The Toxic Effects of Ppz1 Overexpression Involve Nha1-Mediated Deregulation of K+ and H+ Homeostasis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-08985S
Czech Science Foundation (GA ČR)
Inter-COST LTC20006
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.2.69/0.0/0.0/18_053/0016977
Institute of Physiology CAS Mobility II
BFU2017-82574-P
Ministerio de Industria, Economía y Competitividad (Spain)
PIF program
Universitat Autònoma de Barcelona
PhD fellowship
Ministerio de Industria, Economía y Competitividad (Spain)
PubMed
34946993
PubMed Central
PMC8704375
DOI
10.3390/jof7121010
PII: jof7121010
Knihovny.cz E-resources
- Keywords
- K+ transport, Nha1, Ppz1 phosphatase, Saccharomyces cerevisiae, cation homeostasis, intracellular pH,
- Publication type
- Journal Article MeSH
The alteration of the fine-tuned balance of phospho/dephosphorylation reactions in the cell often results in functional disturbance. In the yeast Saccharomyces cerevisiae, the overexpression of Ser/Thr phosphatase Ppz1 drastically blocks cell proliferation, with a profound change in the transcriptomic and phosphoproteomic profiles. While the deleterious effect on growth likely derives from the alteration of multiple targets, the precise mechanisms are still obscure. Ppz1 is a negative effector of potassium influx. However, we show that the toxic effect of Ppz1 overexpression is unrelated to the Trk1/2 high-affinity potassium importers. Cells overexpressing Ppz1 exhibit decreased K+ content, increased cytosolic acidification, and fail to properly acidify the medium. These effects, as well as the growth defect, are counteracted by the deletion of NHA1 gene, which encodes a plasma membrane Na+, K+/H+ antiporter. The beneficial effect of a lack of Nha1 on the growth vanishes as the pH of the medium approaches neutrality, is not eliminated by the expression of two non-functional Nha1 variants (D145N or D177N), and is exacerbated by a hyperactive Nha1 version (S481A). All our results show that high levels of Ppz1 overactivate Nha1, leading to an excessive entry of H+ and efflux of K+, which is detrimental for growth.
See more in PubMed
Posas F., Casamayor A., Morral N., Ariño J. Molecular cloning and analysis of a yeast protein phosphatase with an unusual amino-terminal region. J. Biol. Chem. 1992;267:11734–11740. doi: 10.1016/S0021-9258(19)49759-7. PubMed DOI
Lee K.S., Hines L.K., Levin D.E. A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway. Mol. Cell Biol. 1993;13:5843–5853. PubMed PMC
Ariño J., Velázquez D., Casamayor A. Ser/thr protein phosphatases in fungi: Structure, regulation and function. Microb. Cell. 2019;6 doi: 10.15698/mic2019.05.677. PubMed DOI PMC
Offley S.R., Schmidt M.C. Protein phosphatases of Saccharomyces cerevisiae. Curr. Genet. 2019;65:41–55. doi: 10.1007/s00294-018-0884-y. PubMed DOI PMC
De Nadal E., Clotet J., Posas F., Serrano R., Gomez N., Ariño J. The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proc. Natl. Acad. Sci. USA. 1998;95:7357–7362. doi: 10.1073/pnas.95.13.7357. PubMed DOI PMC
Muñoz I., Simón E., Casals N., Clotet J., Ariño J. Identification of multicopy suppressors of cell cycle arrest at the G1-S transition in Saccharomyces cerevisiae. Yeast. 2003;20:157–169. doi: 10.1002/yea.938. PubMed DOI
Ruiz A., Muñoz I., Serrano R., Gonzalez A., Simon E., Arino J. Functional characterization of the Saccharomyces cerevisiae VHS3 gene: A regulatory subunit of the Ppz1 protein phosphatase with novel, phosphatase-unrelated functions. J. Biol. Chem. 2004;279:34421–34430. doi: 10.1074/jbc.M400572200. PubMed DOI
