"Head-to-Toe" Lipid Properties Govern the Binding and Cargo Transfer of High-Density Lipoprotein
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 33481
Austrian Science Fund FWF - Austria
No 101017902
European Union's Horizon 2020 research and innovation programme
P33481-B, P 29110
Austrian Science Fund Projects
2020-02682
Swedish Research Council Starting Grant
PubMed
39728711
PubMed Central
PMC11677176
DOI
10.3390/membranes14120261
PII: membranes14120261
Knihovny.cz E-zdroje
- Klíčová slova
- Laurdan polarity, glycerol region mobility, hydrogen bond network, lipoprotein, membrane order,
- Publikační typ
- časopisecké články MeSH
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.e., binding and/or cargo transfer). The analysis of interactions with HDL particles and various lipid phases revealed that both fully fluid and some gel-phase lipids preferentially interact with HDL particles, although differences were observed in protein binding and cargo exchange. Both interactions were reduced with ordered lipid mixtures containing cholesterol. To investigate the mechanism, membranes were prepared from single-lipid components, enabling step-by-step modification of the lipid building blocks. On a biophysical level, the different mixtures displayed varying stiffness, fluidity, and hydrogen bond network changes. Increased glycerol mobility and a strengthened hydrogen bond network enhanced anchoring interactions, while fluid membranes with a reduced water network facilitated cargo transfer. In summary, the data indicate that different lipid classes are involved depending on the type of interaction, whether anchoring or cargo transfer.
Department of Medical Engineering Upper Austria University of Applied Sciences 4020 Linz Austria
Zobrazit více v PubMed
Heberle F.A., Feigenson G.W. Phase Separation in Lipid Membranes. Cold Spring Harb. Perspect. Biol. 2011;3:a004630. doi: 10.1101/cshperspect.a004630. PubMed DOI PMC
Janiak M.J., Small D.M., Shipley G.G. Temperature and Compositional Dependence of the Structure of Hydrated Dimyristoyl Lecithin. J. Biol. Chem. 1979;254:6068–6078. doi: 10.1016/S0021-9258(18)50520-2. PubMed DOI
Korlach J., Schwille P., Webb W.W., Feigenson G.W. Characterization of Lipid Bilayer Phases by Confocal Microscopy and Fluorescence Correlation Spectroscopy. Proc. Natl. Acad. Sci. USA. 1999;96:8461–8466. doi: 10.1073/pnas.96.15.8461. PubMed DOI PMC
Ulrich A.S., Sami M., Watts A. Hydration of DOPC Bilayers by Differential Scanning Calorimetry. Biochim. Biophys. Acta (BBA)-Biomembr. 1994;1191:225–230. doi: 10.1016/0005-2736(94)90253-4. PubMed DOI
Hjort Ipsen J., Karlström G., Mourtisen O.G., Wennerström H., Zuckermann M.J. Phase Equilibria in the Phosphatidylcholine-Cholesterol System. Biochim. Biophys. Acta (BBA)-Biomembr. 1987;905:162–172. doi: 10.1016/0005-2736(87)90020-4. PubMed DOI
Sezgin E., Levental I., Grzybek M., Schwarzmann G., Mueller V., Honigmann A., Belov V.N., Eggeling C., Coskun Ü., Simons K., et al. Partitioning, Diffusion, and Ligand Binding of Raft Lipid Analogs in Model and Cellular Plasma Membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2012;1818:1777–1784. doi: 10.1016/j.bbamem.2012.03.007. PubMed DOI
Kaiser H.-J., Lingwood D., Levental I., Sampaio J.L., Kalvodova L., Rajendran L., Simons K. Order of Lipid Phases in Model and Plasma Membranes. Proc. Natl. Acad. Sci. USA. 2009;106:16645–16650. doi: 10.1073/pnas.0908987106. PubMed DOI PMC
