The Role of Cornichons in the Biogenesis and Functioning of Monovalent-Cation Transport Systems
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38836370
PubMed Central
PMC11412353
DOI
10.33549/physiolres.935406
PII: 935406
Knihovny.cz E-zdroje
- MeSH
- COP-vezikuly metabolismus MeSH
- homeostáza fyziologie MeSH
- iontový transport fyziologie MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- proteiny přenášející kationty metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus genetika MeSH
- Saccharomyces cerevisiae * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- Erv14 protein, S cerevisiae MeSH Prohlížeč
- membránové proteiny MeSH
- proteiny přenášející kationty MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Monovalent-cation homeostasis, crucial for all living cells, is ensured by the activity of various types of ion transport systems located either in the plasma membrane or in the membranes of organelles. A key prerequisite for the functioning of ion-transporting proteins is their proper trafficking to the target membrane. The cornichon family of COPII cargo receptors is highly conserved in eukaryotic cells. By simultaneously binding their cargoes and a COPII-coat subunit, cornichons promote the incorporation of cargo proteins into the COPII vesicles and, consequently, the efficient trafficking of cargoes via the secretory pathway. In this review, we summarize current knowledge about cornichon proteins (CNIH/Erv14), with an emphasis on yeast and mammalian cornichons and their role in monovalent-cation homeostasis. Saccharomyces cerevisiae cornichon Erv14 serves as a cargo receptor of a large portion of plasma-membrane proteins, including several monovalent-cation transporters. By promoting the proper targeting of at least three housekeeping ion transport systems, Na+, K+/H+ antiporter Nha1, K+ importer Trk1 and K+ channel Tok1, Erv14 appears to play a complex role in the maintenance of alkali-metal-cation homeostasis. Despite their connection to serious human diseases, the repertoire of identified cargoes of mammalian cornichons is much more limited. The majority of current information is about the structure and functioning of CNIH2 and CNIH3 as auxiliary subunits of AMPAR multi-protein complexes. Based on their unique properties and easy genetic manipulation, we propose yeast cells to be a useful tool for uncovering a broader spectrum of human cornichons´ cargoes.
Zobrazit více v PubMed
Arino J, Ramos J, Sychrova H. Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev. 2010;74:95–120. doi: 10.1128/MMBR.00042-09. PubMed DOI PMC
Arino J, Ramos J, Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast. 2019;36:177–193. doi: 10.1002/yea.3355. PubMed DOI
Cyert MS, Philpott CC. Regulation of cation balance in Saccharomyces cerevisiae. Genetics. 2013;193:677–713. doi: 10.1534/genetics.112.147207. PubMed DOI PMC
Pedersen SF, Counillon L. The SLC9A-C mammalian Na+/H+ exchanger family: molecules, mechanisms, and physiology. Physiol Rev. 2019;99:2015–2113. doi: 10.1152/physrev.00028.2018. PubMed DOI
Aviram N, Ast T, Costa EA, Arakel EC, Chuartzman SG, Jan CH, Hassdenteufel S, et al. The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature. 2016;540:134–138. doi: 10.1038/nature20169. PubMed DOI PMC
Papouskova K, Moravcova M, Masrati G, Ben-Tal N, Sychrova H, Zimmermannova O. C5 conserved region of hydrophilic C-terminal part of Saccharomyces cerevisiae Nha1 antiporter determines its requirement of Erv14 COPII cargo receptor for plasma-membrane targeting. Mol Microbiol. 2021;115:41–57. doi: 10.1111/mmi.14595. PubMed DOI
