• This record comes from PubMed

The Toxic Effects of Ppz1 Overexpression Involve Nha1-Mediated Deregulation of K+ and H+ Homeostasis

. 2021 Nov 25 ; 7 (12) : . [epub] 20211125

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
21-08985S Czech Science Foundation (GA ČR)
Inter-COST LTC20006 Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.2.69/0.0/0.0/18_053/0016977 Institute of Physiology CAS Mobility II
BFU2017-82574-P Ministerio de Industria, Economía y Competitividad (Spain)
PIF program Universitat Autònoma de Barcelona
PhD fellowship Ministerio de Industria, Economía y Competitividad (Spain)

The alteration of the fine-tuned balance of phospho/dephosphorylation reactions in the cell often results in functional disturbance. In the yeast Saccharomyces cerevisiae, the overexpression of Ser/Thr phosphatase Ppz1 drastically blocks cell proliferation, with a profound change in the transcriptomic and phosphoproteomic profiles. While the deleterious effect on growth likely derives from the alteration of multiple targets, the precise mechanisms are still obscure. Ppz1 is a negative effector of potassium influx. However, we show that the toxic effect of Ppz1 overexpression is unrelated to the Trk1/2 high-affinity potassium importers. Cells overexpressing Ppz1 exhibit decreased K+ content, increased cytosolic acidification, and fail to properly acidify the medium. These effects, as well as the growth defect, are counteracted by the deletion of NHA1 gene, which encodes a plasma membrane Na+, K+/H+ antiporter. The beneficial effect of a lack of Nha1 on the growth vanishes as the pH of the medium approaches neutrality, is not eliminated by the expression of two non-functional Nha1 variants (D145N or D177N), and is exacerbated by a hyperactive Nha1 version (S481A). All our results show that high levels of Ppz1 overactivate Nha1, leading to an excessive entry of H+ and efflux of K+, which is detrimental for growth.

See more in PubMed

Posas F., Casamayor A., Morral N., Ariño J. Molecular cloning and analysis of a yeast protein phosphatase with an unusual amino-terminal region. J. Biol. Chem. 1992;267:11734–11740. doi: 10.1016/S0021-9258(19)49759-7. PubMed DOI

Lee K.S., Hines L.K., Levin D.E. A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway. Mol. Cell Biol. 1993;13:5843–5853. PubMed PMC

Ariño J., Velázquez D., Casamayor A. Ser/thr protein phosphatases in fungi: Structure, regulation and function. Microb. Cell. 2019;6 doi: 10.15698/mic2019.05.677. PubMed DOI PMC

Offley S.R., Schmidt M.C. Protein phosphatases of Saccharomyces cerevisiae. Curr. Genet. 2019;65:41–55. doi: 10.1007/s00294-018-0884-y. PubMed DOI PMC

De Nadal E., Clotet J., Posas F., Serrano R., Gomez N., Ariño J. The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proc. Natl. Acad. Sci. USA. 1998;95:7357–7362. doi: 10.1073/pnas.95.13.7357. PubMed DOI PMC

Muñoz I., Simón E., Casals N., Clotet J., Ariño J. Identification of multicopy suppressors of cell cycle arrest at the G1-S transition in Saccharomyces cerevisiae. Yeast. 2003;20:157–169. doi: 10.1002/yea.938. PubMed DOI

Ruiz A., Muñoz I., Serrano R., Gonzalez A., Simon E., Arino J. Functional characterization of the Saccharomyces cerevisiae VHS3 gene: A regulatory subunit of the Ppz1 protein phosphatase with novel, phosphatase-unrelated functions. J. Biol. Chem. 2004;279:34421–34430. doi: 10.1074/jbc.M400572200. PubMed DOI

Ruiz A., Gonzalez A., Munoz I., Serrano R., Abrie J.A., Strauss E., Arino J. Moonlighting proteins Hal3 and Vhs3 form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis. Nat. Chem. Biol. 2009;5:920–928. doi: 10.1038/nchembio.243. PubMed DOI