Schachter I., Paananen R.O., Fábián B., Jurkiewicz P., Javanainen M. The Two Faces of the Liquid Ordered Phase. J. Phys. Chem. Lett. 2022;13:1307–1313. doi: 10.1021/acs.jpclett.1c03712. PubMed DOI PMC
Sych T., Gurdap C.O., Wedemann L., Sezgin E. How Does Liquid-Liquid Phase Separation in Model Membranes Reflect Cell Membrane Heterogeneity? Membranes. 2021;11:323. doi: 10.3390/membranes11050323. PubMed DOI PMC
Shimshick E.J., McConnell H.M. Lateral Phase Separation in Phospholipid Membranes. Biochemistry. 1973;12:2351–2360. doi: 10.1021/bi00736a026. PubMed DOI
Semrau S., Idema T., Schmidt T., Storm C. Membrane-Mediated Interactions Measured Using Membrane Domains. Biophys. J. 2009;96:4906–4915. doi: 10.1016/j.bpj.2009.03.050. PubMed DOI PMC
Dean J.M., Lodhi I.J. Structural and Functional Roles of Ether Lipids. Protein Cell. 2018;9:196–206. doi: 10.1007/s13238-017-0423-5. PubMed DOI PMC
Braverman N.E., Moser A.B. Functions of Plasmalogen Lipids in Health and Disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012;1822:1442–1452. doi: 10.1016/j.bbadis.2012.05.008. PubMed DOI
Pike L.J., Han X., Chung K.-N., Gross R.W. Lipid Rafts Are Enriched in Arachidonic Acid and Plasmenylethanolamine and Their Composition Is Independent of Caveolin-1 Expression: A Quantitative Electrospray Ionization/Mass Spectrometric Analysis. Biochemistry. 2002;41:2075–2088. doi: 10.1021/bi0156557. PubMed DOI
Rodemer C., Thai T.-P., Brugger B., Kaercher T., Werner H., Nave K.-A., Wieland F., Gorgas K., Just W.W. Inactivation of Ether Lipid Biosynthesis Causes Male Infertility, Defects in Eye Development and Optic Nerve Hypoplasia in Mice. Hum. Mol. Genet. 2003;12:1881–1895. doi: 10.1093/hmg/ddg191. PubMed DOI
Mandel H., Sharf R., Berant M., Wanders R.J.A., Vreken P., Aviram M. Plasmalogen Phospholipids Are Involved in HDL-Mediated Cholesterol Efflux: Insights from Investigations with Plasmalogen-Deficient Cells. Biochem. Biophys. Res. Commun. 1998;250:369–373. doi: 10.1006/bbrc.1998.9321. PubMed DOI
Vance J.E. Lipoproteins Secreted by Cultured Rat Hepatocytes Contain the Antioxidant 1-Alk-1-Enyl-2-Acylglycerophosphoethanolamine. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1990;1045:128–134. doi: 10.1016/0005-2760(90)90141-J. PubMed DOI
an Meer G., Voelker D.R., Feigenson W.G. Membrane Lipids: Where They Are and How They Behave. Nat. Rev. Mol. Cell Biol. 2009;9:112–124. doi: 10.1038/nrm2330. PubMed DOI PMC
Raghava S., Giorda K.M., Romano F.B., Heuck A.P., Hebert D.N. The SV40 Late Protein VP4 Is a Viroporin That Forms Pores to Disrupt Membranes for Viral Release. PLoS Pathog. 2011;7:e1002116. doi: 10.1371/journal.ppat.1002116. PubMed DOI PMC
Diomede L., Bizzi A., Magistrelli A., Modest E.J., Salmona M., Noseda A. Role of Cell Cholesterol in Modulating Antineoplastic Ether Lipid Uptake, Membrane Effects and Cytotoxicity. Int. J. Cancer. 1990;46:341–346. doi: 10.1002/ijc.2910460234. PubMed DOI
Corradi V., Sejdiu B.I., Mesa-Galloso H., Abdizadeh H., Noskov S.Y., Marrink S.J., Tieleman D.P. Emerging Diversity in Lipid–Protein Interactions. Chem. Rev. 2019;119:5775–5848. doi: 10.1021/acs.chemrev.8b00451. PubMed DOI PMC
Escribá P.V. Membrane-Lipid Therapy: A New Approach in Molecular Medicine. Trends Mol. Med. 2006;12:34–43. doi: 10.1016/j.molmed.2005.11.004. PubMed DOI