Rosas-Santiago P, Lagunas-Gomez D, Barkla BJ, Vera-Estrella R, Lalonde S, Jones A, Frommer WB, et al. Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter Os HKT1;3. J Exp Bot. 2015;66:2733–2748. doi: 10.1093/jxb/erv069. PubMed DOI PMC
Rosas-Santiago P, Lagunas-Gomez D, Yanez-Dominguez C, Vera-Estrella R, Zimmermannova O, Sychrova H, Pantoja O. Plant and yeast cornichon possess a conserved acidic motif required for correct targeting of plasma membrane cargos. Biochim Biophys Acta. 2017;1864:1809–1818. doi: 10.1016/j.bbamcr.2017.07.004. PubMed DOI
Rosas-Santiago P, Zimmermannova O, Vera-Estrella R, Sychrova H, Pantoja O. Erv14 cargo receptor participates in yeast salt tolerance via its interaction with the plasma-membrane Nha1 cation/proton antiporter. Biochim Biophys Acta. 2016;1858:67–74. doi: 10.1016/j.bbamem.2015.09.024. PubMed DOI
Zimmermannova O, Felcmanova K, Rosas-Santiago P, Papouskova K, Pantoja O, Sychrova H. Erv14 cargo receptor participates in regulation of plasma-membrane potential, intracellular pH and potassium homeostasis via its interaction with K+-specific transporters Trk1 and Tok1. Biochim Biophys Acta. 2019;1866:1376–1388. doi: 10.1016/j.bbamcr.2019.05.005. PubMed DOI
Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2010;11:50–61. doi: 10.1038/nrm2820. PubMed DOI
Milo R, Phillips R. Cell Biology by the Numbers. Garland Science; New York: 2015. p. 400. DOI
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front Plant Sci. 2015;6:873. doi: 10.3389/fpls.2015.00873. PubMed DOI PMC
Wong ED, Miyasato SR, Aleksander S, Karra K, Nash RS, Skrzypek MS, Weng S, et al. Saccharomyces genome database update: server architecture, pan-genome nomenclature, and external resources. Genetics. 2023;224:iyac191. doi: 10.1093/genetics/iyac191. PubMed DOI PMC
Bokel C, Dass S, Wilsch-Brauninger M, Roth S. Drosophila Cornichon acts as cargo receptor for ER export of the TGFalpha-like growth factor Gurken. Development. 2006;133:459–470. doi: 10.1242/dev.02219. PubMed DOI
Roth S, Neuman-Silberberg FS, Barcelo G, Schupbach T. Cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell. 1995;81:967–978. doi: 10.1016/0092-8674(95)90016-0. PubMed DOI
Berg CA. The Drosophila shell game: patterning genes and morphological change. Trends Genet. 2005;21:346–355. doi: 10.1016/j.tig.2005.04.010. PubMed DOI
Neuman-Silberberg FS, Schupbach T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell. 1993;75:165–174. doi: 10.1016/S0092-8674(05)80093-5. PubMed DOI
Powers J, Barlowe C. Transport of Axl2p depends on Erv14p, an ER-vesicle protein related to the Drosophila cornichon gene product. J Cell Biol. 1998;142:1209–1222. doi: 10.1083/jcb.142.5.1209. PubMed DOI PMC
Pagant S, Wu A, Edwards S, Diehl F, Miller EA. Sec24 is a coincidence detector that simultaneously binds two signals to drive ER export. Curr Biol. 2015;25:403–412. doi: 10.1016/j.cub.2014.11.070. PubMed DOI PMC
Powers J, Barlowe C. Erv14p directs a transmembrane secretory protein into COPII-coated transport vesicles. Mol Biol Cell. 2002;13:880–891. doi: 10.1091/mbc.01-10-0499. PubMed DOI PMC
von Heijne G, Gavel Y. Topogenic signals in integral membrane proteins. Eur J Biochem. 1988;174:671–678. doi: 10.1111/j.1432-1033.1988.tb14150.x. PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–D444. doi: 10.1093/nar/gkab1061. PubMed DOI PMC
Gangwar SP, Yen LY, Yelshanskaya MV, Korman A, Jones DR, Sobolevsky AI. Modulation of GluA2-gamma5 synaptic complex desensitization, polyamine block and antiepileptic perampanel inhibition by auxiliary subunit cornichon-2. Nat Struct Mol Biol. 2023;30:1481–1494. doi: 10.1038/s41594-023-01080-x. PubMed DOI PMC