Abrie J.A.A., González A., Strauss E., Ariño J. Functional mapping of the disparate activities of the yeast moonlighting protein Hal3. Biochem. J. 2012;442:357–368. doi: 10.1042/BJ20111466. PubMed DOI

Clotet J., Posas F., De Nadal E., Arino J. The NH2-terminal extension of protein phosphatase PPZ1 has an essential functional role. J. Biol. Chem. 1996;271:26349–26355. doi: 10.1074/jbc.271.42.26349. PubMed DOI

Makanae K., Kintaka R., Makino T., Kitano H., Moriya H. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res. 2013;23:300–311. doi: 10.1101/gr.146662.112. PubMed DOI PMC

Clotet J., Garí E., Aldea M., Ariño J. The yeast Ser/Thr phosphatases Sit4 and Ppz1 play opposite roles in regulation of the cell cycle. Mol. Cell. Biol. 1999;19:2408–2415. doi: 10.1128/MCB.19.3.2408. PubMed DOI PMC

Calafí C., López-Malo M., Velázquez D., Zhang C., Fernández-Fernández J., Rodríguez-Galán O., de la Cruz J., Ariño J., Casamayor A. Overexpression of budding yeast protein phosphatase Ppz1 impairs translation. Biochim. Biophys. Acta. Mol. Cell Res. 2020;1867:118727. doi: 10.1016/j.bbamcr.2020.118727. PubMed DOI

Velázquez D., Albacar M., Zhang C., Calafí C., López-Malo M., Torres-Torronteras J., Martí R., Kovalchuk S.I., Pinson B., Jensen O.N., et al. Yeast Ppz1 protein phosphatase toxicity involves the alteration of multiple cellular targets. Sci. Rep. 2020;10:15613. doi: 10.1038/s41598-020-72391-y. PubMed DOI PMC

Ádám C., Erdei É., Casado C., Kovács L., González A., Majoros L., Petrényi K., Bagossi P., Farkas I., Molnar M., et al. Protein phosphatase CaPpz1 is involved in cation homeostasis, cell wall integrity and virulence of Candida albicans. Microbiology. 2012;158:1258–1267. doi: 10.1099/mic.0.057075-0. PubMed DOI

Manfiolli A.O., de Castro P.A., Dos Reis T.F., Dolan S., Doyle S., Jones G., Riaño Pachón D.M., Ulaş M., Noble L.M., Mattern D.J., et al. Aspergillus fumigatus protein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cell. Microbiol. 2017;19:e12770. doi: 10.1111/cmi.12770. PubMed DOI

Zhang Y.-Z., Li B., Pan Y.-T., Fang Y.-L., Li D.-W., Huang L. Protein Phosphatase CgPpz1 Regulates Potassium Uptake, Stress Responses and Plant Infection in Colletotrichum gloeosporioides. Phytopathology. 2021 doi: 10.1094/PHYTO-02-21-0051-R. in press. PubMed DOI

Posas F., Camps M., Ariño J. The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J. Biol. Chem. 1995;270:13036–13041. doi: 10.1074/jbc.270.22.13036. PubMed DOI

Ruiz A., Yenush L., Arino J. Regulation of ENA1 Na(+)-ATPase gene expression by the Ppz1 protein phosphatase is mediated by the calcineurin pathway. Eukaryot. Cell. 2003;2:937–948. doi: 10.1128/EC.2.5.937-948.2003. PubMed DOI PMC

Yenush L., Merchan S., Holmes J., Serrano R. pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Mol. Cell Biol. 2005;25:8683–8692. doi: 10.1128/MCB.25.19.8683-8692.2005. PubMed DOI PMC

Yenush L., Mulet J.M., Ariño J., Serrano R. The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: Implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J. 2002;21:920–929. doi: 10.1093/emboj/21.5.920. PubMed DOI PMC

Merchan S., Bernal D., Serrano R., Yenush L. Response of the Saccharomyces cerevisiae Mpk1 mitogen-activated protein kinase pathway to increases in internal turgor pressure caused by loss of Ppz protein phosphatases. Eukaryot. Cell. 2004;3:100–107. doi: 10.1128/EC.3.1.100-107.2004. PubMed DOI PMC