Escribá P.V., González-Ros J.M., Goñi F.M., Kinnunen P.K.J., Vigh L., Sánchez-Magraner L., Fernández A.M., Busquets X., Horváth I., Barceló-Coblijn G. Membranes: A Meeting Point for Lipids, Proteins and Therapies. J. Cell. Mol. Med. 2008;12:829–875. doi: 10.1111/j.1582-4934.2008.00281.x. PubMed DOI PMC
Karathanou K., Bondar A.-N. Dynamic Water Hydrogen-Bond Networks at the Interface of a Lipid Membrane Containing Palmitoyl-Oleoyl Phosphatidylglycerol. J. Membr. Biol. 2018;251:461–473. doi: 10.1007/s00232-018-0023-1. PubMed DOI
Murzyn K., Zhao W., Karttunen M., Kurdziel M., Róg T. Dynamics of Water at Membrane Surfaces: Effect of Headgroup Structure. Biointerphases. 2006;1:98–105. doi: 10.1116/1.2354573. PubMed DOI
Berkowitz M.L., Vácha R. Aqueous Solutions at the Interface with Phospholipid Bilayers. Acc. Chem. Res. 2012;45:74–82. doi: 10.1021/ar200079x. PubMed DOI
Nagao M., Kelley E.G., Ashkar R., Bradbury R., Butler P.D. Probing Elastic and Viscous Properties of Phospholipid Bilayers Using Neutron Spin Echo Spectroscopy. J. Phys. Chem. Lett. 2017;8:4679–4684. doi: 10.1021/acs.jpclett.7b01830. PubMed DOI
Orlikowska-Rzeznik H., Krok E., Chattopadhyay M., Lester A., Piatkowski L. Laurdan Discerns Lipid Membrane Hydration and Cholesterol Content. J. Phys. Chem. B. 2023;127:3382–3391. doi: 10.1021/acs.jpcb.3c00654. PubMed DOI PMC
Doole F.T., Kumarage T., Ashkar R., Brown M.F. Cholesterol Stiffening of Lipid Membranes. J. Membr. Biol. 2022;255:385–405. doi: 10.1007/s00232-022-00263-9. PubMed DOI PMC
Harris F.M., Best K.B., Bell J.D. Use of Laurdan Fluorescence Intensity and Polarization to Distinguish between Changes in Membrane Fluidity and Phospholipid Order. Biochim. Biophys. Acta (BBA)-Biomembr. 2002;1565:123–128. doi: 10.1016/S0005-2736(02)00514-X. PubMed DOI
Scollo F., Evci H., Amaro M., Jurkiewicz P., Sykora J., Hof M. What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on? Front. Chem. 2021;9:738350. doi: 10.3389/fchem.2021.738350. PubMed DOI PMC
Santos N.C., Prieto M., Castanho M.A.R.B. Quantifying Molecular Partition into Model Systems of Biomembranes: An Emphasis on Optical Spectroscopic Methods. Biochim. Biophys. Acta (BBA)-Biomembr. 2003;1612:123–135. doi: 10.1016/S0005-2736(03)00112-3. PubMed DOI
Rusu L., Gambhir A., McLaughlin S., Rädler J. Fluorescence Correlation Spectroscopy Studies of Peptide and Protein Binding to Phospholipid Vesicles. Biophys. J. 2004;87:1044–1053. doi: 10.1529/biophysj.104.039958. PubMed DOI PMC
Baumgart T., Hunt G., Farkas E.R., Webb W.W., Feigenson G.W. Fluorescence Probe Partitioning between Lo/Ld Phases in Lipid Membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2007;1768:2182–2194. doi: 10.1016/j.bbamem.2007.05.012. PubMed DOI PMC
Li Z., Mintzer E., Bittman R. First Synthesis of Free Cholesterol−BODIPY Conjugates. J. Org. Chem. 2006;71:1718–1721. doi: 10.1021/jo052029x. PubMed DOI
Thomas F.A., Visco I., Petrášek Z., Heinemann F., Schwille P. Introducing a Fluorescence-Based Standard to Quantify Protein Partitioning into Membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2015;1848:2932–2941. doi: 10.1016/j.bbamem.2015.09.001. PubMed DOI
Plochberger B., Röhrl C., Preiner J., Rankl C., Brameshuber M., Madl J., Bittman R., Ros R., Sezgin E., Eggeling C., et al. HDL Particles Incorporate into Lipid Bilayers–a Combined AFM and Single Molecule Fluorescence Microscopy Study. Sci. Rep. 2017;7:15886. doi: 10.1038/s41598-017-15949-7. PubMed DOI PMC
