On mechanism of intermediate-sized circular DNA compaction mediated by spermine: contribution of fluorescence lifetime correlation spectroscopy
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy MeSH
- fluorescenční spektrometrie MeSH
- konformace nukleové kyseliny * MeSH
- kruhová DNA chemie MeSH
- molekulární modely MeSH
- organické látky chemie MeSH
- plazmidy chemie MeSH
- radiační rozptyl MeSH
- spermin chemie MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kruhová DNA MeSH
- organické látky MeSH
- PicoGreen MeSH Prohlížeč
- spermin MeSH
The compaction of DNA plays a role in the nuclei of several types of cells and becomes important in the non-viral gene therapy. Thus, it is in the scope of research interest. It was shown, that spermine-induced compaction of large DNA molecules occurs in a discrete "all-or-non" regime, where the coexistence of free and folded DNA molecules was observed. In the case of intermediate-sized DNA molecules (approximately 10 kbp), so far, it was stated that the mechanism of folding is continuous. Here, we show, that neither a standard benchmark technique-dynamic light scattering, nor a single molecule technique such as fluorescence correlation spectroscopy, can decide what kind of mechanism is undertaken in the compaction process. Besides, we introduce an application of a new approach-fluorescence lifetime correlation spectroscopy. The method takes an advantage of a subtle lifetime change of an intercalating dye PicoGreen during the titration with spermine and based on that, it reveals the discrete mechanism of the process. Furthermore, we show that it allows for observation of the equilibrium state transition dynamics.
Zobrazit více v PubMed
Biophys J. 2008 Feb 1;94(3):L17-9 PubMed
J Fluoresc. 2007 Jan;17(1):43-8 PubMed
Curr Opin Struct Biol. 2002 Oct;12(5):634-41 PubMed
Pharm Res. 2006 Jul;23(7):1564-73 PubMed
Phys Rev Lett. 1996 Apr 15;76(16):3029-3031 PubMed
Biol Chem. 2002 Feb;383(2):331-5 PubMed
Eur J Biochem. 2003 Jul;270(14):3101-6 PubMed
Langmuir. 2006 Nov 7;22(23):9580-5 PubMed
J Am Chem Soc. 2003 Apr 16;125(15):4414-5 PubMed
Biophys J. 1997 Apr;72(4):1878-86 PubMed
Biophys Chem. 2002 Sep 3;99(1):43-53 PubMed
Chemphyschem. 2005 Jan;6(1):164-70 PubMed
Photochem Photobiol Sci. 2007 Jan;6(1):13-8 PubMed
Eur J Biochem. 2001 May;268(9):2593-9 PubMed
J Fluoresc. 2005 Mar;15(2):179-83 PubMed
Biophys Chem. 2002 Feb 19;95(2):135-44 PubMed
Biophys J. 2002 Jun;82(6):2860-75 PubMed
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041919 PubMed
J Am Chem Soc. 2005 Aug 10;127(31):10910-6 PubMed
Chemotherapy. 2006;52(4):196-9 PubMed
J Am Chem Soc. 2002 Nov 13;124(45):13454-62 PubMed
FEBS Lett. 2005 Jun 6;579(14):3095-9 PubMed
Curr Opin Struct Biol. 1996 Jun;6(3):334-41 PubMed
Fluorescence Lifetime Correlation Spectroscopy (FLCS): concepts, applications and outlook