"Head-to-Toe" Lipid Properties Govern the Binding and Cargo Transfer of High-Density Lipoprotein

. 2024 Dec 06 ; 14 (12) : . [epub] 20241206

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39728711

Grantová podpora
P 33481 Austrian Science Fund FWF - Austria
No 101017902 European Union's Horizon 2020 research and innovation programme
P33481-B, P 29110 Austrian Science Fund Projects
2020-02682 Swedish Research Council Starting Grant

The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.e., binding and/or cargo transfer). The analysis of interactions with HDL particles and various lipid phases revealed that both fully fluid and some gel-phase lipids preferentially interact with HDL particles, although differences were observed in protein binding and cargo exchange. Both interactions were reduced with ordered lipid mixtures containing cholesterol. To investigate the mechanism, membranes were prepared from single-lipid components, enabling step-by-step modification of the lipid building blocks. On a biophysical level, the different mixtures displayed varying stiffness, fluidity, and hydrogen bond network changes. Increased glycerol mobility and a strengthened hydrogen bond network enhanced anchoring interactions, while fluid membranes with a reduced water network facilitated cargo transfer. In summary, the data indicate that different lipid classes are involved depending on the type of interaction, whether anchoring or cargo transfer.

Zobrazit více v PubMed

Heberle F.A., Feigenson G.W. Phase Separation in Lipid Membranes. Cold Spring Harb. Perspect. Biol. 2011;3:a004630. doi: 10.1101/cshperspect.a004630. PubMed DOI PMC

Janiak M.J., Small D.M., Shipley G.G. Temperature and Compositional Dependence of the Structure of Hydrated Dimyristoyl Lecithin. J. Biol. Chem. 1979;254:6068–6078. doi: 10.1016/S0021-9258(18)50520-2. PubMed DOI

Korlach J., Schwille P., Webb W.W., Feigenson G.W. Characterization of Lipid Bilayer Phases by Confocal Microscopy and Fluorescence Correlation Spectroscopy. Proc. Natl. Acad. Sci. USA. 1999;96:8461–8466. doi: 10.1073/pnas.96.15.8461. PubMed DOI PMC

Ulrich A.S., Sami M., Watts A. Hydration of DOPC Bilayers by Differential Scanning Calorimetry. Biochim. Biophys. Acta (BBA)-Biomembr. 1994;1191:225–230. doi: 10.1016/0005-2736(94)90253-4. PubMed DOI

Hjort Ipsen J., Karlström G., Mourtisen O.G., Wennerström H., Zuckermann M.J. Phase Equilibria in the Phosphatidylcholine-Cholesterol System. Biochim. Biophys. Acta (BBA)-Biomembr. 1987;905:162–172. doi: 10.1016/0005-2736(87)90020-4. PubMed DOI

Sezgin E., Levental I., Grzybek M., Schwarzmann G., Mueller V., Honigmann A., Belov V.N., Eggeling C., Coskun Ü., Simons K., et al. Partitioning, Diffusion, and Ligand Binding of Raft Lipid Analogs in Model and Cellular Plasma Membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2012;1818:1777–1784. doi: 10.1016/j.bbamem.2012.03.007. PubMed DOI

Kaiser H.-J., Lingwood D., Levental I., Sampaio J.L., Kalvodova L., Rajendran L., Simons K. Order of Lipid Phases in Model and Plasma Membranes. Proc. Natl. Acad. Sci. USA. 2009;106:16645–16650. doi: 10.1073/pnas.0908987106. PubMed DOI PMC

Schachter I., Paananen R.O., Fábián B., Jurkiewicz P., Javanainen M. The Two Faces of the Liquid Ordered Phase. J. Phys. Chem. Lett. 2022;13:1307–1313. doi: 10.1021/acs.jpclett.1c03712. PubMed DOI PMC

Sych T., Gurdap C.O., Wedemann L., Sezgin E. How Does Liquid-Liquid Phase Separation in Model Membranes Reflect Cell Membrane Heterogeneity? Membranes. 2021;11:323. doi: 10.3390/membranes11050323. PubMed DOI PMC

Shimshick E.J., McConnell H.M. Lateral Phase Separation in Phospholipid Membranes. Biochemistry. 1973;12:2351–2360. doi: 10.1021/bi00736a026. PubMed DOI

