C5 conserved region of hydrophilic C-terminal part of Saccharomyces cerevisiae Nha1 antiporter determines its requirement of Erv14 COPII cargo receptor for plasma-membrane targeting

. 2021 Jan ; 115 (1) : 41-57. [epub] 20200920

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32864748

Erv14, a conserved cargo receptor of COPII vesicles, helps the proper trafficking of many but not all transporters to the yeast plasma membrane, for example, three out of five alkali-metal-cation transporters in Saccharomyces cerevisiae. Among them, the Nha1 cation/proton antiporter, which participates in cell cation and pH homeostasis, is a large membrane protein (985 aa) possessing a long hydrophilic C-terminus (552 aa) containing six conserved regions (C1-C6) with unknown function. A short Nha1 version, lacking almost the entire C-terminus, still binds to Erv14 but does not need it to be targeted to the plasma membrane. Comparing the localization and function of ScNha1 variants shortened at its C-terminus in cells with or without Erv14 reveals that only ScNha1 versions possessing the complete C5 region are dependent on Erv14. In addition, our broad evolutionary conservation analysis of fungal Na+ /H+ antiporters identified new conserved regions in their C-termini, and our experiments newly show C5 and other, so far unknown, regions of the C-terminus, to be involved in the functionality and substrate specificity of ScNha1. Taken together, our results reveal that also relatively small hydrophilic parts of some yeast membrane proteins underlie their need to interact with the Erv14 cargo receptor.

Zobrazit více v PubMed

Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., et al. (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Research, 32, D115-D119.

Arino, J., Ramos, J. and Sychrova, H. (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiology and Molecular Biology Reviews, 74, 95-120.

Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., et al. (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44, W344-W350.

Banuelos, M.A., Sychrova, H., Bleykasten-Grosshans, C., Souciet, J.L. and Potier, S. (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology, 144, 2749-2758.

Barlowe, C.K. and Miller, E.A. (2013) Secretory protein biogenesis and traffic in the early secretory pathway. Genetics, 193, 383-410.

Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., Bansal, P., Bridge, A. J., et al. (2016)UniProtKB/Swiss-Prot, the manually annotated section of the UniProt knowledgebase: how to use the entry view. In: Edwards, D. (Eds.) Plant Bioinformatics. Methods in Molecular Biology, Vol. 1374. New York, NY: Humana Press. pp. 23-54.

Castro, C.P., Piscopo, D., Nakagawa, T. and Derynck, R. (2007) Cornichon regulates transport and secretion of TGFalpha-related proteins in metazoan cells. Journal of Cell Science, 120, 2454-2466.

Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004) WebLogo: a sequence logo generator. Genome Research, 14, 1188-1190.

Diallinas, G. and Martzoukou, O. (2019) Transporter membrane traffic and function: lessons from a mould. The FEBS Journal, 286, 4861-4875.

Eddy, S.R. (1998) Profile hidden Markov models. Bioinformatics, 14, 755-763.

Guldener, U., Heck, S., Fielder, T., Beinhauer, J. and Hegemann, J.H. (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Research, 24, 2519-2524.

Herzig, Y., Sharpe, H.J., Elbaz, Y., Munro, S. and Schuldiner, M. (2012) A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14. PLoS Biology, 10, e1001329.

Huang, Y., Niu, B., Gao, Y., Fu, L. and Li, W. (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics, 26, 680-682.

Käll, L., Krogh, A. and Sonnhammer, E.L.L. (2004) A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology, 338, 1027-1036.

Kamauchi, S., Mitsui, K., Ujike, S., Haga, M., Nakamura, N., Inoue, H., et al. (2002) Structurally and functionally conserved domains in the diverse hydrophilic carboxy-terminal halves of various yeast and fungal Na+/H+ antiporters (Nha1p). Journal of Biochemistry, 131, 821-831.

Katoh, K. and Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.

Kinclova-Zimmermannova, O. and Sychrova, H. (2006) Functional study of the Nha1p C-terminus: involvement in cell response to changes in external osmolarity. Current Genetics, 49, 229-236.

Kinclova-Zimmermannova, O., Zavrel, M. and Sychrova, H. (2005) Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters. The Journal of Biological Chemistry, 280, 30638-30647.

Kinclova-Zimmermannova, O., Gaskova, D. and Sychrova, H. (2006) The Na+, K+/H+-antiporter Nha1 influences the plasma membrane potential of Saccharomyces cerevisiae. FEMS Yeast Research, 6, 792-800.

Kinclova-Zimmermannova, O., Falson, P., Cmunt, D. and Sychrova, H. (2015) A hydrophobic filter confers the cation selectivity of Zygosaccharomyces rouxii plasma-membrane Na+/H+ antiporter. Journal of Molecular Biology, 427, 1681-1694.