Kim H.M., Choo H., Jung S., Ko Y. A Two-Photon Fluorescent Probe for Lipid Raft Imaging: C-Laurdan. ChemBioChem. 2007;8:553–559. doi: 10.1002/cbic.200700003. PubMed DOI
Schumaker V.N., Puppione D.L. Sequential Flotation Ultracentrifugation. Methods Enzymol. 1986;128:155–170. PubMed
Boban Z., Mardešić I., Subczynski W.K., Raguz M. Giant Unilamellar Vesicle Electroformation: What to Use, What to Avoid, and How to Quantify the Results. Membranes. 2021;11:860. doi: 10.3390/membranes11110860. PubMed DOI PMC
Parini P., Johansson L., Bröijersén A., Angelin B., Rudling M. Lipoprotein Profiles in Plasma and Interstitial Fluid Analyzed with an Automated Gel-filtration System. Eur. J. Clin. Investig. 2006;36:98–104. doi: 10.1111/j.1365-2362.2006.01597.x. PubMed DOI
Waithe D., Clausen M.P., Sezgin E., Eggeling C. FoCuS-Point: Software for STED Fluorescence Correlation and Time-Gated Single Photon Counting. Bioinformatics. 2016;32:958–960. doi: 10.1093/bioinformatics/btv687. PubMed DOI PMC
Parasassi T., De Stasio G., D’Ubaldo A., Gratton E. Phase Fluctuation in Phospholipid Membranes Revealed by Laurdan Fluorescence. Biophys. J. 1990;57:1179–1186. doi: 10.1016/S0006-3495(90)82637-0. PubMed DOI PMC
Horng M.L., Gardecki J.A., Papazyan A., Maroncelli M. Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited. J. Phys. Chem. 1995;99:17311–17337. doi: 10.1021/j100048a004. DOI
Fee R.S., Maroncelli M. Estimating the Time-Zero Spectrum in Time-Resolved Emmsion Measurements of Solvation Dynamics. Chem. Phys. 1994;183:235–247. doi: 10.1016/0301-0104(94)00019-0. DOI
Wieser S., Schütz G.J. Tracking Single Molecules in the Live Cell Plasma Membrane-Do’s and Don’t’s. Methods. 2008;46:131–140. doi: 10.1016/j.ymeth.2008.06.010. PubMed DOI
Simons K., Gerl M.J. Revitalizing Membrane Rafts: New Tools and Insights. Nat. Rev. Mol. Cell Biol. 2010;11:688–699. doi: 10.1038/nrm2977. PubMed DOI
Dietrich C., Bagatolli L.A., Volovyk Z.N., Thompson N.L., Levi M., Jacobson K., Gratton E. Lipid Rafts Reconstituted in Model Membranes. Biophys. J. 2001;80:1417–1428. doi: 10.1016/S0006-3495(01)76114-0. PubMed DOI PMC
Yang S.-T., Kiessling V., Tamm L.K. Line Tension at Lipid Phase Boundaries as Driving Force for HIV Fusion Peptide-Mediated Fusion. Nat. Commun. 2016;7:11401. doi: 10.1038/ncomms11401. PubMed DOI PMC
Sych T., Schlegel J., Barriga H.M.G., Ojansivu M., Hanke L., Weber F., Beklem Bostancioglu R., Ezzat K., Stangl H., Plochberger B., et al. High-Throughput Measurement of the Content and Properties of Nano-Sized Bioparticles with Single-Particle Profiler. Nat. Biotechnol. 2023;42:587–590. doi: 10.1038/s41587-023-01825-5. PubMed DOI PMC
Kelley E.G., Butler P.D., Ashkar R., Bradbury R., Nagao M. Scaling Relationships for the Elastic Moduli and Viscosity of Mixed Lipid Membranes. Proc. Natl. Acad. Sci. USA. 2020;117:23365–23373. doi: 10.1073/pnas.2008789117. PubMed DOI PMC
Lindblom G., Orädd G. Lipid Lateral Diffusion and Membrane Heterogeneity. Biochim. Biophys. Acta (BBA)-Biomembr. 2009;1788:234–244. doi: 10.1016/j.bbamem.2008.08.016. PubMed DOI
Nagle J.F., Cognet P., Dupuy F.G., Tristram-Nagle S. Structure of Gel Phase DPPC Determined by X-Ray Diffraction. Chem. Phys. Lipids. 2019;218:168–177. doi: 10.1016/j.chemphyslip.2018.12.011. PubMed DOI