Nakagawa T. Structures of the AMPA receptor in complex with its auxiliary subunit cornichon. Science. 2019;366:1259–1263. doi: 10.1126/science.aay2783. PubMed DOI
Yu J, Rao P, Clark S, Mitra J, Ha T, Gouaux E. Hippocampal AMPA receptor assemblies and mechanism of allosteric inhibition. Nature. 2021;594:448–453. doi: 10.1038/s41586-021-03540-0. PubMed DOI PMC
Zhang D, Watson JF, Matthews PM, Cais O, Greger IH. Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature. 2021;594:454–458. doi: 10.1038/s41586-021-03613-0. PubMed DOI PMC
Herzig Y, Sharpe HJ, Elbaz Y, Munro S, Schuldiner M. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14. PLoS Biol. 2012;10:e1001329. doi: 10.1371/journal.pbio.1001329. PubMed DOI PMC
Nakanishi H, Suda Y, Neiman AM. Erv14 family cargo receptors are necessary for ER exit during sporulation in Saccharomyces cerevisiae. J Cell Sci. 2007;120:908–916. doi: 10.1242/jcs.03405. PubMed DOI
Sharpe HJ, Stevens TJ, Munro S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell. 2010;142:158–169. doi: 10.1016/j.cell.2010.05.037. PubMed DOI PMC
Lagunas-Gomez D, Yanez-Dominguez C, Zavala-Padilla G, Barlowe C, Pantoja O. The C-terminus of the cargo receptor Erv14 affects COPII vesicle formation and cargo delivery. J Cell Sci. 2023;136:jcs260527. doi: 10.1242/jcs.260527. PubMed DOI PMC
Banuelos MA, Sychrova H, Bleykasten-Grosshans C, Souciet JL, Potier S. The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology. 1998;144:2749–2758. doi: 10.1099/00221287-144-10-2749. PubMed DOI
Prior C, Potier S, Souciet JL, Sychrova H. Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett. 1996;387:89–93. doi: 10.1016/0014-5793(96)00470-X. PubMed DOI
Kamauchi S, Mitsui K, Ujike S, Haga M, Nakamura N, Inoue H, Sakajo S, et al. Structurally and functionally conserved domains in the diverse hydrophilic carboxy-terminal halves of various yeast and fungal Na+/H+ antiporters (Nha1p) J Biochem. 2002;131:821–831. doi: 10.1093/oxfordjournals.jbchem.a003171. PubMed DOI
Kinclova O, Ramos J, Potier S, Sychrova H. Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol. 2001;40:656–668. doi: 10.1046/j.1365-2958.2001.02412.x. PubMed DOI
Smidova A, Stankova K, Petrvalska O, Lazar J, Sychrova H, Obsil T, Zimmermannova O, Obsilova V. The activity of Saccharomyces cerevisiae Na+, K+/H+ antiporter Nha1 is negatively regulated by 14-3-3 protein binding at serine 481. Biochim Biophys Acta. 2019;1866:118534. doi: 10.1016/j.bbamcr.2019.118534. PubMed DOI
Zimmermannova O, Velazquez D, Papouskova K, Prusa V, Radova V, Falson P, Sychrova H. The hydrophilic C-terminus of yeast plasma-membrane Na+/H+ antiporters impacts their ability to transport K+ J Mol Biol. 2024;436:168443. doi: 10.1016/j.jmb.2024.168443. PubMed DOI
Pribylova L, Papouskova K, Zavrel M, Souciet JL, Sychrova H. Exploration of yeast alkali metal cation/H+ antiporters: sequence and structure comparison. Folia Microbiol. 2006;51:413–424. doi: 10.1007/BF02931585. PubMed DOI
Mitsui K, Kamauchi S, Nakamura N, Inoue H, Kanazawa H. A conserved domain in the tail region of the Saccharomyces cerevisiae Na+/H+ antiporter (Nha1p) plays important roles in localization and salinity-resistant cell-growth. J Biochem. 2004;135:139–148. doi: 10.1093/jb/mvh016. PubMed DOI
Bertl A, Ramos J, Ludwig J, Lichtenberg-Frate H, Reid J, Bihler H, Calero F, et al. Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol Microbiol. 2003;47:767–780. doi: 10.1046/j.1365-2958.2003.03335.x. PubMed DOI
