Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
9045811
PubMed Central
PMC178864
DOI
10.1128/jb.179.5.1541-1549.1997
Knihovny.cz E-resources
- MeSH
- Sodium Azide MeSH
- Azides pharmacology MeSH
- Cycloheximide pharmacology MeSH
- Cytoplasm metabolism MeSH
- Cytoskeletal Proteins * MeSH
- Endocytosis * MeSH
- Fungal Proteins metabolism MeSH
- Galactose metabolism MeSH
- Glucose pharmacology MeSH
- Protein Synthesis Inhibitors pharmacology MeSH
- Monosaccharide Transport Proteins metabolism MeSH
- Saccharomyces cerevisiae Proteins * MeSH
- Saccharomyces cerevisiae metabolism MeSH
- Temperature MeSH
- Ubiquitins metabolism MeSH
- Vacuoles metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Sodium Azide MeSH
- Azides MeSH
- Cycloheximide MeSH
- Cytoskeletal Proteins * MeSH
- END3 protein, S cerevisiae MeSH Browser
- Fungal Proteins MeSH
- Galactose MeSH
- Glucose MeSH
- Protein Synthesis Inhibitors MeSH
- Monosaccharide Transport Proteins MeSH
- Saccharomyces cerevisiae Proteins * MeSH
- Ubiquitins MeSH
When Saccharomyces cerevisiae cells growing on galactose are transferred onto glucose medium containing cycloheximide, an inhibitor of protein synthesis, a rapid reduction of Gal2p-mediated galactose uptake is observed. We show that glucose-induced inactivation of Gal2p is due to its degradation. Stabilization of Gal2p in pra1 mutant cells devoid of vacuolar proteinase activity is observed. Subcellular fractionation and indirect immunofluorescence showed that the Gal2 transporter accumulates in the vacuole of the mutant cells, directly demonstrating that its degradation requires vacuolar proteolysis. In contrast, Gal2p degradation is proteasome independent since its half-life is unaffected in pre1-1 pre2-2, cim3-1, and cim5-1 mutants defective in several subunits of the protease complex. In addition, vacuolar delivery of Gal2p was shown to be blocked in conditional end3 and end4 mutants at the nonpermissive temperature, indicating that delivery of Gal2p to the vacuole occurs via the endocytic pathway. Taken together, the results presented here demonstrate that glucose-induced proteolysis of Gal2p is dependent on endocytosis and vacuolar proteolysis and is independent of the functional proteasome. Moreover, we show that Gal2p is ubiquitinated under conditions of glucose-induced inactivation.
See more in PubMed
Biochem Biophys Res Commun. 1994 Apr 15;200(1):45-51 PubMed
Mol Biol Cell. 1993 May;4(5):511-21 PubMed
EMBO J. 1991 Mar;10(3):555-62 PubMed
J Biol Chem. 1994 Apr 1;269(13):9833-41 PubMed
Nature. 1995 Jan 5;373(6509):78-81 PubMed
Science. 1994 Sep 2;265(5177):1454-8 PubMed
Curr Opin Cell Biol. 1993 Dec;5(6):990-6 PubMed
Cell. 1994 Oct 21;79(2):233-44 PubMed
Methods Enzymol. 1991;194:565-602 PubMed
FEBS Lett. 1993 Oct 25;333(1-2):165-8 PubMed
EMBO J. 1994 Jul 15;13(14):3261-71 PubMed
EMBO J. 1994 Dec 15;13(24):6021-30 PubMed
Biochem Biophys Res Commun. 1994 Jun 15;201(2):769-75 PubMed
J Bacteriol. 1995 Oct;177(19):5622-7 PubMed
FEBS Lett. 1996 Jan 8;378(2):177-81 PubMed
FEBS Lett. 1986 Oct 27;207(2):258-61 PubMed
Gene. 1981 Oct;15(1):81-93 PubMed
J Biol Chem. 1989 Sep 25;264(27):16037-45 PubMed
EMBO J. 1996 May 1;15(9):2069-76 PubMed
Mol Biol Cell. 1994 Nov;5(11):1185-98 PubMed
Nature. 1993 Nov 25;366(6453):358-62 PubMed
EMBO J. 1995 Jan 16;14(2):303-12 PubMed
J Biol Chem. 1995 Feb 10;270(6):2423-6 PubMed
J Biol Chem. 1992 Apr 25;267(12):8021-9 PubMed
J Biol Chem. 1991 Nov 5;266(31):21150-7 PubMed
Gene. 1989 Dec 28;85(2):313-9 PubMed
Trends Cell Biol. 1993 Aug;3(8):273-7 PubMed
Curr Opin Cell Biol. 1995 Apr;7(2):215-23 PubMed
J Bacteriol. 1986 Apr;166(1):313-8 PubMed
J Biol Chem. 1991 May 5;266(13):7963-6 PubMed
J Bacteriol. 1989 Aug;171(8):4486-93 PubMed
Trends Biochem Sci. 1996 Mar;21(3):96-102 PubMed
Mol Cell Biol. 1991 Feb;11(2):1114-24 PubMed
J Bacteriol. 1996 Apr;178(8):2245-54 PubMed
J Cell Biol. 1993 Jul;122(1):53-65 PubMed
J Biol Chem. 1995 Nov 3;270(44):26446-50 PubMed
Mol Cell Biol. 1995 Feb;15(2):731-41 PubMed
J Bacteriol. 1993 Dec;175(23):7689-96 PubMed
Nature. 1991 Mar 28;350(6316):313-8 PubMed
J Biol Chem. 1996 Apr 26;271(17):9934-41 PubMed
J Gen Microbiol. 1986 Feb;132(2):379-85 PubMed
Mol Cell Biol. 1995 Nov;15(11):5879-87 PubMed
J Biol Chem. 1995 Sep 1;270(35):20742-7 PubMed
Cell. 1994 Jul 1;77(7):1037-50 PubMed
Cell. 1996 Jan 26;84(2):277-87 PubMed
J Bacteriol. 1989 Jun;171(6):3539-44 PubMed
J Bacteriol. 1991 Mar;173(5):1817-20 PubMed
FEBS Lett. 1994 Oct 31;354(1):50-2 PubMed
FEBS Lett. 1994 Aug 1;349(2):270-4 PubMed
J Cell Biol. 1993 Jan;120(1):55-65 PubMed
Mol Biol Rep. 1995;21(1):3-10 PubMed
J Biol Chem. 1994 Jan 21;269(3):2245-51 PubMed
J Biol Chem. 1977 Sep 25;252(18):6399-402 PubMed
Science. 1996 Sep 20;273(5282):1725-8 PubMed
J Biol Chem. 1995 Feb 10;270(6):2525-34 PubMed
Crit Rev Biochem Mol Biol. 1993;28(4):259-308 PubMed
J Biol Chem. 1993 Mar 5;268(7):5115-20 PubMed
Multilevel regulation of an α-arrestin by glucose depletion controls hexose transporter endocytosis
Regulations of sugar transporters: insights from yeast
Immunity to killer toxin K1 is connected with the Golgi-to-vacuole protein degradation pathway