Kinclova, O., Potier, S. and Sychrova, H. (2001a) The Candida albicans Na+/H+ antiporter exports potassium and rubidium. FEBS Letters, 504, 11-15.

Kinclova, O., Ramos, J., Potier, S. and Sychrova, H. (2001b) Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Molecular Microbiology, 40, 656-668.

Krauke, Y. and Sychrova, H. (2008) Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species. BMC Microbiology, 8, 80.

Krauke, Y. and Sychrova, H. (2011) Cnh1 Na+/H+ antiporter and Ena1 Na+-ATPase play different roles in cation homeostasis and cell physiology of Candida glabrata. FEMS Yeast Research, 11, 29-41.

Louie, R.J., Guo, J., Rodgers, J.W., White, R., Shah, N., Pagant, S., et al. (2012) A yeast phenomic model for the gene interaction network modulating CFTR-DeltaF508 protein biogenesis. Genome Medicine, 4, 103.

Martzoukou, O., Karachaliou, M., Yalelis, V., Leung, J., Byrne, B., Amillis, S., et al. (2015) Oligomerization of the UapA purine transporter is critical for ER-exit, plasma membrane localization and turnover. Journal of Molecular Biology, 427, 2679-2696.

Masrati, G., Dwivedi, M., Rimon, A., Gluck-Margolin, Y., Kessel, A., Ashkenazy, H., et al. (2018) Broad phylogenetic analysis of cation/proton antiporters reveals transport determinants. Nature Communications, 9, 4205.

Mikosch, M. and Homann, U. (2009) How do ER export motifs work on ion channel trafficking? Current Opinion in Plant Biology, 12, 685-689.

Mitsui, K., Yasui, H., Nakamura, N. and Kanazawa, H. (2005) Oligomerization of the Saccharomyces cerevisiae Na+/H+ antiporter Nha1p: Implications for its antiporter activity. Biochimica et Biophysica Acta, 1720, 125-136.

Nakanishi, H., Suda, Y. and Neiman, A.M. (2007) Erv14 family cargo receptors are necessary for ER exit during sporulation in Saccharomyces cerevisiae. Journal of Cell Science, 120, 908-916.

Navarrete, C., Petrezselyova, S., Barreto, L., Martínez, J.L., Zahrádka, J., Ariño, J., et al. (2010) Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Research, 10, 508-517.

Norholm, A.B., Hendus-Altenburger, R., Bjerre, G., Kjaergaard, M., Pedersen, S.F. and Kragelund, B.B. (2011) The intracellular distal tail of the Na+/H+ exchanger NHE1 is intrinsically disordered: implications for NHE1 trafficking. Biochemistry, 50, 3469-3480.

Omasits, U., Ahrens, C.H., Muller, S. and Wollscheid, B. (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 30, 884-886.

Pagant, S., Wu, A., Edwards, S., Diehl, F. and Miller, E.A. (2015) Sec24 is a coincidence detector that simultaneously binds two signals to drive ER export. Current Biology, 25, 403-412.

Papadaki, G.F., Amillis, S. and Diallinas, G. (2017) Substrate specificity of the FurE transporter is determined by cytoplasmic terminal domain interactions. Genetics, 207, 1387-1400.

Papadaki, G.F., Lambrinidis, G., Zamanos, A., Mikros, E. and Diallinas, G. (2019) Cytosolic N- and C-Termini of the Aspergillus nidulans FurE transporter contain distinct elements that regulate by long-range effects function and specificity. Journal of Molecular Biology, 431, 3827-3844.

Papouskova, K. and Sychrova, H. (2006) Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology. FEBS Letters, 580, 1971-1976.

Paulino, C., Wohlert, D., Kapotova, E., Yildiz, O. and Kuhlbrandt, W. (2014) Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. eLife, 3, e03583.

Powers, J. and Barlowe, C. (1998) Transport of Axl2p depends on Erv14p, an ER-vesicle protein related to the Drosophila cornichon gene product. The Journal of Cell Biology, 142, 1209-1222.

Powers, J. and Barlowe, C. (2002) Erv14p directs a transmembrane secretory protein into COPII-coated transport vesicles. Molecular Biology of the Cell, 13, 880-891.

Pribylova, L., Papouskova, K. and Sychrova, H. (2008) The salt tolerant yeast Zygosaccharomyces rouxii possesses two plasma-membrane Na+/H+-antiporters (ZrNha1p and ZrSod2-22p) playing different roles in cation homeostasis and cell physiology. Fungal Genetics and Biology, 45, 1439-1447.

Pribylova, L., Papouskova, K., Zavrel, M., Souciet, J.L. and Sychrova, H. (2006) Exploration of yeast alkali metal cation/H+ antiporters: sequence and structure comparison. Folia Microbiologica, 51, 413-424.