Kinclova O., Ramos J., Potier S., Sychrova H. Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol. Microbiol. 2001;40:656–668. doi: 10.1046/j.1365-2958.2001.02412.x. PubMed DOI

Bañuelos M.A., Sychrova H., Bleykasten-Grosshans C., Souciet J.L., Potier S. The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology. 1998;144:2749–2758. PubMed

Kinclova-Zimmermannova O., Gaskova D., Sychrova H. The Na+, K+/H+ -antiporter Nha1 influences the plasma membrane potential of Saccharomyces cerevisiae. FEMS Yeast Res. 2006;6:792–800. doi: 10.1111/j.1567-1364.2006.00062.x. PubMed DOI

Proft M., Struhl K. MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell. 2004;118:351–361. doi: 10.1016/j.cell.2004.07.016. PubMed DOI

Sychrova H., Ramirez J., Pena A. Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1999;171:167–172. doi: 10.1111/j.1574-6968.1999.tb13428.x. PubMed DOI

Simon E., Clotet J., Calero F., Ramos J., Arino J. A screening for high copy suppressors of the sit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation. J. Biol. Chem. 2001;276:29740–29747. doi: 10.1074/jbc.M101992200. PubMed DOI

Papouskova K., Moravcova M., Masrati G., Ben-Tal N., Sychrova H., Zimmermannova O. C5 conserved region of hydrophilic C-terminal part of Saccharomyces cerevisiae Nha1 antiporter determines its requirement of Erv14 COPII cargo receptor for plasma-membrane targeting. Mol. Microbiol. 2021;115:41–57. doi: 10.1111/mmi.14595. PubMed DOI

Kinclova-Zimmermannova O., Sychrova H. Functional study of the Nha1p C-terminus: Involvement in cell response to changes in external osmolarity. Curr. Genet. 2006;49:229–236. doi: 10.1007/s00294-005-0050-1. PubMed DOI

Smidova A., Stankova K., Petrvalska O., Lazar J., Sychrova H., Obsil T., Zimmermannova O., Obsilova V. The activity of Saccharomyces cerevisiae Na+, K+/H+ antiporter Nha1 is negatively regulated by 14-3-3 protein binding at serine 481. Biochim. Biophys. Acta-Mol. Cell Res. 2019;1866 doi: 10.1016/j.bbamcr.2019.118534. PubMed DOI

Adams A., Gottschling D.E., Kaiser C.A., Stearns T. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory Press; Suffolk County, NY, USA: 1998.

Navarrete C., Petrezsélyová S., Barreto L., Martínez J.L., Zahrádka J., Ariño J., Sychrová H., Ramos J. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res. 2010;10:508–517. doi: 10.1111/j.1567-1364.2010.00630.x. PubMed DOI

Barreto L., Canadell D., Petrezsélyová S., Navarrete C., Maresová L., Peréz-Valle J., Herrera R., Olier I., Giraldo J., Sychrová H., et al. A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae. Eukaryot. Cell. 2011;10:1241–1250. doi: 10.1128/EC.05029-11. PubMed DOI PMC

Hanscho M., Ruckerbauer D.E., Chauhan N., Hofbauer H.F., Krahulec S., Nidetzky B., Kohlwein S.D., Zanghellini J., Natter K. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Res. 2012;12:796–808. doi: 10.1111/j.1567-1364.2012.00830.x. PubMed DOI

Maresova L., Hoskova B., Urbankova E., Chaloupka R., Sychrova H. New applications of pHluorin--measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast. 2010;27:317–325. doi: 10.1002/yea.1755. PubMed DOI

Canadell D., González A., Casado C., Ariño J. Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae. Mol. Microbiol. 2015;95:555–572. doi: 10.1111/mmi.12886. PubMed DOI

Kinclova-Zimmermannova O., Zavrel M., Sychrova H. Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters. J Biol.Chem. 2005;280:30638–30647. doi: 10.1074/jbc.M506341200. PubMed DOI

