/A9 model of human papillomavirus type 16 (HPV16)-associated tumors characterized by major histocompatibility complex class I (MHC-I) downregulation. We found that the induction of a significant anti-tumor response required a combination of DNA vaccination with the administration of an adjuvant, either the synthetic oligodeoxynucleotide ODN1826, carrying immunostimulatory CpG motifs, or α-galactosylceramide (α-GalCer). The most profound anti-tumor effect was achieved when these adjuvants were applied in a mix with a one-week delay relative to DNA immunization. Combined immunotherapy induced tumor infiltration with various subsets of immune cells contributing to tumor regression, of which cluster of differentiation (CD) 8⁺ T cells were the predominant subpopulation. In contrast, the numbers of tumor-associated macrophages (TAMs) were not markedly increased after immunotherapy but in vivo and in vitro results showed that they could be repolarized to an anti-tumor M1 phenotype. A blockade of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) immune checkpoint had a negligible effect on anti-tumor immunity and TAMs repolarization. Our results demonstrate a benefit of combined immunotherapy comprising the activation of both adaptive and innate immunity in the treatment of tumors with reduced MHC-I expression.
Zobrazit více v PubMed
Morrissey K., Yuraszeck T., Li C., Zhang Y., Kasichayanula S. Immunotherapy and novel combinations in oncology: Current landscape, challenges and opportunities. Clin. Transl. Sci. 2016;9:89–104. doi: 10.1111/cts.12391. PubMed DOI PMC
Beyranvand Nejad E., Welters M.J.P., Arens R., van der Burg S.H. The importance of correctly timing cancer immunotherapy. Expert. Opin. Biol. Ther. 2017;17:87–103. doi: 10.1080/14712598.2017.1256388. PubMed DOI
Garcia-Lora A., Algarra I., Garrido F. MHC class I antigens, immune surveillance and tumor immune escape. J. Cell. Physiol. 2003;195:346–355. doi: 10.1002/jcp.10290. PubMed DOI
Garrido F., Aptsiauri N., Doorduijn E.M., Garcia Lora A.M., van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 2016;39:44–51. doi: 10.1016/j.coi.2015.12.007. PubMed DOI PMC
Yang B., Jeang J., Yang A., Wu T.C., Hung C.-F. DNA vaccine for cancer immunotherapy. Hum. Vaccin. Immunother. 2014;10:3153–3164. doi: 10.4161/21645515.2014.980686. PubMed DOI PMC
Vacchelli E., Eggermont A., Sautès-Fridman C., Galon J., Zitvogel L., Kroemer G., Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology. 2013;2:e25238. doi: 10.4161/onci.25238. PubMed DOI PMC
Klinman D.M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 2004;4:249–258. doi: 10.1038/nri1329. PubMed DOI
Chen L.-Y., Lin Y.-L., Chiang B.-L. Levamisole enhances immune response by affecting the activation and maturation of human monocyte-derived dendritic cells. Clin. Exp. Immunol. 2008;151:174–181. doi: 10.1111/j.1365-2249.2007.03541.x. PubMed DOI PMC
Brennan P.J., Brigl M., Brenner M.B. Invariant natural killer T cells: An innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 2013;13:101–117. doi: 10.1038/nri3369. PubMed DOI
Robertson F.C., Berzofsky J.A., Terabe M. NKT cell networks in the regulation of tumor immunity. Front. Immunol. 2014;5:543. doi: 10.3389/fimmu.2014.00543. PubMed DOI PMC
Monney L., Sabatos C.A., Gaglia J.L., Ryu A., Waldner H., Chernova T., Manning S., Greenfield E.A., Coyle A.J., Sobel R.A., et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–541. doi: 10.1038/415536a. PubMed DOI
Anderson A.C. Tim-3: An emerging target in the cancer immunotherapy landscape. Cancer Immunol. Res. 2014;2:393–398. doi: 10.1158/2326-6066.CIR-14-0039. PubMed DOI