Ruiz A., Gonzalez A., Munoz I., Serrano R., Abrie J.A., Strauss E., Arino J. Moonlighting proteins Hal3 and Vhs3 form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis. Nat. Chem. Biol. 2009;5:920–928. doi: 10.1038/nchembio.243. PubMed DOI
Abrie J.A.A., González A., Strauss E., Ariño J. Functional mapping of the disparate activities of the yeast moonlighting protein Hal3. Biochem. J. 2012;442:357–368. doi: 10.1042/BJ20111466. PubMed DOI
Clotet J., Posas F., De Nadal E., Arino J. The NH2-terminal extension of protein phosphatase PPZ1 has an essential functional role. J. Biol. Chem. 1996;271:26349–26355. doi: 10.1074/jbc.271.42.26349. PubMed DOI
Makanae K., Kintaka R., Makino T., Kitano H., Moriya H. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res. 2013;23:300–311. doi: 10.1101/gr.146662.112. PubMed DOI PMC
Clotet J., Garí E., Aldea M., Ariño J. The yeast Ser/Thr phosphatases Sit4 and Ppz1 play opposite roles in regulation of the cell cycle. Mol. Cell. Biol. 1999;19:2408–2415. doi: 10.1128/MCB.19.3.2408. PubMed DOI PMC
Calafí C., López-Malo M., Velázquez D., Zhang C., Fernández-Fernández J., Rodríguez-Galán O., de la Cruz J., Ariño J., Casamayor A. Overexpression of budding yeast protein phosphatase Ppz1 impairs translation. Biochim. Biophys. Acta. Mol. Cell Res. 2020;1867:118727. doi: 10.1016/j.bbamcr.2020.118727. PubMed DOI
Velázquez D., Albacar M., Zhang C., Calafí C., López-Malo M., Torres-Torronteras J., Martí R., Kovalchuk S.I., Pinson B., Jensen O.N., et al. Yeast Ppz1 protein phosphatase toxicity involves the alteration of multiple cellular targets. Sci. Rep. 2020;10:15613. doi: 10.1038/s41598-020-72391-y. PubMed DOI PMC
Ádám C., Erdei É., Casado C., Kovács L., González A., Majoros L., Petrényi K., Bagossi P., Farkas I., Molnar M., et al. Protein phosphatase CaPpz1 is involved in cation homeostasis, cell wall integrity and virulence of Candida albicans. Microbiology. 2012;158:1258–1267. doi: 10.1099/mic.0.057075-0. PubMed DOI
Manfiolli A.O., de Castro P.A., Dos Reis T.F., Dolan S., Doyle S., Jones G., Riaño Pachón D.M., Ulaş M., Noble L.M., Mattern D.J., et al. Aspergillus fumigatus protein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cell. Microbiol. 2017;19:e12770. doi: 10.1111/cmi.12770. PubMed DOI
Zhang Y.-Z., Li B., Pan Y.-T., Fang Y.-L., Li D.-W., Huang L. Protein Phosphatase CgPpz1 Regulates Potassium Uptake, Stress Responses and Plant Infection in Colletotrichum gloeosporioides. Phytopathology. 2021 doi: 10.1094/PHYTO-02-21-0051-R. in press. PubMed DOI
Posas F., Camps M., Ariño J. The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J. Biol. Chem. 1995;270:13036–13041. doi: 10.1074/jbc.270.22.13036. PubMed DOI
Ruiz A., Yenush L., Arino J. Regulation of ENA1 Na(+)-ATPase gene expression by the Ppz1 protein phosphatase is mediated by the calcineurin pathway. Eukaryot. Cell. 2003;2:937–948. doi: 10.1128/EC.2.5.937-948.2003. PubMed DOI PMC
Yenush L., Merchan S., Holmes J., Serrano R. pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Mol. Cell Biol. 2005;25:8683–8692. doi: 10.1128/MCB.25.19.8683-8692.2005. PubMed DOI PMC
Yenush L., Mulet J.M., Ariño J., Serrano R. The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: Implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J. 2002;21:920–929. doi: 10.1093/emboj/21.5.920. PubMed DOI PMC