Prior, C., Potier, S., Souciet, J.L. and Sychrova, H. (1996) Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Letters, 387, 89-93.

Proft, M. and Struhl, K. (2004) MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell, 118, 351-361.

Rosas-Santiago, P., Zimmermannova, O., Vera-Estrella, R., Sychrova, H. and Pantoja, O. (2016) Erv14 cargo receptor participates in yeast salt tolerance via its interaction with the plasma-membrane Nha1 cation/proton antiporter. Biochimica et Biophysica Acta, 1858, 67-74.

Rosas-Santiago, P., Lagunas-Gomez, D., Yanez-Dominguez, C., Vera-Estrella, R., Zimmermannova, O., Sychrova, H., et al. (2017) Plant and yeast cornichon possess a conserved acidic motif required for correct targeting of plasma membrane cargos. Biochimica et Biophysica Acta, 1864, 1809-1818.

Rosas-Santiago, P., Lagunas-Gomez, D., Barkla, B.J., Vera-Estrella, R., Lalonde, S., Jones, A., et al. (2015) Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3. Journal of Experimental Botany, 66, 2733-2748.

Roth, S., Neuman-Silberberg, F.S., Barcelo, G. and Schupbach, T. (1995) cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell, 81, 967-978.

Sacristan, C., Manzano-Lopez, J., Reyes, A., Spang, A., Muniz, M. and Roncero, C. (2013) Oligomerization of the chitin synthase Chs3 is monitored at the Golgi and affects its endocytic recycling. Molecular Microbiology, 90, 252-266.

Sharpe, H.J., Stevens, T.J. and Munro, S. (2010) A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell, 142, 158-169.

Schneider, T.D. and Stephens, R.M. (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Research, 18, 6097-6100.

Schwenk, J., Harmel, N., Zolles, G., Bildl, W., Kulik, A., Heimrich, B., et al. (2009) Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science, 323, 1313-1319.

Simon, E., Barcelo, A. and Arino, J. (2003) Mutagenesis analysis of the yeast Nha1 Na+/H+ antiporter carboxy-terminal tail reveals residues required for function in cell cycle. FEBS Letters, 545, 239-245.

Simon, E., Clotet, J., Calero, F., Ramos, J. and Arino, J. (2001) A screening for high copy suppressors of the sit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation. The Journal of Biological Chemistry, 276, 29740-29747.

Smidova, A., Stankova, K., Petrvalska, O., Lazar, J., Sychrova, H., Obsil, T., et al. (2019) The activity of Saccharomyces cerevisiae Na+, K+/H+ antiporter Nha1 is negatively regulated by 14-3-3 protein binding at serine 481. Biochimica et Biophysica Acta, 1866, 118534.

Springer, S., Malkus, P., Borchert, B., Wellbrock, U., Duden, R. and Schekman, R. (2014) Regulated oligomerization induces uptake of a membrane protein into COPII vesicles independent of its cytosolic tail. Traffic, 15, 531-545.

Thor, F., Gautschi, M., Geiger, R. and Helenius, A. (2009) Bulk flow revisited: transport of a soluble protein in the secretory pathway. Traffic, 10, 1819-1830.

Vacic, V., Oldfield, C.J., Mohan, A., Radivojac, P., Cortese, M.S., Uversky, V.N., et al. (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. Journal of Proteome Research, 6, 2351-2366.

Velkova, K. and Sychrova, H. (2006) The Debaryomyces hansenii NHA1 gene encodes a plasma membrane alkali-metal-cation antiporter with broad substrate specificity. Gene, 369, 27-34.

Wallis, J.W., Chrebet, G., Brodsky, G., Rolfe, M. and Rothstein, R. (1989) A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell, 58, 409-419.

Wudick, M.M., Portes, M.T., Michard, E., Rosas-Santiago, P., Lizzio, M.A., Nunes, C.O., et al. (2018) CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis. Science, 360, 533-536.

Zahradka, J. and Sychrova, H. (2012) Plasma-membrane hyperpolarization diminishes the cation efflux via Nha1 antiporter and Ena ATPase under potassium-limiting conditions. FEMS Yeast Research, 12, 439-446.

Zahradka, J., van Heusden, G.P. and Sychrova, H. (2012) Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter. Biochimica et Biophysica Acta, 1820, 849-858.

Zimmermannova, O., Felcmanova, K., Rosas-Santiago, P., Papouskova, K., Pantoja, O. and Sychrova, H. (2019) Erv14 cargo receptor participates in regulation of plasma-membrane potential, intracellular pH and potassium homeostasis via its interaction with K+-specific transporters Trk1 and Tok1. Biochimica et Biophysica Acta, 1866, 1376-1388.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...