Adhyapak P.R., Panchal S.V., Murthy A.V.R. Cholesterol Induced Asymmetry in DOPC Bilayers Probed by AFM Force Spectroscopy. Biochim. Biophys. Acta (BBA)-Biomembr. 2018;1860:953–959. doi: 10.1016/j.bbamem.2018.01.021. PubMed DOI
Amaro M., Sachl R., Jurkiewicz P., Coutinho A., Prieto M., Hof M. Time-Resolved Fluorescence in Lipid Bilayers: Selected Applications and Advantages over Steady State. Biophys. J. 2014;107:2751–2760. doi: 10.1016/j.bpj.2014.10.058. PubMed DOI PMC
Pruchnik H., Kral T., Hof M. Interaction of Newly Platinum(II) with Tris(2-Carboxyethyl)Phosphine Complex with DNA and Model Lipid Membrane. J. Membr. Biol. 2017;250:461–470. doi: 10.1007/s00232-017-9972-z. PubMed DOI PMC
Jurkiewicz P., Olz A., Langner M., Hof M., Heyro J. V Headgroup Hydration and Mobility of DOTAP/DOPC Bilayers: A Fluorescence Solvent Relaxation Study. Langmuir. 2006;22:8741–8749. doi: 10.1021/la061597k. PubMed DOI
Meher G., Chakraborty H. Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure. J. Membr. Biol. 2019;252:261–272. doi: 10.1007/s00232-019-00064-7. PubMed DOI PMC
Wang W., Yang L., Huang H.W. Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures. Biophys. J. 2007;92:2819–2830. doi: 10.1529/biophysj.106.097923. PubMed DOI PMC
Bondar A.-N., White S.H. Hydrogen Bond Dynamics in Membrane Protein Function. Biochim. Biophys. Acta (BBA)-Biomembr. 2012;1818:942–950. doi: 10.1016/j.bbamem.2011.11.035. PubMed DOI PMC
Needham D., Nunn R.S. Elastic Deformation and Failure of Lipid Bilayer Membranes Containing Cholesterol. Biophys. J. 1990;58:997–1009. doi: 10.1016/S0006-3495(90)82444-9. PubMed DOI PMC
Yesylevskyy S.O., Rivel T., Ramseyer C. The Influence of Curvature on the Properties of the Plasma Membrane. Insights from Atomistic Molecular Dynamics Simulations. Sci. Rep. 2017;7:16078. doi: 10.1038/s41598-017-16450-x. PubMed DOI PMC
Parthasarathy R., Yu C., Groves J.T. Curvature-Modulated Phase Separation in Lipid Bilayer Membranes. Langmuir. 2006;22:5095–5099. doi: 10.1021/la060390o. PubMed DOI
Larsen J.B., Kennard C., Pedersen S.L., Jensen K.J., Uline M.J., Hatzakis N.S., Stamou D. Membrane Curvature and Lipid Composition Synergize to Regulate N-Ras Anchor Recruitment. Biophys. J. 2017;113:1269–1279. doi: 10.1016/j.bpj.2017.06.051. PubMed DOI PMC
Campelo F., McMahon H.T., Kozlov M.M. The Hydrophobic Insertion Mechanism of Membrane Curvature Generation by Proteins. Biophys. J. 2008;95:2325–2339. doi: 10.1529/biophysj.108.133173. PubMed DOI PMC
Pandit S.A., Bostick D., Berkowitz M.L. Complexation of Phosphatidylcholine Lipids with Cholesterol. Biophys. J. 2004;86:1345–1356. doi: 10.1016/S0006-3495(04)74206-X. PubMed DOI PMC
M’Baye G., Mély Y., Duportail G., Klymchenko A.S. Liquid Ordered and Gel Phases of Lipid Bilayers: Fluorescent Probes Reveal Close Fluidity but Different Hydration. Biophys. J. 2008;95:1217–1225. doi: 10.1529/biophysj.107.127480. PubMed DOI PMC
Bianchetti G., Azoulay-Ginsburg S., Keshet-Levy N.Y., Malka A., Zilber S., Korshin E.E., Sasson S., De Spirito M., Gruzman A., Maulucci G. Investigation of the Membrane Fluidity Regulation of Fatty Acid Intracellular Distribution by Fluorescence Lifetime Imaging of Novel Polarity Sensitive Fluorescent Derivatives. Int. J. Mol. Sci. 2021;22:3106. doi: 10.3390/ijms22063106. PubMed DOI PMC