Gaber RF, Styles CA, Fink GR. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol. 1988;8:2848–2859. doi: 10.1128/MCB.8.7.2848. PubMed DOI PMC
Bertl A, Slayman CL, Gradmann D. Gating and conductance in an outward-rectifying K+ channel from the plasma membrane of Saccharomyces cerevisiae. J Membr Biol. 1993;132:183–199. doi: 10.1007/BF00235737. PubMed DOI
Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA. A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature. 1995;376:690–695. doi: 10.1038/376690a0. PubMed DOI
Lewis A, McCrossan ZA, Manville RW, Popa MO, Cuello LG, Goldstein SAN. TOK channels use the two gates in classical K+ channels to achieve outward rectification. FASEB J. 2020;34:8902–8919. doi: 10.1096/fj.202000545R. PubMed DOI PMC
Fairman C, Zhou X, Kung C. Potassium uptake through the TOK1 K+ channel in the budding yeast. J Membr Biol. 1999;168:149–157. doi: 10.1007/s002329900505. PubMed DOI
Wei L, Liu L, Chen Z, Huang Y, Yang L, Wang P, Xue S, Bie Z. CmCNIH1 improves salt tolerance by influencing the trafficking of CmHKT1;1 in pumpkin. Plant J. 2023;114:1353–1368. doi: 10.1111/tpj.16197. PubMed DOI
Wudick MM, Portes MT, Michard E, Rosas-Santiago P, Lizzio MA, Nunes CO, Campos C, et al. CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis. Science. 2018;360:533–536. doi: 10.1126/science.aar6464. PubMed DOI
Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conejero G, Rodriguez-Navarro A, et al. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol. 2009;150:1955–1971. doi: 10.1104/pp.109.138008. PubMed DOI PMC
Sun J, Cao H, Cheng J, He X, Sohail H, Niu M, Huang Y, Bie Z. Pumpkin CmHKT1;1 controls shoot Na+ accumulation via limiting Na+ transport from rootstock to scion in grafted cucumber. Int J Mol Sci. 2018;19:2648. doi: 10.3390/ijms19092648. PubMed DOI PMC
Rodriguez-Navarro A. Potassium transport in fungi and plants. Biochim Biophys Acta. 2000;1469:1–30. doi: 10.1016/S0304-4157(99)00013-1. PubMed DOI
Ramos-Vicente D, Bayes A. AMPA receptor auxiliary subunits emerged during early vertebrate evolution by neo/subfunctionalization of unrelated proteins. Open Biol. 2020;10:200234. doi: 10.1098/rsob.200234. PubMed DOI PMC
Castro CP, Piscopo D, Nakagawa T, Derynck R. Cornichon regulates transport and secretion of TGFalpha-related proteins in metazoan cells. J Cell Sci. 2007;120:2454–2466. doi: 10.1242/jcs.004200. PubMed DOI
Sauvageau E, Rochdi MD, Oueslati M, Hamdan FF, Percherancier Y, Simpson JC, Pepperkok R, Bouvier M. CNIH4 interacts with newly synthesized GPCR and controls their export from the endoplasmic reticulum. Traffic. 2014;15:383–400. doi: 10.1111/tra.12148. PubMed DOI
Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A, Heimrich B, Chisaka O, et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science. 2009;323:1313–1319. doi: 10.1126/science.1167852. PubMed DOI
Royo M, Escolano BA, Madrigal MP, Jurado S. AMPA receptor function in hypothalamic synapses. Front Synaptic Neurosci. 2022;14:833449. doi: 10.3389/fnsyn.2022.833449. PubMed DOI PMC
Kamalova A, Nakagawa T. AMPA receptor structure and auxiliary subunits. J Physiol. 2021;599:453–469. doi: 10.1113/JP278701. PubMed DOI PMC
Schwenk J, Fakler B. Building of AMPA-type glutamate receptors in the endoplasmic reticulum and its implication for excitatory neurotransmission. J Physiol. 2021;599:2639–2653. doi: 10.1113/JP279025. PubMed DOI
Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. Differential regulation of tetramerization of the AMPA receptor glutamate-gated ion channel by auxiliary subunits. J Biol Chem. 2023;299:105227. doi: 10.1016/j.jbc.2023.105227. PubMed DOI PMC