Merchan S., Bernal D., Serrano R., Yenush L. Response of the Saccharomyces cerevisiae Mpk1 mitogen-activated protein kinase pathway to increases in internal turgor pressure caused by loss of Ppz protein phosphatases. Eukaryot. Cell. 2004;3:100–107. doi: 10.1128/EC.3.1.100-107.2004. PubMed DOI PMC
Kinclova O., Ramos J., Potier S., Sychrova H. Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol. Microbiol. 2001;40:656–668. doi: 10.1046/j.1365-2958.2001.02412.x. PubMed DOI
Bañuelos M.A., Sychrova H., Bleykasten-Grosshans C., Souciet J.L., Potier S. The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology. 1998;144:2749–2758. PubMed
Kinclova-Zimmermannova O., Gaskova D., Sychrova H. The Na+, K+/H+ -antiporter Nha1 influences the plasma membrane potential of Saccharomyces cerevisiae. FEMS Yeast Res. 2006;6:792–800. doi: 10.1111/j.1567-1364.2006.00062.x. PubMed DOI
Proft M., Struhl K. MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell. 2004;118:351–361. doi: 10.1016/j.cell.2004.07.016. PubMed DOI
Sychrova H., Ramirez J., Pena A. Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1999;171:167–172. doi: 10.1111/j.1574-6968.1999.tb13428.x. PubMed DOI
Simon E., Clotet J., Calero F., Ramos J., Arino J. A screening for high copy suppressors of the sit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation. J. Biol. Chem. 2001;276:29740–29747. doi: 10.1074/jbc.M101992200. PubMed DOI
Papouskova K., Moravcova M., Masrati G., Ben-Tal N., Sychrova H., Zimmermannova O. C5 conserved region of hydrophilic C-terminal part of Saccharomyces cerevisiae Nha1 antiporter determines its requirement of Erv14 COPII cargo receptor for plasma-membrane targeting. Mol. Microbiol. 2021;115:41–57. doi: 10.1111/mmi.14595. PubMed DOI
Kinclova-Zimmermannova O., Sychrova H. Functional study of the Nha1p C-terminus: Involvement in cell response to changes in external osmolarity. Curr. Genet. 2006;49:229–236. doi: 10.1007/s00294-005-0050-1. PubMed DOI
Smidova A., Stankova K., Petrvalska O., Lazar J., Sychrova H., Obsil T., Zimmermannova O., Obsilova V. The activity of Saccharomyces cerevisiae Na+, K+/H+ antiporter Nha1 is negatively regulated by 14-3-3 protein binding at serine 481. Biochim. Biophys. Acta-Mol. Cell Res. 2019;1866 doi: 10.1016/j.bbamcr.2019.118534. PubMed DOI
Adams A., Gottschling D.E., Kaiser C.A., Stearns T. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory Press; Suffolk County, NY, USA: 1998.
Navarrete C., Petrezsélyová S., Barreto L., Martínez J.L., Zahrádka J., Ariño J., Sychrová H., Ramos J. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res. 2010;10:508–517. doi: 10.1111/j.1567-1364.2010.00630.x. PubMed DOI
Barreto L., Canadell D., Petrezsélyová S., Navarrete C., Maresová L., Peréz-Valle J., Herrera R., Olier I., Giraldo J., Sychrová H., et al. A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae. Eukaryot. Cell. 2011;10:1241–1250. doi: 10.1128/EC.05029-11. PubMed DOI PMC
Hanscho M., Ruckerbauer D.E., Chauhan N., Hofbauer H.F., Krahulec S., Nidetzky B., Kohlwein S.D., Zanghellini J., Natter K. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Res. 2012;12:796–808. doi: 10.1111/j.1567-1364.2012.00830.x. PubMed DOI
Maresova L., Hoskova B., Urbankova E., Chaloupka R., Sychrova H. New applications of pHluorin--measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast. 2010;27:317–325. doi: 10.1002/yea.1755. PubMed DOI
Canadell D., González A., Casado C., Ariño J. Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae. Mol. Microbiol. 2015;95:555–572. doi: 10.1111/mmi.12886. PubMed DOI
Kinclova-Zimmermannova O., Zavrel M., Sychrova H. Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters. J Biol.Chem. 2005;280:30638–30647. doi: 10.1074/jbc.M506341200. PubMed DOI
Mahmoud S., Planes M.D., Cabedo M., Trujillo C., Rienzo A., Caballero-Molada M., Sharma S.C., Montesinos C., Mulet J.M., Serrano R. TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis. FEBS Lett. 2017;591:1993–2002. doi: 10.1002/1873-3468.12673. PubMed DOI
Horak J., Wolf D.H. Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J. Bacteriol. 2001;183:3083–3088. doi: 10.1128/JB.183.10.3083-3088.2001. PubMed DOI PMC
Zimmermannova O., Salazar A., Sychrova H., Ramos J. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance. FEMS Yeast Res. 2015;15 doi: 10.1093/femsyr/fov029. PubMed DOI
Ariño J., Ramos J., Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast. 2019;36:177–193. doi: 10.1002/yea.3355. PubMed DOI
Mitsui K., Yasui H., Nakamura N., Kanazawa H. Oligomerization of the Saccharomyces cerevisiae Na+/H+ antiporter Nha1p: Implications for its antiporter activity. Biochim. Biophys. Acta. 2005;1720:125–136. doi: 10.1016/j.bbamem.2005.11.005. PubMed DOI
Kinclova-Zimmermannova O., Falson P., Cmunt D., Sychrova H. A hydrophobic filter confers the cation selectivity of Zygosaccharomyces rouxii plasma-membrane Na+/H+ antiporter. J. Mol. Biol. 2015;427:1681–1694. doi: 10.1016/j.jmb.2015.02.012. PubMed DOI
Banuelos M.A., Rodriguez-Navarro A. P-type ATPases mediate sodium and potassium effluxes in Schwanniomyces occidentalis. J. Biol. Chem. 1998;273:1640–1646. doi: 10.1074/jbc.273.3.1640. PubMed DOI
Zahradka J., van Heusden G.P., Sychrova H. Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter. Biochim. Biophys. Acta. 2012;1820:849–858. doi: 10.1016/j.bbagen.2012.03.013. PubMed DOI
Tarassov K., Messier V., Landry C.R., Radinovic S., Serna Molina M.M., Shames I., Malitskaya Y., Vogel J., Bussey H., Michnick S.W. An in vivo map of the yeast protein interactome. Science. 2008;320:1465–1470. doi: 10.1126/science.1153878. PubMed DOI
Kane P.M. Proton Transport and pH Control in Fungi. Adv. Exp. Med. Biol. 2016;892:33–68. PubMed PMC
Eraso P., Portillo F. Molecular mechanism of regulation of yeast plasma membrane H(+)-ATPase by glucose. Interaction between domains and identification of new regulatory sites. J. Biol. Chem. 1994;269:10393–10399. doi: 10.1016/S0021-9258(17)34073-5. PubMed DOI
Lecchi S., Nelson C.J., Allen K.E., Swaney D.L., Thompson K.L., Coon J.J., Sussman M.R., Slayman C.W. Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J. Biol. Chem. 2007;282:35471–35481. doi: 10.1074/jbc.M706094200. PubMed DOI
Burgstaller W. Transport of small ions and molecules through the plasma membrane of filamentous fungi. Crit. Rev. Microbiol. 1997;23:1–46. doi: 10.3109/10408419709115129. PubMed DOI
Kjellerup L., Gordon S., Cohrt K.O., Brown W.D., Fuglsang A.T., Winther A.M.L. Identification of antifungal H+-ATPase inhibitors with effect on plasma membrane potential. Antimicrob. Agents Chemother. 2017;61:e00032-17. doi: 10.1128/AAC.00032-17. PubMed DOI PMC
Olsen L.F., Andersen A.Z., Lunding A., Brasen J.C., Poulsen A.K. Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases. Biophys. J. 2009;96:3850–3861. doi: 10.1016/j.bpj.2009.02.026. PubMed DOI PMC
Stevens H.C., Nichols J.W. The proton electrochemical gradient across the plasma membrane of yeast is necessary for phospholipid flip. J. Biol. Chem. 2007;282:17563–17567. doi: 10.1074/jbc.M700454200. PubMed DOI