Han G., Chen G., Shen B., Li Y. Tim-3: An activation marker and activation limiter of innate immune cells. Front. Immunol. 2013;4:449. doi: 10.3389/fimmu.2013.00449. PubMed DOI PMC
Bingle L., Brown N.J., Lewis C.E. The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. J. Pathol. 2002;196:254–265. doi: 10.1002/path.1027. PubMed DOI
Mills C.D., Ley K. M1 and M2 macrophages: The chicken and the egg of immunity. J. Innate Immun. 2014;6:716–726. doi: 10.1159/000364945. PubMed DOI PMC
Ocana-Guzman R., Torre-Bouscoulet L., Sada-Ovalle I. TIM-3 regulates distinct functions in macrophages. Front. Immunol. 2016;7:229. doi: 10.3389/fimmu.2016.00229. PubMed DOI PMC
Rath M., Muller I., Kropf P., Closs E.I., Munder M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol. 2014;5:532. doi: 10.3389/fimmu.2014.00532. PubMed DOI PMC
Biswas S.K., Sica A., Lewis C.E. Plasticity of macrophage function during tumor progression: Regulation by distinct molecular mechanisms. J. Immunol. 2008;180:2011–2017. doi: 10.4049/jimmunol.180.4.2011. PubMed DOI
Zheng X., Turkowski K., Mora J., Brune B., Seeger W., Weigert A., Savai R. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8:48436–48452. doi: 10.18632/oncotarget.17061. PubMed DOI PMC
Tang X., Mo C., Wang Y., Wei D., Xiao H. Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology. 2013;138:93–104. doi: 10.1111/imm.12023. PubMed DOI PMC
Buhtoiarov I.N., Sondel P.M., Wigginton J.M., Buhtoiarova T.N., Yanke E.M., Mahvi D.A., Rakhmilevich A.L. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology. 2011;132:226–239. doi: 10.1111/j.1365-2567.2010.03357.x. PubMed DOI PMC
Rakhmilevich A.L., Baldeshwiler M.J., Van De Voort T.J., Felder M.A.R., Yang R.K., Kalogriopoulos N.A., Koslov D.S., Van Rooijen N., Sondel P.M. Tumor-associated myeloid cells can be activated in vitro and in vivo to mediate antitumor effects. Cancer Immunol. Immunother. 2012;61:1683–1697. doi: 10.1007/s00262-012-1236-2. PubMed DOI PMC
Buhtoiarov I.N., Lum H., Berke G., Paulnock D.M., Sondel P.M., Rakhmilevich A.L. CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J. Immunol. 2005;174:6013–6022. doi: 10.4049/jimmunol.174.10.6013. PubMed DOI
Buhtoiarov I.N., Sondel P.M., Eickhoff J.C., Rakhmilevich A.L. Macrophages are essential for antitumour effects against weakly immunogenic murine tumours induced by class B CpG-oligodeoxynucleotides. Immunology. 2007;120:412–423. doi: 10.1111/j.1365-2567.2006.02517.x. PubMed DOI PMC
Lum H.D., Buhtoiarov I.N., Schmidt B.E., Berke G., Paulnock D.M., Sondel P.M., Rakhmilevich A.L. Tumoristatic effects of anti-CD40 mAb-activated macrophages involve nitric oxide and tumour necrosis factor-alpha. Immunology. 2006;118:261–270. doi: 10.1111/j.1365-2567.2006.02366.x. PubMed DOI PMC
Jensen J.L., Rakhmilevich A., Heninger E., Broman A.T., Hope C., Phan F., Miyamoto S., Maroulakou I., Callander N., Hematti P., et al. Tumoricidal effects of macrophage-activating immunotherapy in a murine model of relapsed/refractory multiple myeloma. Cancer Immunol. Res. 2015;3:881–890. doi: 10.1158/2326-6066.CIR-15-0025-T. PubMed DOI PMC
Thoreau M., Penny H.L., Tan K., Regnier F., Weiss J.M., Lee B., Johannes L., Dransart E., Le Bon A., Abastado J.-P., et al. Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site. Oncotarget. 2015;6:27832–27846. doi: 10.18632/oncotarget.4940. PubMed DOI PMC
Delgoffe G.M., Woo S.-R., Turnis M.E., Gravano D.M., Guy C., Overacre A.E., Bettini M.L., Vogel P., Finkelstein D., Bonnevier J., et al. Stability and function of regulatory T cells is maintained by a neuropilin-1–semaphorin-4a axis. Nature. 2013;501:252–256. doi: 10.1038/nature12428. PubMed DOI PMC
Mills C.D. Anatomy of a discovery: M1 and M2 macrophages. Front. Immunol. 2015;6:212. doi: 10.3389/fimmu.2015.00212. PubMed DOI PMC
Nakayama M., Akiba H., Takeda K., Kojima Y., Hashiguchi M., Azuma M., Yagita H., Okumura K. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood. 2009;113:3821–3830. doi: 10.1182/blood-2008-10-185884. PubMed DOI
Smyth M.J., Ngiow S.F., Ribas A., Teng M.W.L. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 2015;13:143–158. doi: 10.1038/nrclinonc.2015.209. PubMed DOI
Moynihan K.D., Opel C.F., Szeto G.L., Tzeng A., Zhu E.F., Engreitz J.M., Williams R.T., Rakhra K., Zhang M.H., Rothschilds A.M., et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 2016;22:1402–1410. doi: 10.1038/nm.4200. PubMed DOI PMC
Aris M., Mordoh J., Barrio M.M. Immunomodulatory monoclonal antibodies in combined immunotherapy trials for cutaneous melanoma. Front. Immunol. 2017;8:1024. doi: 10.3389/fimmu.2017.01024. PubMed DOI PMC
Smahel M., Sima P., Ludvikova V., Marinov I., Pokorna D., Vonka V. Immunisation with modified HPV16 E7 genes against mouse oncogenic TC-1 cell sublines with downregulated expression of MHC class I molecules. Vaccine. 2003;21:1125–1136. doi: 10.1016/S0264-410X(02)00519-4. PubMed DOI
Smahel M., Polakova I., Sobotkova E., Vajdova E. Systemic administration of CpG oligodeoxynucleotide and levamisole as adjuvants for gene-gun-delivered antitumor DNA vaccines. Clin. Dev. Immunol. 2011;2011:176759. doi: 10.1155/2011/176759. PubMed DOI PMC
Kastankova I., Polakova I., Duskova M., Smahel M. Combined cancer immunotherapy against aurora kinase A. J. Immunother. 2016;39:160–170. doi: 10.1097/CJI.0000000000000120. PubMed DOI
Reinis M., Simova J., Bubenik J. Inhibitory effects of unmethylated CpG oligodeoxynucleotides on MHC class I-deficient and -proficient HPV16-associated tumours. Int. J. Cancer. 2006;118:1836–1842. doi: 10.1002/ijc.21546. PubMed DOI
Simova J., Indrova M., Bieblova J., Mikyskova R., Bubenik J., Reinis M. Therapy for minimal residual tumor disease: β-galactosylceramide inhibits the growth of recurrent HPV16-associated neoplasms after surgery and chemotherapy. Int. J. Cancer. 2010;126:2997–3004. doi: 10.1002/ijc.24887. PubMed DOI
Duraiswamy J., Freeman G.J., Coukos G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res. 2013;73:6900–6912. doi: 10.1158/0008-5472.CAN-13-1550. PubMed DOI PMC
Lepique A.P., Daghastanli K.R.P., Cuccovia I.M., Villa L.L. HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin. Cancer Res. 2009;15:4391–4400. doi: 10.1158/1078-0432.CCR-09-0489. PubMed DOI
Miyahira Y., Katae M., Takeda K., Yagita H., Okumura K., Kobayashi S., Takeuchi T., Kamiyama T., Fukuchi Y., Aoki T. Activation of natural killer T cells by α-galactosylceramide impairs DNA vaccine-induced protective immunity against Trypanosoma cruzi. Infect. Immun. 2003;71:1234–1241. doi: 10.1128/IAI.71.3.1234-1241.2003. PubMed DOI PMC
Kim D., Hung C.-F., Wu T.-C., Park Y.-M. DNA vaccine with α-galactosylceramide at prime phase enhances anti-tumor immunity after boosting with antigen-expressing dendritic cells. Vaccine. 2010;28:7297–7305. doi: 10.1016/j.vaccine.2010.08.079. PubMed DOI PMC
Bercovici N., Trautmann A. Revisiting the role of T cells in tumor regression. Oncoimmunology. 2012;1:346–350. doi: 10.4161/onci.18800. PubMed DOI PMC
Van der Sluis T.C., Sluijter M., van Duikeren S., West B.L., Melief C.J.M., Arens R., van der Burg S.H., van Hall T. Therapeutic peptide vaccine-induced CD8 T cells strongly modulate intratumoral macrophages required for tumor regression. Cancer. Immunol. Res. 2015;3:1042–1051. doi: 10.1158/2326-6066.CIR-15-0052. PubMed DOI
Jiang Y., Li Y., Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792. doi: 10.1038/cddis.2015.162. PubMed DOI PMC
Jones B.W., Heldwein K.A., Means T.K., Saukkonen J.J., Fenton M.J. Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages. Ann. Rheum. Dis. 2001;60(Suppl. S3):iii6–iii12. doi: 10.1136/ard.60.90003.iii6. PubMed DOI PMC
Muller E., Christopoulos P.F., Halder S., Lunde A., Beraki K., Speth M., Øynebråten I., Corthay A. Toll-like receptor ligands and interferon-γ synergize for induction of antitumor M1 macrophages. Front. Immunol. 2017;8:1383. doi: 10.3389/fimmu.2017.01383. PubMed DOI PMC
Kratochvill F., Neale G., Haverkamp J.M., de Velde L.-A.V., Smith A.M., Kawauchi D., McEvoy J., Roussel M.F., Dyer M.A., Qualls J.E., et al. TNF counterbalances the emergence of M2 tumor macrophages. Cell Rep. 2015;12:1902–1914. doi: 10.1016/j.celrep.2015.08.033. PubMed DOI PMC
Jin L., Raymond D.P., Crabtree T.D., Pelletier S.J., Houlgrave C.W., Pruett T.L., Sawyer R.G. Enhanced murine macrophage TNF receptor shedding by cytosine-guanine sequences in oligodeoxynucleotides. J. Immunol. 2000;165:5153–5160. doi: 10.4049/jimmunol.165.9.5153. PubMed DOI
Vannini F., Kashfi K., Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334–343. doi: 10.1016/j.redox.2015.08.009. PubMed DOI PMC
Chang C.I., Liao J.C., Kuo L. Arginase modulates nitric oxide production in activated macrophages. Am. J. Physiol. 1998;274:H342–H348. doi: 10.1152/ajpheart.1998.274.1.H342. PubMed DOI
Liscovsky M.V., Ranocchia R.P., Gorlino C.V., Alignani D.O., Morón G., Maletto B.A., Pistoresi-Palencia M.C. Interferon-γ priming is involved in the activation of arginase by oligodeoxinucleotides containing CpG motifs in murine macrophages. Immunology. 2009;128:e159–e169. doi: 10.1111/j.1365-2567.2008.02938.x. PubMed DOI PMC
Calorini L., Bianchini F., Mannini A., Mugnai G., Ruggieri S. Enhancement of nitric oxide release in mouse inflammatory macrophages co-cultivated with tumor cells of a different origin. Clin. Exp. Metastasis. 2005;22:413–419. doi: 10.1007/s10585-005-1263-x. PubMed DOI
Tsubaki T., Kadonosono T., Sakurai S., Shiozawa T., Goto T., Sakai S., Kuchimaru T., Sakamoto T., Watanabe H., Kondoh G., et al. Novel adherent CD11b+ Gr-1+ tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 2018;9:11209–11226. doi: 10.18632/oncotarget.24359. PubMed DOI PMC
Gabrilovich D.I., Nagaraj S. Myeloid-derived-suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009;9:162–174. doi: 10.1038/nri2506. PubMed DOI PMC
Lin K.Y., Guarnieri F.G., Staveley-O’Carroll K.F., Levitsky H.I., August J.T., Pardoll D.M., Wu T.C. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 1996;56:21–26. PubMed
Smahel M., Sima P., Ludvikova V., Vonka V. Modified HPV16 E7 genes as DNA vaccine against E7-containing oncogenic cells. Virology. 2001;281:231–238. doi: 10.1006/viro.2000.0794. PubMed DOI
Smahel M., Polakova I., Duskova M., Ludvikova V., Kastankova I. The effect of helper epitopes and cellular localization of an antigen on the outcome of gene gun DNA immunization. Gene Ther. 2014;21:225–232. doi: 10.1038/gt.2013.81. PubMed DOI
Alexander J., Sidney J., Southwood S., Ruppert J., Oseroff C., Maewal A., Snoke K., Serra H.M., Kubo R.T., Sette A. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity. 1994;1:751–761. doi: 10.1016/S1074-7613(94)80017-0. PubMed DOI
Ishizaka S., Kuriyama S., Tsujii T. In vivo depletion of macrophages by desulfated iota-carrageenan in mice. J. Immunol. Methods. 1989;124:17–24. doi: 10.1016/0022-1759(89)90180-4. PubMed DOI
Corraliza I.M., Campo M.L., Soler G., Modolell M. Determination of arginase activity in macrophages: A micromethod. J. Immunol. Methods. 1994;174:231–235. doi: 10.1016/0022-1759(94)90027-2. PubMed DOI