Harmel N, Cokic B, Zolles G, Berkefeld H, Mauric V, Fakler B, Stein V, Klocker N. AMPA receptors commandeer an ancient cargo exporter for use as an auxiliary subunit for signaling. PLoS One. 2012;7:e30681. doi: 10.1371/journal.pone.0030681. PubMed DOI PMC
Herring BE, Shi Y, Suh YH, Zheng CY, Blankenship SM, Roche KW, Nicoll RA. Cornichon proteins determine the subunit composition of synaptic AMPA receptors. Neuron. 2013;77:1083–1096. doi: 10.1016/j.neuron.2013.01.017. PubMed DOI PMC
Shanks NF, Cais O, Maruo T, Savas JN, Zaika EI, Azumaya CM, Yates JR, III, et al. Molecular dissection of the interaction between the AMPA receptor and cornichon homolog-3. J Neurosci. 2014;34:12104–12120. doi: 10.1523/JNEUROSCI.0595-14.2014. PubMed DOI PMC
Shi Y, Suh YH, Milstein AD, Isozaki K, Schmid SM, Roche KW, Nicoll RA. Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating. Proc Natl Acad Sci U S A. 2010;107:16315–16319. doi: 10.1073/pnas.1011706107. PubMed DOI PMC
Schwenk J, Boudkkazi S, Kocylowski MK, Brechet A, Zolles G, Bus T, Costa K, et al. An ER assembly line of AMPA-receptors controls excitatory neurotransmission and its plasticity. Neuron. 2019;104:680–692e689. doi: 10.1016/j.neuron.2019.08.033. PubMed DOI
Coombs ID, Soto D, Zonouzi M, Renzi M, Shelley C, Farrant M, Cull-Candy SG. Cornichons modify channel properties of recombinant and glial AMPA receptors. J Neurosci. 2012;32:9796–9804. doi: 10.1523/JNEUROSCI.0345-12.2012. PubMed DOI PMC
Kato AS, Gill MB, Ho MT, Yu H, Tu Y, Siuda ER, Wang H, et al. Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins. Neuron. 2010;68:1082–1096. doi: 10.1016/j.neuron.2010.11.026. PubMed DOI PMC
Boudkkazi S, Brechet A, Schwenk J, Fakler B. Cornichon2 dictates the time course of excitatory transmission at individual hippocampal synapses. Neuron. 2014;82:848–858. doi: 10.1016/j.neuron.2014.03.031. PubMed DOI
Hawken NM, Zaika EI, Nakagawa T. Engineering defined membrane-embedded elements of AMPA receptor induces opposing gating modulation by cornichon 3 and stargazin. J Physiol. 2017;595:6517–6539. doi: 10.1113/JP274897. PubMed DOI PMC
Mauric V, Molders A, Harmel N, Heimrich B, Sergeeva OA, Klocker N. Ontogeny repeats the phylogenetic recruitment of the cargo exporter cornichon into AMPA receptor signaling complexes. Mol Cell Neurosci. 2013;56:10–17. doi: 10.1016/j.mcn.2013.02.001. PubMed DOI
Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022;50:W276–W279. doi: 10.1093/nar/gkac240. PubMed DOI PMC
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–W324. doi: 10.1093/nar/gku316. PubMed DOI PMC
Aber R, Chan W, Mugisha S, Jerome-Majewska LA. Transmembrane emp24 domain proteins in development and disease. Genet Res. 2019;101:e14. doi: 10.1017/S0016672319000090. PubMed DOI PMC
Qian C, Jiang Z, Zhou T, Wu T, Zhang Y, Huang J, Ouyang J, et al. Vesicle-mediated transport-related genes are prognostic predictors and are associated with tumor immunity in lung adenocarcinoma. Front Immunol. 2022;13:1034992. doi: 10.3389/fimmu.2022.1034992. PubMed DOI PMC
Wang J, Wang S, Wang J, Huang J, Lu H, Pan B, Pan H, et al. Comprehensive analysis of clinical prognosis and biological significance of CNIH4 in cervical cancer. Cancer Med. 2023;12:22381–22394. doi: 10.1002/cam4.6734. PubMed DOI PMC
Wang Z, Pan L, Guo D, Luo X, Tang J, Yang W, Zhang Y, et al. A novel five-gene signature predicts overall survival of patients with hepatocellular carcinoma. Cancer Med. 2021;10:3808–3821. doi: 10.1002/cam4.3900. PubMed DOI PMC