Semrau S., Idema T., Schmidt T., Storm C. Membrane-Mediated Interactions Measured Using Membrane Domains. Biophys. J. 2009;96:4906–4915. doi: 10.1016/j.bpj.2009.03.050. PubMed DOI PMC

Dean J.M., Lodhi I.J. Structural and Functional Roles of Ether Lipids. Protein Cell. 2018;9:196–206. doi: 10.1007/s13238-017-0423-5. PubMed DOI PMC

Braverman N.E., Moser A.B. Functions of Plasmalogen Lipids in Health and Disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012;1822:1442–1452. doi: 10.1016/j.bbadis.2012.05.008. PubMed DOI

Pike L.J., Han X., Chung K.-N., Gross R.W. Lipid Rafts Are Enriched in Arachidonic Acid and Plasmenylethanolamine and Their Composition Is Independent of Caveolin-1 Expression: A Quantitative Electrospray Ionization/Mass Spectrometric Analysis. Biochemistry. 2002;41:2075–2088. doi: 10.1021/bi0156557. PubMed DOI

Rodemer C., Thai T.-P., Brugger B., Kaercher T., Werner H., Nave K.-A., Wieland F., Gorgas K., Just W.W. Inactivation of Ether Lipid Biosynthesis Causes Male Infertility, Defects in Eye Development and Optic Nerve Hypoplasia in Mice. Hum. Mol. Genet. 2003;12:1881–1895. doi: 10.1093/hmg/ddg191. PubMed DOI

Mandel H., Sharf R., Berant M., Wanders R.J.A., Vreken P., Aviram M. Plasmalogen Phospholipids Are Involved in HDL-Mediated Cholesterol Efflux: Insights from Investigations with Plasmalogen-Deficient Cells. Biochem. Biophys. Res. Commun. 1998;250:369–373. doi: 10.1006/bbrc.1998.9321. PubMed DOI

Vance J.E. Lipoproteins Secreted by Cultured Rat Hepatocytes Contain the Antioxidant 1-Alk-1-Enyl-2-Acylglycerophosphoethanolamine. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1990;1045:128–134. doi: 10.1016/0005-2760(90)90141-J. PubMed DOI

an Meer G., Voelker D.R., Feigenson W.G. Membrane Lipids: Where They Are and How They Behave. Nat. Rev. Mol. Cell Biol. 2009;9:112–124. doi: 10.1038/nrm2330. PubMed DOI PMC

Raghava S., Giorda K.M., Romano F.B., Heuck A.P., Hebert D.N. The SV40 Late Protein VP4 Is a Viroporin That Forms Pores to Disrupt Membranes for Viral Release. PLoS Pathog. 2011;7:e1002116. doi: 10.1371/journal.ppat.1002116. PubMed DOI PMC

Diomede L., Bizzi A., Magistrelli A., Modest E.J., Salmona M., Noseda A. Role of Cell Cholesterol in Modulating Antineoplastic Ether Lipid Uptake, Membrane Effects and Cytotoxicity. Int. J. Cancer. 1990;46:341–346. doi: 10.1002/ijc.2910460234. PubMed DOI

Corradi V., Sejdiu B.I., Mesa-Galloso H., Abdizadeh H., Noskov S.Y., Marrink S.J., Tieleman D.P. Emerging Diversity in Lipid–Protein Interactions. Chem. Rev. 2019;119:5775–5848. doi: 10.1021/acs.chemrev.8b00451. PubMed DOI PMC

Escribá P.V. Membrane-Lipid Therapy: A New Approach in Molecular Medicine. Trends Mol. Med. 2006;12:34–43. doi: 10.1016/j.molmed.2005.11.004. PubMed DOI

Escribá P.V., González-Ros J.M., Goñi F.M., Kinnunen P.K.J., Vigh L., Sánchez-Magraner L., Fernández A.M., Busquets X., Horváth I., Barceló-Coblijn G. Membranes: A Meeting Point for Lipids, Proteins and Therapies. J. Cell. Mol. Med. 2008;12:829–875. doi: 10.1111/j.1582-4934.2008.00281.x. PubMed DOI PMC

Karathanou K., Bondar A.-N. Dynamic Water Hydrogen-Bond Networks at the Interface of a Lipid Membrane Containing Palmitoyl-Oleoyl Phosphatidylglycerol. J. Membr. Biol. 2018;251:461–473. doi: 10.1007/s00232-018-0023-1. PubMed DOI

