Interaction of Newly Platinum(II) with Tris(2-carboxyethyl)phosphine Complex with DNA and Model Lipid Membrane
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28741121
PubMed Central
PMC5613069
DOI
10.1007/s00232-017-9972-z
PII: 10.1007/s00232-017-9972-z
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, DPPC bilayer, DSC, IR spectroscopy, Platinum(II) complex, TCSPC-FCS,
- MeSH
- chemické modely * MeSH
- DNA chemie MeSH
- fluidita membrány MeSH
- fluorescenční spektrometrie MeSH
- fosfiny chemie MeSH
- komplexní sloučeniny chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- platina chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- fosfiny MeSH
- komplexní sloučeniny MeSH
- lipidové dvojvrstvy MeSH
- platina MeSH
Structural properties of plasmid DNA and model lipid membrane treated with newly synthesized platinum(II) complex cis-[PtCl2{P(CH2CH2COOH)3}2] (cis-DTCEP for short) were studied and compared with effects of anticancer drug cisplatin, cis-[Pt(NH3)2Cl2] (cis-DDP for short). Time Correlated Single Photon Counting Fluorescence Correlation Spectroscopy (TCSPC-FCS) was employed to study interactions between those platinum complexes and DNA. The TCSPC-FCS results suggest that bonding of cis-DTCEP derivative to DNA leads to plasmid strain realignment towards much more compact structure than in the case of cis-DDP. Application of both differential scanning calorimetry and infrared spectroscopy to platinum complexes/DPPC showed that cis-DTCEP slightly increases the phospholipid's main phase transition temperature resulting in decreased fluidity of the model membrane. The newly investigated compound-similarly to cis-DDP-interacts mainly with the DPPC head group however not only by the means of electrostatic forces: this compound probably enters into hydrophilic region of the lipid bilayer and forms hydrogen bonds with COO groups of glycerol and PO2- group of DPPC.
Zobrazit více v PubMed
Adjimatera N, Kral T, Hof M, Blagbrough IS. Lipopolyamine-mediated single nanoparticle formation of calf thymus DNA analyzed by fluorescence correlation spectroscopy. Pharm Res. 2006;23:1564–11573. doi: 10.1007/s11095-006-0278-6. PubMed DOI
Alam N, Khare V, Dubey R, Saneja A, Kushwaha M, Singh G, Sharma N, Chandan B, Gupta PN. Biodegradable polymeric system for cisplatin delivery: development, in vitro characterization and investigation of toxicity profile. Mat Sci Eng C-Bio S. 2014;38:85–93. doi: 10.1016/j.msec.2014.01.043. PubMed DOI
Alama A, Tasso B, Novelli F, Sparatore F. Organometallic compounds in oncology: implications of novel organotins as antitumor agents. Drug Discov Today. 2009;14:500–508. doi: 10.1016/j.drudis.2009.02.002. PubMed DOI
Alves AC, Ribeiro D, Nunes C, Reis S. Biophysics in cancer: the relevance of drug- membrane interaction studies. BBA. 2016;1858:2231–2244. doi: 10.1016/j.bbamem.2016.06.025. PubMed DOI
Binder H. The molecular architecture of lipid membranes—new insights from hydration—tuning infrared linear dichroism spectroscopy. Appl Spectrosc Rev. 2003;38:15–63. doi: 10.1081/ASR-120017480. DOI
Bourgaux C, Couvreur P. Interactions of anticancer drugs with biomembranes: what can we learn from model membranes? J Control Release. 2014;190:127–138. doi: 10.1016/j.jconrel.2014.05.012. PubMed DOI
Brabec V, Kasparkova J. Platinum-based drugs. In: Gielen M, Tiekink ERT, editors. Metallotherapeutic drugs and metal-based diagnostic agents. Chichester: Wiley; 2005. pp. 489–506.
