Exploration of yeast alkali metal cation/H+ antiporters: sequence and structure comparison
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
17176761
DOI
10.1007/bf02931585
Knihovny.cz E-resources
- MeSH
- DNA, Fungal analysis MeSH
- Potassium-Hydrogen Antiporters chemistry classification genetics MeSH
- Phylogeny MeSH
- Membrane Proteins chemistry classification genetics MeSH
- Molecular Sequence Data MeSH
- Sodium-Hydrogen Exchangers chemistry classification genetics MeSH
- Cation Transport Proteins chemistry classification genetics MeSH
- Saccharomyces cerevisiae Proteins chemistry classification genetics MeSH
- Amino Acid Sequence MeSH
- Sequence Analysis, DNA MeSH
- Sequence Homology, Amino Acid MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Fungal MeSH
- Potassium-Hydrogen Antiporters MeSH
- KHA1 protein, S cerevisiae MeSH Browser
- Membrane Proteins MeSH
- Sodium-Hydrogen Exchangers MeSH
- NHA1 protein, S cerevisiae MeSH Browser
- NHX1 protein, S cerevisiae MeSH Browser
- Cation Transport Proteins MeSH
- Saccharomyces cerevisiae Proteins MeSH
The Saccharomyces cerevisiae genome contains three genes encoding alkali metal cation/H+ antiporters (Nha1p, Nhx1p, Kha1p) that differ in cell localization, substrate specificity and physiological function. Systematic genome sequencing of other yeast species revealed highly conserved homologous ORFs in all of them. We compared the yeast sequences both at DNA and protein levels. The subfamily of yeast endosomal/prevacuolar Nhx1 antiporters is closely related to mammalian plasma membrane NHE proteins and to both plasma membrane and vacuolar plant antiporters. The high sequence conservation within this subfamily of yeast antiporters suggests that Nhx1p is of great importance in cell physiology. Yeast Kha1 proteins probably belong to the same subfamily as bacterial antiporters, whereas Nhal proteins form a distinct subfamily.
See more in PubMed
FEBS Lett. 1998 Jun 23;430(1-2):116-25 PubMed
FEMS Microbiol Lett. 1999 Feb 15;171(2):167-72 PubMed
Gene. 2006 Mar 15;369:27-34 PubMed
Bioinformatics. 2000 Apr;16(4):404-5 PubMed
Microbiology. 1999 Nov;145 ( Pt 11):3221-8 PubMed
Proc Int Conf Intell Syst Mol Biol. 1998;6:175-82 PubMed
J Biol Chem. 2002 Aug 9;277(32):29036-44 PubMed
Folia Microbiol (Praha). 2004;49(5):519-25 PubMed
Mol Microbiol. 2001 May;40(3):656-68 PubMed
J Biol Chem. 2000 Oct 6;275(40):31488-95 PubMed
J Mol Biol. 1982 May 5;157(1):105-32 PubMed
Mol Biol Cell. 2000 Dec;11(12):4277-94 PubMed
Biochemistry. 2001 Mar 20;40(11):3403-12 PubMed
J Bacteriol. 1998 Nov;180(22):5860-5 PubMed
FEBS Lett. 1997 Mar 17;405(1):119-24 PubMed
Yeast. 1998 Sep 30;14(13):1167-74 PubMed
Microbiology. 2002 Apr;148(Pt 4):1225-32 PubMed
J Biol Chem. 1998 Aug 14;273(33):21054-60 PubMed
Yeast. 2002 Nov;19(15):1365-72 PubMed
Physiol Res. 2004;53 Suppl 1:S91-8 PubMed
Nature. 2000 Jan 6;403(6765):112-5 PubMed
J Biol Chem. 1997 Sep 5;272(36):22373-6 PubMed
Nature. 2004 Jul 1;430(6995):35-44 PubMed
Biochim Biophys Acta. 2000 Mar 10;1469(1):1-30 PubMed
Microbiol Mol Biol Rev. 2000 Jun;64(2):354-411 PubMed
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6896-901 PubMed
J Biol Chem. 2001 Aug 10;276(32):29740-7 PubMed
Microbiology. 2000 May;146 ( Pt 5):1035-44 PubMed
Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 PubMed
Yeast. 1995 Jul;11(9):829-38 PubMed
Mol Microbiol. 2005 Jan;55(2):588-600 PubMed
J Biochem. 2004 Jan;135(1):139-48 PubMed
Biochemistry. 1998 Jun 9;37(23):8282-8 PubMed
J Biol Chem. 2004 Mar 26;279(13):12438-47 PubMed
Yeast. 1995 Dec;11(16):1575-611 PubMed
EMBO J. 1992 Apr;11(4):1631-40 PubMed
Science. 2003 Jul 4;301(5629):71-6 PubMed
Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387-95 PubMed
J Biotechnol. 2001 Jun 15;88(2):151-8 PubMed
Nucleic Acids Res. 1998 Jan 1;26(1):33-7 PubMed
FEBS Lett. 2003 Jun 19;545(2-3):239-45 PubMed
Plant Cell Physiol. 2004 Feb;45(2):146-59 PubMed
Mol Biol Cell. 2005 Mar;16(3):1396-405 PubMed
J Biochem. 2002 Jun;131(6):821-31 PubMed
Pflugers Arch. 2004 Feb;447(5):549-65 PubMed
Nature. 2003 May 15;423(6937):241-54 PubMed
Bioinformatics. 2001 Dec;17(12):1244-5 PubMed
Cell. 2004 Aug 6;118(3):351-61 PubMed
J Biol Chem. 1997 Oct 17;272(42):26145-52 PubMed
Microbiology. 1998 Oct;144 ( Pt 10):2749-58 PubMed
Curr Opin Cell Biol. 2000 Aug;12(4):431-4 PubMed
Biochim Biophys Acta. 2000 May 1;1465(1-2):140-51 PubMed
J Biol Chem. 2004 Jan 30;279(5):3265-72 PubMed
Bioinformatics. 2001 Sep;17(9):849-50 PubMed
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12510-5 PubMed
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D284-8 PubMed
FEMS Microbiol Rev. 1997 Sep;21(2):113-34 PubMed
Nucleic Acids Res. 1998 Jan 1;26(1):73-9 PubMed
Am J Physiol Cell Physiol. 2005 Feb;288(2):C223-39 PubMed
J Biol Chem. 2004 Feb 6;279(6):4498-506 PubMed
Mol Cell Biochem. 2003 Dec;254(1-2):117-24 PubMed
The Role of Cornichons in the Biogenesis and Functioning of Monovalent-Cation Transport Systems
Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species