Murzyn K., Zhao W., Karttunen M., Kurdziel M., Róg T. Dynamics of Water at Membrane Surfaces: Effect of Headgroup Structure. Biointerphases. 2006;1:98–105. doi: 10.1116/1.2354573. PubMed DOI

Berkowitz M.L., Vácha R. Aqueous Solutions at the Interface with Phospholipid Bilayers. Acc. Chem. Res. 2012;45:74–82. doi: 10.1021/ar200079x. PubMed DOI

Nagao M., Kelley E.G., Ashkar R., Bradbury R., Butler P.D. Probing Elastic and Viscous Properties of Phospholipid Bilayers Using Neutron Spin Echo Spectroscopy. J. Phys. Chem. Lett. 2017;8:4679–4684. doi: 10.1021/acs.jpclett.7b01830. PubMed DOI

Orlikowska-Rzeznik H., Krok E., Chattopadhyay M., Lester A., Piatkowski L. Laurdan Discerns Lipid Membrane Hydration and Cholesterol Content. J. Phys. Chem. B. 2023;127:3382–3391. doi: 10.1021/acs.jpcb.3c00654. PubMed DOI PMC

Doole F.T., Kumarage T., Ashkar R., Brown M.F. Cholesterol Stiffening of Lipid Membranes. J. Membr. Biol. 2022;255:385–405. doi: 10.1007/s00232-022-00263-9. PubMed DOI PMC

Harris F.M., Best K.B., Bell J.D. Use of Laurdan Fluorescence Intensity and Polarization to Distinguish between Changes in Membrane Fluidity and Phospholipid Order. Biochim. Biophys. Acta (BBA)-Biomembr. 2002;1565:123–128. doi: 10.1016/S0005-2736(02)00514-X. PubMed DOI

Scollo F., Evci H., Amaro M., Jurkiewicz P., Sykora J., Hof M. What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on? Front. Chem. 2021;9:738350. doi: 10.3389/fchem.2021.738350. PubMed DOI PMC

Santos N.C., Prieto M., Castanho M.A.R.B. Quantifying Molecular Partition into Model Systems of Biomembranes: An Emphasis on Optical Spectroscopic Methods. Biochim. Biophys. Acta (BBA)-Biomembr. 2003;1612:123–135. doi: 10.1016/S0005-2736(03)00112-3. PubMed DOI

Rusu L., Gambhir A., McLaughlin S., Rädler J. Fluorescence Correlation Spectroscopy Studies of Peptide and Protein Binding to Phospholipid Vesicles. Biophys. J. 2004;87:1044–1053. doi: 10.1529/biophysj.104.039958. PubMed DOI PMC

Baumgart T., Hunt G., Farkas E.R., Webb W.W., Feigenson G.W. Fluorescence Probe Partitioning between Lo/Ld Phases in Lipid Membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2007;1768:2182–2194. doi: 10.1016/j.bbamem.2007.05.012. PubMed DOI PMC

Li Z., Mintzer E., Bittman R. First Synthesis of Free Cholesterol−BODIPY Conjugates. J. Org. Chem. 2006;71:1718–1721. doi: 10.1021/jo052029x. PubMed DOI

Thomas F.A., Visco I., Petrášek Z., Heinemann F., Schwille P. Introducing a Fluorescence-Based Standard to Quantify Protein Partitioning into Membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2015;1848:2932–2941. doi: 10.1016/j.bbamem.2015.09.001. PubMed DOI

Plochberger B., Röhrl C., Preiner J., Rankl C., Brameshuber M., Madl J., Bittman R., Ros R., Sezgin E., Eggeling C., et al. HDL Particles Incorporate into Lipid Bilayers–a Combined AFM and Single Molecule Fluorescence Microscopy Study. Sci. Rep. 2017;7:15886. doi: 10.1038/s41598-017-15949-7. PubMed DOI PMC

Kim H.M., Choo H., Jung S., Ko Y. A Two-Photon Fluorescent Probe for Lipid Raft Imaging: C-Laurdan. ChemBioChem. 2007;8:553–559. doi: 10.1002/cbic.200700003. PubMed DOI

