Experimental Combined Immunotherapy of Tumours with Major Histocompatibility Complex Class I Downregulation

. 2018 Nov 21 ; 19 (11) : . [epub] 20181121

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30469401

Grantová podpora
GA16-04477S Grantová Agentura České Republiky
LQ1604 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015040 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/1.1.00/02.0109 European Regional Development Fund
CZ.1.05/2.1.00/19.0400 European Regional Development Fund
CZ.1.05/2.1.00/19.0395 European Regional Development Fund

Combined immunotherapy constitutes a novel, advanced strategy in cancer treatment. In this study, we investigated immunotherapy in the mouse TC-1/A9 model of human papillomavirus type 16 (HPV16)-associated tumors characterized by major histocompatibility complex class I (MHC-I) downregulation. We found that the induction of a significant anti-tumor response required a combination of DNA vaccination with the administration of an adjuvant, either the synthetic oligodeoxynucleotide ODN1826, carrying immunostimulatory CpG motifs, or α-galactosylceramide (α-GalCer). The most profound anti-tumor effect was achieved when these adjuvants were applied in a mix with a one-week delay relative to DNA immunization. Combined immunotherapy induced tumor infiltration with various subsets of immune cells contributing to tumor regression, of which cluster of differentiation (CD) 8⁺ T cells were the predominant subpopulation. In contrast, the numbers of tumor-associated macrophages (TAMs) were not markedly increased after immunotherapy but in vivo and in vitro results showed that they could be repolarized to an anti-tumor M1 phenotype. A blockade of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) immune checkpoint had a negligible effect on anti-tumor immunity and TAMs repolarization. Our results demonstrate a benefit of combined immunotherapy comprising the activation of both adaptive and innate immunity in the treatment of tumors with reduced MHC-I expression.

Zobrazit více v PubMed

Morrissey K., Yuraszeck T., Li C., Zhang Y., Kasichayanula S. Immunotherapy and novel combinations in oncology: Current landscape, challenges and opportunities. Clin. Transl. Sci. 2016;9:89–104. doi: 10.1111/cts.12391. PubMed DOI PMC

Beyranvand Nejad E., Welters M.J.P., Arens R., van der Burg S.H. The importance of correctly timing cancer immunotherapy. Expert. Opin. Biol. Ther. 2017;17:87–103. doi: 10.1080/14712598.2017.1256388. PubMed DOI

Garcia-Lora A., Algarra I., Garrido F. MHC class I antigens, immune surveillance and tumor immune escape. J. Cell. Physiol. 2003;195:346–355. doi: 10.1002/jcp.10290. PubMed DOI

Garrido F., Aptsiauri N., Doorduijn E.M., Garcia Lora A.M., van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 2016;39:44–51. doi: 10.1016/j.coi.2015.12.007. PubMed DOI PMC

Yang B., Jeang J., Yang A., Wu T.C., Hung C.-F. DNA vaccine for cancer immunotherapy. Hum. Vaccin. Immunother. 2014;10:3153–3164. doi: 10.4161/21645515.2014.980686. PubMed DOI PMC

Vacchelli E., Eggermont A., Sautès-Fridman C., Galon J., Zitvogel L., Kroemer G., Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology. 2013;2:e25238. doi: 10.4161/onci.25238. PubMed DOI PMC

Klinman D.M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 2004;4:249–258. doi: 10.1038/nri1329. PubMed DOI

Chen L.-Y., Lin Y.-L., Chiang B.-L. Levamisole enhances immune response by affecting the activation and maturation of human monocyte-derived dendritic cells. Clin. Exp. Immunol. 2008;151:174–181. doi: 10.1111/j.1365-2249.2007.03541.x. PubMed DOI PMC

Brennan P.J., Brigl M., Brenner M.B. Invariant natural killer T cells: An innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 2013;13:101–117. doi: 10.1038/nri3369. PubMed DOI

Robertson F.C., Berzofsky J.A., Terabe M. NKT cell networks in the regulation of tumor immunity. Front. Immunol. 2014;5:543. doi: 10.3389/fimmu.2014.00543. PubMed DOI PMC

Monney L., Sabatos C.A., Gaglia J.L., Ryu A., Waldner H., Chernova T., Manning S., Greenfield E.A., Coyle A.J., Sobel R.A., et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–541. doi: 10.1038/415536a. PubMed DOI

Anderson A.C. Tim-3: An emerging target in the cancer immunotherapy landscape. Cancer Immunol. Res. 2014;2:393–398. doi: 10.1158/2326-6066.CIR-14-0039. PubMed DOI