Xiao F, Sun G, Zhu H, Guo Y, Xu F, Hu G, Huang K, Guo H. CNIH4: a novel biomarker connected with poor prognosis and cell proliferation in patients with lower-grade glioma. Am J Cancer Res. 2023;13:2135–2154. doi: 10.18632/aging.204821. PubMed DOI PMC
Yang JY, Ke D, Li Y, Shi J, Wan SM, Wang AJ, Zhao MN, Gao H. CNIH4 governs cervical cancer progression through reducing ferroptosis. Chem Biol Interact. 2023;384:110712. doi: 10.1016/j.cbi.2023.110712. PubMed DOI
Mishra S, Bernal C, Silvano M, Anand S, Ruiz IAA. The protein secretion modulator TMED9 drives CNIH4/TGFalpha/GLI signaling opposing TMED3-WNT-TCF to promote colon cancer metastases. Oncogene. 2019;38:5817–5837. doi: 10.1038/s41388-019-0845-z. PubMed DOI PMC
Fang Z, Kong F, Zeng J, Zhang Z, Wang Y, Wang Y, Duan J, et al. Integrated analysis based on vesicle trafficking-related genes identifying CNIH4 as a novel therapeutic target for glioma. Cancer Med. 2023;12:12943–12959. doi: 10.1002/cam4.5947. PubMed DOI PMC
Kasavi C. Gene co-expression network analysis revealed novel biomarkers for ovarian cancer. Front Genet. 2022;13:971845. doi: 10.3389/fgene.2022.971845. PubMed DOI PMC
Zhang H, Lin Y, Zhuang M, Zhu L, Dai Y, Lin M. Screening and identification of CNIH4 gene associated with cell proliferation in gastric cancer based on a large-scale CRISPR-Cas9 screening database DepMap. Gene. 2023;850:146961. doi: 10.1016/j.gene.2022.146961. PubMed DOI
Drummond JB, Simmons M, Haroutunian V, Meador-Woodruff JH. Upregulation of cornichon transcripts in the dorsolateral prefrontal cortex in schizophrenia. Neuroreport. 2012;23:1031–1034. doi: 10.1097/WNR.0b013e32835ad229. PubMed DOI
Floor K, Baroy T, Misceo D, Kanavin OJ, Fannemel M, Frengen E. A 1 Mb de novo deletion within 11q13.1q13.2 in a boy with mild intellectual disability and minor dysmorphic features. Eur J Med Genet. 2012;55:695–699. doi: 10.1016/j.ejmg.2012.08.002. PubMed DOI
Sun Y, Zhu J, Yang Y, Zhang Z, Zhong H, Zeng G, Zhou D, et al. Identification of candidate DNA methylation biomarkers related to Alzheimer’s disease risk by integrating genome and blood methylome data. Transl Psychiatry. 2023;13:387. doi: 10.1038/s41398-023-02695-w. PubMed DOI PMC
Nelson EC, Agrawal A, Heath AC, Bogdan R, Sherva R, Zhang B, Al-Hasani R, et al. Evidence of CNIH3 involvement in opioid dependence. Mol Psychiatry. 2016;21:608–614. doi: 10.1038/mp.2015.102. PubMed DOI PMC
Flegelova H, Sychrova H. Mammalian NHE2 Na+/H+ exchanger mediates efflux of potassium upon heterologous expression in yeast. FEBS Lett. 2005;579:4733–4738. doi: 10.1016/j.febslet.2005.07.046. PubMed DOI
Kolacna L, Zimmermannova O, Hasenbrink G, Schwarzer S, Ludwig J, Lichtenberg-Frate H, Sychrova H. New phenotypes of functional expression of the mKir2.1 channel in potassium efflux-deficient Saccharomyces cerevisiae strains. Yeast. 2005;22:1315–1323. doi: 10.1002/yea.1333. PubMed DOI
Schwarzer S, Kolacna L, Lichtenberg-Frate H, Sychrova H, Ludwig J. Functional expression of the voltage-gated neuronal mammalian potassium channel rat ether à go-go1 in yeast. FEMS Yeast Res. 2008;8:405–413. doi: 10.1111/j.1567-1364.2007.00351.x. PubMed DOI
Velazquez D, Prusa V, Masrati G, Yariv E, Sychrova H, Ben-Tal N, Zimmermannova O. Allosteric links between the hydrophilic N-terminus and transmembrane core of human Na+/H+ antiporter NHA2. Protein Sci. 2022;31:e4460. doi: 10.1002/pro.4460. PubMed DOI PMC
Zheng J, Yao L, Zeng X, Wang B, Pan L. ERV14 receptor impacts mycelial growth via its interactions with cell wall synthase and transporters in Aspergillus niger. Front Microbiol. 2023;14:1128462. doi: 10.3389/fmicb.2023.1128462. PubMed DOI PMC