Schumaker V.N., Puppione D.L. Sequential Flotation Ultracentrifugation. Methods Enzymol. 1986;128:155–170. PubMed

Boban Z., Mardešić I., Subczynski W.K., Raguz M. Giant Unilamellar Vesicle Electroformation: What to Use, What to Avoid, and How to Quantify the Results. Membranes. 2021;11:860. doi: 10.3390/membranes11110860. PubMed DOI PMC

Parini P., Johansson L., Bröijersén A., Angelin B., Rudling M. Lipoprotein Profiles in Plasma and Interstitial Fluid Analyzed with an Automated Gel-filtration System. Eur. J. Clin. Investig. 2006;36:98–104. doi: 10.1111/j.1365-2362.2006.01597.x. PubMed DOI

Waithe D., Clausen M.P., Sezgin E., Eggeling C. FoCuS-Point: Software for STED Fluorescence Correlation and Time-Gated Single Photon Counting. Bioinformatics. 2016;32:958–960. doi: 10.1093/bioinformatics/btv687. PubMed DOI PMC

Parasassi T., De Stasio G., D’Ubaldo A., Gratton E. Phase Fluctuation in Phospholipid Membranes Revealed by Laurdan Fluorescence. Biophys. J. 1990;57:1179–1186. doi: 10.1016/S0006-3495(90)82637-0. PubMed DOI PMC

Horng M.L., Gardecki J.A., Papazyan A., Maroncelli M. Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited. J. Phys. Chem. 1995;99:17311–17337. doi: 10.1021/j100048a004. DOI

Fee R.S., Maroncelli M. Estimating the Time-Zero Spectrum in Time-Resolved Emmsion Measurements of Solvation Dynamics. Chem. Phys. 1994;183:235–247. doi: 10.1016/0301-0104(94)00019-0. DOI

Wieser S., Schütz G.J. Tracking Single Molecules in the Live Cell Plasma Membrane-Do’s and Don’t’s. Methods. 2008;46:131–140. doi: 10.1016/j.ymeth.2008.06.010. PubMed DOI

Simons K., Gerl M.J. Revitalizing Membrane Rafts: New Tools and Insights. Nat. Rev. Mol. Cell Biol. 2010;11:688–699. doi: 10.1038/nrm2977. PubMed DOI

Dietrich C., Bagatolli L.A., Volovyk Z.N., Thompson N.L., Levi M., Jacobson K., Gratton E. Lipid Rafts Reconstituted in Model Membranes. Biophys. J. 2001;80:1417–1428. doi: 10.1016/S0006-3495(01)76114-0. PubMed DOI PMC

Yang S.-T., Kiessling V., Tamm L.K. Line Tension at Lipid Phase Boundaries as Driving Force for HIV Fusion Peptide-Mediated Fusion. Nat. Commun. 2016;7:11401. doi: 10.1038/ncomms11401. PubMed DOI PMC

Sych T., Schlegel J., Barriga H.M.G., Ojansivu M., Hanke L., Weber F., Beklem Bostancioglu R., Ezzat K., Stangl H., Plochberger B., et al. High-Throughput Measurement of the Content and Properties of Nano-Sized Bioparticles with Single-Particle Profiler. Nat. Biotechnol. 2023;42:587–590. doi: 10.1038/s41587-023-01825-5. PubMed DOI PMC

Kelley E.G., Butler P.D., Ashkar R., Bradbury R., Nagao M. Scaling Relationships for the Elastic Moduli and Viscosity of Mixed Lipid Membranes. Proc. Natl. Acad. Sci. USA. 2020;117:23365–23373. doi: 10.1073/pnas.2008789117. PubMed DOI PMC

Lindblom G., Orädd G. Lipid Lateral Diffusion and Membrane Heterogeneity. Biochim. Biophys. Acta (BBA)-Biomembr. 2009;1788:234–244. doi: 10.1016/j.bbamem.2008.08.016. PubMed DOI

Nagle J.F., Cognet P., Dupuy F.G., Tristram-Nagle S. Structure of Gel Phase DPPC Determined by X-Ray Diffraction. Chem. Phys. Lipids. 2019;218:168–177. doi: 10.1016/j.chemphyslip.2018.12.011. PubMed DOI