Han G., Chen G., Shen B., Li Y. Tim-3: An activation marker and activation limiter of innate immune cells. Front. Immunol. 2013;4:449. doi: 10.3389/fimmu.2013.00449. PubMed DOI PMC

Bingle L., Brown N.J., Lewis C.E. The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. J. Pathol. 2002;196:254–265. doi: 10.1002/path.1027. PubMed DOI

Mills C.D., Ley K. M1 and M2 macrophages: The chicken and the egg of immunity. J. Innate Immun. 2014;6:716–726. doi: 10.1159/000364945. PubMed DOI PMC

Ocana-Guzman R., Torre-Bouscoulet L., Sada-Ovalle I. TIM-3 regulates distinct functions in macrophages. Front. Immunol. 2016;7:229. doi: 10.3389/fimmu.2016.00229. PubMed DOI PMC

Rath M., Muller I., Kropf P., Closs E.I., Munder M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol. 2014;5:532. doi: 10.3389/fimmu.2014.00532. PubMed DOI PMC

Biswas S.K., Sica A., Lewis C.E. Plasticity of macrophage function during tumor progression: Regulation by distinct molecular mechanisms. J. Immunol. 2008;180:2011–2017. doi: 10.4049/jimmunol.180.4.2011. PubMed DOI

Zheng X., Turkowski K., Mora J., Brune B., Seeger W., Weigert A., Savai R. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8:48436–48452. doi: 10.18632/oncotarget.17061. PubMed DOI PMC

Tang X., Mo C., Wang Y., Wei D., Xiao H. Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology. 2013;138:93–104. doi: 10.1111/imm.12023. PubMed DOI PMC

Buhtoiarov I.N., Sondel P.M., Wigginton J.M., Buhtoiarova T.N., Yanke E.M., Mahvi D.A., Rakhmilevich A.L. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology. 2011;132:226–239. doi: 10.1111/j.1365-2567.2010.03357.x. PubMed DOI PMC

Rakhmilevich A.L., Baldeshwiler M.J., Van De Voort T.J., Felder M.A.R., Yang R.K., Kalogriopoulos N.A., Koslov D.S., Van Rooijen N., Sondel P.M. Tumor-associated myeloid cells can be activated in vitro and in vivo to mediate antitumor effects. Cancer Immunol. Immunother. 2012;61:1683–1697. doi: 10.1007/s00262-012-1236-2. PubMed DOI PMC

Buhtoiarov I.N., Lum H., Berke G., Paulnock D.M., Sondel P.M., Rakhmilevich A.L. CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J. Immunol. 2005;174:6013–6022. doi: 10.4049/jimmunol.174.10.6013. PubMed DOI

Buhtoiarov I.N., Sondel P.M., Eickhoff J.C., Rakhmilevich A.L. Macrophages are essential for antitumour effects against weakly immunogenic murine tumours induced by class B CpG-oligodeoxynucleotides. Immunology. 2007;120:412–423. doi: 10.1111/j.1365-2567.2006.02517.x. PubMed DOI PMC

Lum H.D., Buhtoiarov I.N., Schmidt B.E., Berke G., Paulnock D.M., Sondel P.M., Rakhmilevich A.L. Tumoristatic effects of anti-CD40 mAb-activated macrophages involve nitric oxide and tumour necrosis factor-alpha. Immunology. 2006;118:261–270. doi: 10.1111/j.1365-2567.2006.02366.x. PubMed DOI PMC

Jensen J.L., Rakhmilevich A., Heninger E., Broman A.T., Hope C., Phan F., Miyamoto S., Maroulakou I., Callander N., Hematti P., et al. Tumoricidal effects of macrophage-activating immunotherapy in a murine model of relapsed/refractory multiple myeloma. Cancer Immunol. Res. 2015;3:881–890. doi: 10.1158/2326-6066.CIR-15-0025-T. PubMed DOI PMC

Thoreau M., Penny H.L., Tan K., Regnier F., Weiss J.M., Lee B., Johannes L., Dransart E., Le Bon A., Abastado J.-P., et al. Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site. Oncotarget. 2015;6:27832–27846. doi: 10.18632/oncotarget.4940. PubMed DOI PMC

Delgoffe G.M., Woo S.-R., Turnis M.E., Gravano D.M., Guy C., Overacre A.E., Bettini M.L., Vogel P., Finkelstein D., Bonnevier J., et al. Stability and function of regulatory T cells is maintained by a neuropilin-1–semaphorin-4a axis. Nature. 2013;501:252–256. doi: 10.1038/nature12428. PubMed DOI PMC