Mahmoud S., Planes M.D., Cabedo M., Trujillo C., Rienzo A., Caballero-Molada M., Sharma S.C., Montesinos C., Mulet J.M., Serrano R. TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis. FEBS Lett. 2017;591:1993–2002. doi: 10.1002/1873-3468.12673. PubMed DOI

Horak J., Wolf D.H. Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J. Bacteriol. 2001;183:3083–3088. doi: 10.1128/JB.183.10.3083-3088.2001. PubMed DOI PMC

Zimmermannova O., Salazar A., Sychrova H., Ramos J. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance. FEMS Yeast Res. 2015;15 doi: 10.1093/femsyr/fov029. PubMed DOI

Ariño J., Ramos J., Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast. 2019;36:177–193. doi: 10.1002/yea.3355. PubMed DOI

Mitsui K., Yasui H., Nakamura N., Kanazawa H. Oligomerization of the Saccharomyces cerevisiae Na+/H+ antiporter Nha1p: Implications for its antiporter activity. Biochim. Biophys. Acta. 2005;1720:125–136. doi: 10.1016/j.bbamem.2005.11.005. PubMed DOI

Kinclova-Zimmermannova O., Falson P., Cmunt D., Sychrova H. A hydrophobic filter confers the cation selectivity of Zygosaccharomyces rouxii plasma-membrane Na+/H+ antiporter. J. Mol. Biol. 2015;427:1681–1694. doi: 10.1016/j.jmb.2015.02.012. PubMed DOI

Banuelos M.A., Rodriguez-Navarro A. P-type ATPases mediate sodium and potassium effluxes in Schwanniomyces occidentalis. J. Biol. Chem. 1998;273:1640–1646. doi: 10.1074/jbc.273.3.1640. PubMed DOI

Zahradka J., van Heusden G.P., Sychrova H. Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter. Biochim. Biophys. Acta. 2012;1820:849–858. doi: 10.1016/j.bbagen.2012.03.013. PubMed DOI

Tarassov K., Messier V., Landry C.R., Radinovic S., Serna Molina M.M., Shames I., Malitskaya Y., Vogel J., Bussey H., Michnick S.W. An in vivo map of the yeast protein interactome. Science. 2008;320:1465–1470. doi: 10.1126/science.1153878. PubMed DOI

Kane P.M. Proton Transport and pH Control in Fungi. Adv. Exp. Med. Biol. 2016;892:33–68. PubMed PMC

Eraso P., Portillo F. Molecular mechanism of regulation of yeast plasma membrane H(+)-ATPase by glucose. Interaction between domains and identification of new regulatory sites. J. Biol. Chem. 1994;269:10393–10399. doi: 10.1016/S0021-9258(17)34073-5. PubMed DOI

Lecchi S., Nelson C.J., Allen K.E., Swaney D.L., Thompson K.L., Coon J.J., Sussman M.R., Slayman C.W. Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J. Biol. Chem. 2007;282:35471–35481. doi: 10.1074/jbc.M706094200. PubMed DOI

Burgstaller W. Transport of small ions and molecules through the plasma membrane of filamentous fungi. Crit. Rev. Microbiol. 1997;23:1–46. doi: 10.3109/10408419709115129. PubMed DOI

Kjellerup L., Gordon S., Cohrt K.O., Brown W.D., Fuglsang A.T., Winther A.M.L. Identification of antifungal H+-ATPase inhibitors with effect on plasma membrane potential. Antimicrob. Agents Chemother. 2017;61:e00032-17. doi: 10.1128/AAC.00032-17. PubMed DOI PMC

Olsen L.F., Andersen A.Z., Lunding A., Brasen J.C., Poulsen A.K. Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases. Biophys. J. 2009;96:3850–3861. doi: 10.1016/j.bpj.2009.02.026. PubMed DOI PMC

Stevens H.C., Nichols J.W. The proton electrochemical gradient across the plasma membrane of yeast is necessary for phospholipid flip. J. Biol. Chem. 2007;282:17563–17567. doi: 10.1074/jbc.M700454200. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...