Adhyapak P.R., Panchal S.V., Murthy A.V.R. Cholesterol Induced Asymmetry in DOPC Bilayers Probed by AFM Force Spectroscopy. Biochim. Biophys. Acta (BBA)-Biomembr. 2018;1860:953–959. doi: 10.1016/j.bbamem.2018.01.021. PubMed DOI

Amaro M., Sachl R., Jurkiewicz P., Coutinho A., Prieto M., Hof M. Time-Resolved Fluorescence in Lipid Bilayers: Selected Applications and Advantages over Steady State. Biophys. J. 2014;107:2751–2760. doi: 10.1016/j.bpj.2014.10.058. PubMed DOI PMC

Pruchnik H., Kral T., Hof M. Interaction of Newly Platinum(II) with Tris(2-Carboxyethyl)Phosphine Complex with DNA and Model Lipid Membrane. J. Membr. Biol. 2017;250:461–470. doi: 10.1007/s00232-017-9972-z. PubMed DOI PMC

Jurkiewicz P., Olz A., Langner M., Hof M., Heyro J. V Headgroup Hydration and Mobility of DOTAP/DOPC Bilayers: A Fluorescence Solvent Relaxation Study. Langmuir. 2006;22:8741–8749. doi: 10.1021/la061597k. PubMed DOI

Meher G., Chakraborty H. Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure. J. Membr. Biol. 2019;252:261–272. doi: 10.1007/s00232-019-00064-7. PubMed DOI PMC

Wang W., Yang L., Huang H.W. Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures. Biophys. J. 2007;92:2819–2830. doi: 10.1529/biophysj.106.097923. PubMed DOI PMC

Bondar A.-N., White S.H. Hydrogen Bond Dynamics in Membrane Protein Function. Biochim. Biophys. Acta (BBA)-Biomembr. 2012;1818:942–950. doi: 10.1016/j.bbamem.2011.11.035. PubMed DOI PMC

Needham D., Nunn R.S. Elastic Deformation and Failure of Lipid Bilayer Membranes Containing Cholesterol. Biophys. J. 1990;58:997–1009. doi: 10.1016/S0006-3495(90)82444-9. PubMed DOI PMC

Yesylevskyy S.O., Rivel T., Ramseyer C. The Influence of Curvature on the Properties of the Plasma Membrane. Insights from Atomistic Molecular Dynamics Simulations. Sci. Rep. 2017;7:16078. doi: 10.1038/s41598-017-16450-x. PubMed DOI PMC

Parthasarathy R., Yu C., Groves J.T. Curvature-Modulated Phase Separation in Lipid Bilayer Membranes. Langmuir. 2006;22:5095–5099. doi: 10.1021/la060390o. PubMed DOI

Larsen J.B., Kennard C., Pedersen S.L., Jensen K.J., Uline M.J., Hatzakis N.S., Stamou D. Membrane Curvature and Lipid Composition Synergize to Regulate N-Ras Anchor Recruitment. Biophys. J. 2017;113:1269–1279. doi: 10.1016/j.bpj.2017.06.051. PubMed DOI PMC

Campelo F., McMahon H.T., Kozlov M.M. The Hydrophobic Insertion Mechanism of Membrane Curvature Generation by Proteins. Biophys. J. 2008;95:2325–2339. doi: 10.1529/biophysj.108.133173. PubMed DOI PMC

Pandit S.A., Bostick D., Berkowitz M.L. Complexation of Phosphatidylcholine Lipids with Cholesterol. Biophys. J. 2004;86:1345–1356. doi: 10.1016/S0006-3495(04)74206-X. PubMed DOI PMC

M’Baye G., Mély Y., Duportail G., Klymchenko A.S. Liquid Ordered and Gel Phases of Lipid Bilayers: Fluorescent Probes Reveal Close Fluidity but Different Hydration. Biophys. J. 2008;95:1217–1225. doi: 10.1529/biophysj.107.127480. PubMed DOI PMC

Bianchetti G., Azoulay-Ginsburg S., Keshet-Levy N.Y., Malka A., Zilber S., Korshin E.E., Sasson S., De Spirito M., Gruzman A., Maulucci G. Investigation of the Membrane Fluidity Regulation of Fatty Acid Intracellular Distribution by Fluorescence Lifetime Imaging of Novel Polarity Sensitive Fluorescent Derivatives. Int. J. Mol. Sci. 2021;22:3106. doi: 10.3390/ijms22063106. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...