Mills C.D. Anatomy of a discovery: M1 and M2 macrophages. Front. Immunol. 2015;6:212. doi: 10.3389/fimmu.2015.00212. PubMed DOI PMC

Nakayama M., Akiba H., Takeda K., Kojima Y., Hashiguchi M., Azuma M., Yagita H., Okumura K. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood. 2009;113:3821–3830. doi: 10.1182/blood-2008-10-185884. PubMed DOI

Smyth M.J., Ngiow S.F., Ribas A., Teng M.W.L. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 2015;13:143–158. doi: 10.1038/nrclinonc.2015.209. PubMed DOI

Moynihan K.D., Opel C.F., Szeto G.L., Tzeng A., Zhu E.F., Engreitz J.M., Williams R.T., Rakhra K., Zhang M.H., Rothschilds A.M., et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 2016;22:1402–1410. doi: 10.1038/nm.4200. PubMed DOI PMC

Aris M., Mordoh J., Barrio M.M. Immunomodulatory monoclonal antibodies in combined immunotherapy trials for cutaneous melanoma. Front. Immunol. 2017;8:1024. doi: 10.3389/fimmu.2017.01024. PubMed DOI PMC

Smahel M., Sima P., Ludvikova V., Marinov I., Pokorna D., Vonka V. Immunisation with modified HPV16 E7 genes against mouse oncogenic TC-1 cell sublines with downregulated expression of MHC class I molecules. Vaccine. 2003;21:1125–1136. doi: 10.1016/S0264-410X(02)00519-4. PubMed DOI

Smahel M., Polakova I., Sobotkova E., Vajdova E. Systemic administration of CpG oligodeoxynucleotide and levamisole as adjuvants for gene-gun-delivered antitumor DNA vaccines. Clin. Dev. Immunol. 2011;2011:176759. doi: 10.1155/2011/176759. PubMed DOI PMC

Kastankova I., Polakova I., Duskova M., Smahel M. Combined cancer immunotherapy against aurora kinase A. J. Immunother. 2016;39:160–170. doi: 10.1097/CJI.0000000000000120. PubMed DOI

Reinis M., Simova J., Bubenik J. Inhibitory effects of unmethylated CpG oligodeoxynucleotides on MHC class I-deficient and -proficient HPV16-associated tumours. Int. J. Cancer. 2006;118:1836–1842. doi: 10.1002/ijc.21546. PubMed DOI

Simova J., Indrova M., Bieblova J., Mikyskova R., Bubenik J., Reinis M. Therapy for minimal residual tumor disease: β-galactosylceramide inhibits the growth of recurrent HPV16-associated neoplasms after surgery and chemotherapy. Int. J. Cancer. 2010;126:2997–3004. doi: 10.1002/ijc.24887. PubMed DOI

Duraiswamy J., Freeman G.J., Coukos G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res. 2013;73:6900–6912. doi: 10.1158/0008-5472.CAN-13-1550. PubMed DOI PMC

Lepique A.P., Daghastanli K.R.P., Cuccovia I.M., Villa L.L. HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin. Cancer Res. 2009;15:4391–4400. doi: 10.1158/1078-0432.CCR-09-0489. PubMed DOI

Miyahira Y., Katae M., Takeda K., Yagita H., Okumura K., Kobayashi S., Takeuchi T., Kamiyama T., Fukuchi Y., Aoki T. Activation of natural killer T cells by α-galactosylceramide impairs DNA vaccine-induced protective immunity against Trypanosoma cruzi. Infect. Immun. 2003;71:1234–1241. doi: 10.1128/IAI.71.3.1234-1241.2003. PubMed DOI PMC

Kim D., Hung C.-F., Wu T.-C., Park Y.-M. DNA vaccine with α-galactosylceramide at prime phase enhances anti-tumor immunity after boosting with antigen-expressing dendritic cells. Vaccine. 2010;28:7297–7305. doi: 10.1016/j.vaccine.2010.08.079. PubMed DOI PMC

Bercovici N., Trautmann A. Revisiting the role of T cells in tumor regression. Oncoimmunology. 2012;1:346–350. doi: 10.4161/onci.18800. PubMed DOI PMC

Van der Sluis T.C., Sluijter M., van Duikeren S., West B.L., Melief C.J.M., Arens R., van der Burg S.H., van Hall T. Therapeutic peptide vaccine-induced CD8 T cells strongly modulate intratumoral macrophages required for tumor regression. Cancer. Immunol. Res. 2015;3:1042–1051. doi: 10.1158/2326-6066.CIR-15-0052. PubMed DOI