Cieślik-Boczula K, Maniewska J, Grynkiewicz G, Szeja W, Koll K, Hendrich AB. Interaction of quercetin, genistein and its derivatives with lipid bilayers—An ATR IR-spectroscopic study. Vib Spectroscop. 2012;62:64–69. doi: 10.1016/j.vibspec.2012.05.010. DOI
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Europ J Pharm. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC
Dragan AI, Casas-Finet JR, Bishop ES, Strouse RJ, Schenerman MA, Geddes CD. Characterization of PicoGreen interaction with dsDNA and the origin of its fluorescence enhancement upon binding. Biophys J Biophys Soc. 2010;99:3010–3019. doi: 10.1016/j.bpj.2010.09.012. PubMed DOI PMC
Florea A-M, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 2011;3:1351–1371. doi: 10.3390/cancers3011351. PubMed DOI PMC
Henklewska M, Pawlak A, Pruchnik H, Obmińska-Mrukowicz B. Complex of platinum(II) with tris(2-carboxyethyl)phosphine induces apoptosis in canine lymphoma/leukemia cell lines. Anticancer Res. 2017;37:539–546. doi: 10.21873/anticanres.11346. PubMed DOI
Hou X-M, Zhang X-H, Wei K-J, Ji C, Dou S-X, Wang W-C. Cisplatin induces loop structures and condensation of single DNA molecules. Nucleic Acids Res. 2009;37:1400–1410. doi: 10.1093/nar/gkn933. PubMed DOI PMC
Humpolícková J, Stepánek M, Kral T, Benda A, Procházka K, Hof M. On mechanism of intermediate-sized circular DNA compaction mediated by spermine: contribution of fluorescence lifetime correlation spectroscopy. J Fluoresc. 2008;18:679–684. doi: 10.1007/s10895-008-0345-y. PubMed DOI
Jensen M, Nerdal W. Anticancer cisplatin interactions with bilayers of total lipid extract from pig brain: a 13C, 31P and 15N solid-state NMR study. Eur J Pharm Sci. 2008;34:140–148. doi: 10.1016/j.ejps.2008.03.002. PubMed DOI
Kral T, Widerak K, Langner M, Hof M. Propidium iodide and PicoGreen as dyes for the DNA fluorescence correlation spectroscopy measurements. J Fluoresc. 2005;15:179–183. doi: 10.1007/s10895-005-2526-2. PubMed DOI
Lee DC, Chapman D. Infrared spectroscopic studies of biomembranes and model membranes. Biosci Rep. 1986;6(3):1–22. doi: 10.1007/BF01115153. PubMed DOI
Lewis RNAH, McElhaney RN, Pohle W, Mantsch HH. Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophys J. 1994;64:2367–2375. doi: 10.1016/S0006-3495(94)80723-4. PubMed DOI PMC
Nierzwicki L, Wieczor M, Censi V, Baginski M, Calucci L, Samaritani S, Czub J, Forte C. Interaction of cisplatin and two potential antitumoral platinum(II) complexes with a model lipid membrane: a combined NMR and MD study. Phys Chem Chem Phys. 2015;17:1458–1468. doi: 10.1039/C4CP04360J. PubMed DOI
Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev. 2013;65:1667–1685. doi: 10.1016/j.addr.2013.09.014. PubMed DOI PMC
Onoa GB, Cervantes G, Moreno V, Prieto MJ. Study of the interaction of DNA with cisplatin and other Pd(II) and Pt(II) complexes by atomic force microscopy. Nucleic Acids Res. 1998;26:1473–1480. doi: 10.1093/nar/26.6.1473. PubMed DOI PMC
Peleg-Shulman T, Gibson D, Cohen R, Abra R, Barenholz Y. Characterization of sterically stabilized cisplatin liposomes by nuclear magnetic resonance. BBA. 2001;1510:278–291. doi: 10.1016/S0005-2736(00)00359-X. PubMed DOI
Pentak D. Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC. Thermochim Acta. 2014;584:36–44. doi: 10.1016/j.tca.2014.03.020. DOI
Pivonková H, Pecinka P, Cesková P, Fojta M. DNA modification with cisplatin affects sequence-specific DNA binding of p53 and p73 proteins in a target site-dependent manner. FEBS J. 2006;273:4693–4706. doi: 10.1111/j.1742-4658.2006.05472.x. PubMed DOI
Pizarro AM, Sadler PJ. Unusual DNA binding modes for metal anticancer complexes. Biochimie. 2009;91:1198–1211. doi: 10.1016/j.biochi.2009.03.017. PubMed DOI PMC
Pruchnik H. Influence of cytotoxic butyltin complexes with 2-sulfobenzoic acid on the thermotropic phase behavior of lipid model membranes. J Therm Anal Calorim. 2017;127(1):507–514. doi: 10.1007/s10973-016-5489-4. DOI
Pruchnik H, Kral T, Hof M. Interaction of new butyltin citrate complex with lipid model membrane and DNA. J Therm Anal Calorim. 2014;118(2):967–975. doi: 10.1007/s10973-014-3805-4. DOI
Pruchnik H, Lis T, Pruchnik FP. Platinum(II) complexes with tris(2-carboxyethyl)phosphine, X-ray structure and reactions with polar solvents and glutathione. J Organomet Chem. 2015;791:124–129. doi: 10.1016/j.jorganchem.2015.05.050. DOI
Pruchnik H, Kral T, Poradowski D, Pawlak A, Drynda A, Obmińska-Mrukowicz B, Hof M. New cytotoxic butyltin complexes with 2-sulfobenzoic acid: molecular interaction with lipid bilayers and DNA as well as in vitro anticancer activity. Chem Biol Interact. 2016;243:107–118. doi: 10.1016/j.cbi.2015.11.007. PubMed DOI
Speelmans G, Sips WHHM, Grisel RJH, Staffhorst RWHM, Fichtinger-Schepman AMJ, Reedijk J, de Kruijff B. The interaction of the anti-cancer drug cisplatin with phospholipids is specific for negatively charged phospholipids and takes place at low chloride ion concentration. BBA. 1996;1283:60–66. doi: 10.1016/0005-2736(96)00080-6. PubMed DOI
Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010;39:8113–8127. doi: 10.1039/c0dt00292e. PubMed DOI
Wiglusz K, Trynda-Lemiesz L. Platinum drugs binding to human serum albumin: effect of non-steroidal anti-inflammatory drugs. J Photoch Photobio A. 2014;289:1–6. doi: 10.1016/j.jphotochem.2014.05.013. DOI
Wu FG, Jia Q, Wu R-G, Yu Z-W. Regional cooperativity in the phase transitions of dipalmitoylphosphatidylcholine bilayers: the lipid tail triggers the isothermal crystallization. Process J Phys Chem B. 2011;115:8559–8568. doi: 10.1021/jp200733y. PubMed DOI