Jiang Y., Li Y., Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792. doi: 10.1038/cddis.2015.162. PubMed DOI PMC

Jones B.W., Heldwein K.A., Means T.K., Saukkonen J.J., Fenton M.J. Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages. Ann. Rheum. Dis. 2001;60(Suppl. S3):iii6–iii12. doi: 10.1136/ard.60.90003.iii6. PubMed DOI PMC

Muller E., Christopoulos P.F., Halder S., Lunde A., Beraki K., Speth M., Øynebråten I., Corthay A. Toll-like receptor ligands and interferon-γ synergize for induction of antitumor M1 macrophages. Front. Immunol. 2017;8:1383. doi: 10.3389/fimmu.2017.01383. PubMed DOI PMC

Kratochvill F., Neale G., Haverkamp J.M., de Velde L.-A.V., Smith A.M., Kawauchi D., McEvoy J., Roussel M.F., Dyer M.A., Qualls J.E., et al. TNF counterbalances the emergence of M2 tumor macrophages. Cell Rep. 2015;12:1902–1914. doi: 10.1016/j.celrep.2015.08.033. PubMed DOI PMC

Jin L., Raymond D.P., Crabtree T.D., Pelletier S.J., Houlgrave C.W., Pruett T.L., Sawyer R.G. Enhanced murine macrophage TNF receptor shedding by cytosine-guanine sequences in oligodeoxynucleotides. J. Immunol. 2000;165:5153–5160. doi: 10.4049/jimmunol.165.9.5153. PubMed DOI

Vannini F., Kashfi K., Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334–343. doi: 10.1016/j.redox.2015.08.009. PubMed DOI PMC

Chang C.I., Liao J.C., Kuo L. Arginase modulates nitric oxide production in activated macrophages. Am. J. Physiol. 1998;274:H342–H348. doi: 10.1152/ajpheart.1998.274.1.H342. PubMed DOI

Liscovsky M.V., Ranocchia R.P., Gorlino C.V., Alignani D.O., Morón G., Maletto B.A., Pistoresi-Palencia M.C. Interferon-γ priming is involved in the activation of arginase by oligodeoxinucleotides containing CpG motifs in murine macrophages. Immunology. 2009;128:e159–e169. doi: 10.1111/j.1365-2567.2008.02938.x. PubMed DOI PMC

Calorini L., Bianchini F., Mannini A., Mugnai G., Ruggieri S. Enhancement of nitric oxide release in mouse inflammatory macrophages co-cultivated with tumor cells of a different origin. Clin. Exp. Metastasis. 2005;22:413–419. doi: 10.1007/s10585-005-1263-x. PubMed DOI

Tsubaki T., Kadonosono T., Sakurai S., Shiozawa T., Goto T., Sakai S., Kuchimaru T., Sakamoto T., Watanabe H., Kondoh G., et al. Novel adherent CD11b+ Gr-1+ tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 2018;9:11209–11226. doi: 10.18632/oncotarget.24359. PubMed DOI PMC

Gabrilovich D.I., Nagaraj S. Myeloid-derived-suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009;9:162–174. doi: 10.1038/nri2506. PubMed DOI PMC

Lin K.Y., Guarnieri F.G., Staveley-O’Carroll K.F., Levitsky H.I., August J.T., Pardoll D.M., Wu T.C. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 1996;56:21–26. PubMed

Smahel M., Sima P., Ludvikova V., Vonka V. Modified HPV16 E7 genes as DNA vaccine against E7-containing oncogenic cells. Virology. 2001;281:231–238. doi: 10.1006/viro.2000.0794. PubMed DOI

Smahel M., Polakova I., Duskova M., Ludvikova V., Kastankova I. The effect of helper epitopes and cellular localization of an antigen on the outcome of gene gun DNA immunization. Gene Ther. 2014;21:225–232. doi: 10.1038/gt.2013.81. PubMed DOI

Alexander J., Sidney J., Southwood S., Ruppert J., Oseroff C., Maewal A., Snoke K., Serra H.M., Kubo R.T., Sette A. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity. 1994;1:751–761. doi: 10.1016/S1074-7613(94)80017-0. PubMed DOI

Ishizaka S., Kuriyama S., Tsujii T. In vivo depletion of macrophages by desulfated iota-carrageenan in mice. J. Immunol. Methods. 1989;124:17–24. doi: 10.1016/0022-1759(89)90180-4. PubMed DOI

Corraliza I.M., Campo M.L., Soler G., Modolell M. Determination of arginase activity in macrophages: A micromethod. J. Immunol. Methods. 1994;174:231–235. doi: 10.1016/0022-1759(94)90027-2. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace