Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
18492255
PubMed Central
PMC2424070
DOI
10.1186/1471-2180-8-80
PII: 1471-2180-8-80
Knihovny.cz E-zdroje
- MeSH
- alkalické kovy metabolismus MeSH
- Candida genetika růst a vývoj metabolismus patogenita MeSH
- draslík metabolismus MeSH
- fluorescenční mikroskopie MeSH
- fungální proteiny genetika metabolismus MeSH
- kationty metabolismus MeSH
- lithium metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- Na(+)-H(+) antiport genetika metabolismus MeSH
- proteiny přenášející kationty genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika růst a vývoj metabolismus MeSH
- sekundární struktura proteinů MeSH
- sekvence nukleotidů MeSH
- soli metabolismus MeSH
- substrátová specifita MeSH
- superoxiddismutasa 1 MeSH
- superoxiddismutasa metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- alkalické kovy MeSH
- CNH1 protein, Candida albicans MeSH Prohlížeč
- draslík MeSH
- fungální proteiny MeSH
- kationty MeSH
- lithium MeSH
- membránové proteiny MeSH
- Na(+)-H(+) antiport MeSH
- NHA1 protein, S cerevisiae MeSH Prohlížeč
- proteiny přenášející kationty MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- soli MeSH
- superoxiddismutasa 1 MeSH
- superoxiddismutasa MeSH
BACKGROUND: The virulence of Candida species depends on many environmental conditions. Extracellular pH and concentration of alkali metal cations belong among important factors. Nevertheless, the contribution of transporters mediating the exchange of alkali metal cations for protons across the plasma membrane to the cell salt tolerance and other physiological properties of various Candida species has not been studied so far. RESULTS: The tolerance/sensitivity of four pathogenic Candida species to alkali metal cations was tested and the role of one of the cation transporters in that tolerance (presumed to be the plasma-membrane Na+/H+ antiporter) was studied. The genes encoding these antiporters in the most and least salt sensitive species, C. dubliniensis and C. parapsilosis respectively, were identified, cloned and functionally expressed in the plasma membranes of Saccharomyces cerevisiae cells lacking their own cation exporters. Both CpCnh1 and CdCnh1 antiporters had broad substrate specificity and transported Na+, K+, Li+, and Rb+. Their activity in S. cerevisiae cells differed; CpCnh1p provided cells with a much higher salt tolerance than the CdCnh1 antiporter. The observed difference in activity was confirmed by direct measurements of sodium and potassium efflux mediated by these antiporters. CONCLUSION: We have cloned two genes encoding putative Na+/H+ antiporters in C. parapsilosis and C. dubliniensis, and characterized the transport properties of encoded proteins. Our results show that the activity of plasma-membrane Na+/H+ antiporters is one of the factors determining the tolerance of pathogenic Candida species to high external concentrations of alkali metal cations.
Zobrazit více v PubMed
Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12:317–324. doi: 10.1016/j.tim.2004.05.008. PubMed DOI
Odds FC. Morphogenesis in Candida albicans. Crit Rev Microbiol. 1985;12:45–93. PubMed
Alves SH, Milan EP, de Laet Sant'Ana P, Oliveira LO, Santurio JM, Colombo AL. Hypertonic sabouraud broth as a simple and powerful test for Candida dubliniensis screening. Diagn Microbiol Infect Dis. 2002;43:85–86. doi: 10.1016/S0732-8893(02)00368-1. PubMed DOI
Hermann P, Forgacs E, Gal B, Lenkey G, Nagy F, Rozgonyi F. Effects of alkali metal ions on some virulence traits of Candida albicans. Folia Microbiol. 2003;48:173–176. PubMed
Watanabe H, Azuma M, Igarashi K, Ooshima H. Relationship between cell morphology and intracellular potassium concentration in Candida albicans. J Antibiot. 2006;59:281–287. PubMed
Rodriguez-Navarro A. Potassium transport in fungi and plants. Biochim Biophys Acta. 2000;1469:1–30. PubMed
Kinclova O, Ramos J, Potier S, Sychrova H. Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol. 2001;40:656–668. doi: 10.1046/j.1365-2958.2001.02412.x. PubMed DOI
Banuelos MA, Sychrova H, Bleykasten-Grosshans C, Souciet JL, Potier S. The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology. 1998;144:2749–2758. PubMed
Velkova K, Sychrova H. The Debaryomyces hansenii NHA1 gene encodes a plasma membrane alkali-metal-cation antiporter with broad substrate specificity. Gene. 2006;369:27–34. doi: 10.1016/j.gene.2005.10.007. PubMed DOI
Papouskova K, Sychrova H. Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology. FEBS Lett. 2006;580:1971–1976. doi: 10.1016/j.febslet.2006.02.064. PubMed DOI
Papouskova K, Sychrova H. Schizosaccharomyces pombe possesses two plasma membrane alkali metal cation/H+ antiporters differing in their substrate specificity. FEMS Yeast Res. 2007;7:188–195. doi: 10.1111/j.1567-1364.2006.00178.x. PubMed DOI
Sychrova H, Ramirez J, Pena A. Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1999;171:167–172. PubMed
Brett CL, Tukaye DN, Mukherjee S, Rao R. The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell. 2005;16:1396–1405. doi: 10.1091/mbc.E04-11-0999. PubMed DOI PMC
Kinclova-Zimmermannova O, Gaskova D, Sychrova H. The Na+, K+/H+-antiporter Nha1 influences the plasma membrane potential of Saccharomyces cerevisiae. FEMS Yeast Res. 2006;6:792–800. doi: 10.1111/j.1567-1364.2006.00062.x. PubMed DOI
Simon E, Barcelo A, Arino J. Mutagenesis analysis of the yeast Nha1 Na+/H+ antiporter carboxy-terminal tail reveals residues required for function in cell cycle. FEBS Lett. 2003;545:239–245. doi: 10.1016/S0014-5793(03)00557-X. PubMed DOI
Simon E, Clotet J, Calero F, Ramos J, Arino J. A screening for high copy suppressors of the sit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation. J Biol Chem. 2001;276:29740–29747. doi: 10.1074/jbc.M101992200. PubMed DOI
Kinclova-Zimmermannova O, Sychrova H. Functional study of the Nha1p C-terminus: involvement in cell response to changes in external osmolarity. Curr Genet. 2006;49:229–236. doi: 10.1007/s00294-005-0050-1. PubMed DOI
Kamauchi S, Mitsui K, Ujike S, Haga M, Nakamura N, Inoue H, Sakajo S, Ueda M, Tanaka A, Kanazawa H. Structurally and functionally conserved domains in the diverse hydrophilic carboxy-terminal halves of various yeast and fungal Na+/H+ antiporters (Nhalp) J Biochem (Tokyo) 2002;131:821–831. PubMed
Kinclova O, Potier S, Sychrova H. The Candida albicans Na+/H+ antiporter exports potassium and rubidium. FEBS Lett. 2001;504:11–15. doi: 10.1016/S0014-5793(01)02755-7. PubMed DOI
Kinclova-Zimmermannova O, Sychrova H. Plasma-membrane Cnh1 Na+/H+ antiporter regulates potassium homeostasis in Candida albicans. Microbiology. 2007;153:2603–2612. doi: 10.1099/mic.0.2007/008011-0. PubMed DOI
Soong T-W, Yong T-F, Ramanan N, Wang Y. The Candida albicans antiporter gene CNH1 has a role in Na+ and H+ transport, salt tolerance, and morphogenesis. Microbiology. 2000;146:1035–1044. PubMed
Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N. Yeast diversity in hypersaline habitats. FEMS Microbiol Lett. 2005;244:229–234. doi: 10.1016/j.femsle.2005.01.043. PubMed DOI
Pribylova L, Papouskova K, Zavrel M, Souciet J, Sychrova H. Exploration of yeast alkali metal cation/H+ antiporters: sequence and structure comparison. Folia Microbiol. 2006;51:413–424. PubMed
Fitzpatrick D, Logue M, Stajich J, Butler G. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol. 2006;6:99. doi: 10.1186/1471-2148-6-99. PubMed DOI PMC
Miranda I, Silva R, Santos M. Evolution of the genetic code in yeasts. Yeast. 2006;23:203–213. doi: 10.1002/yea.1350. PubMed DOI
Sychrova H. Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiol Res. 2004;53:91–98. PubMed
Gadanho M, Sampaio J. Occurrence and diversity of yeasts in the mid-atlantic ridge hydrothermal fields near the Azores archipelago. Microb Ecol. 2005;50:408–417. doi: 10.1007/s00248-005-0195-y. PubMed DOI
Kinclova-Zimmermannova O, Zavrel M, Sychrova H. Importance of the seryl and threonyl residues of the fifth transmembrane domain to the substrate specificity of yeast plasma membrane Na+/H+ antiporters. Mol Membr Biol. 2006;23:349–361. doi: 10.1080/09687860600738908. PubMed DOI
Kinclova-Zimmermannova O, Zavrel M, Sychrova H. Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters. J Biol Chem. 2005;280:30638–30647. doi: 10.1074/jbc.M506341200. PubMed DOI
Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2. Cold Spring Harbor Press; 1989.
Hoffmann C, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformaion of Escherichia coli. Gene. 1987;57:267–272. doi: 10.1016/0378-1119(87)90131-4. PubMed DOI
Horak J, Wolf DH. Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J Bacteriol. 2001;183:3083–3088. doi: 10.1128/JB.183.10.3083-3088.2001. PubMed DOI PMC
Potassium Uptake Mediated by Trk1 Is Crucial for Candida glabrata Growth and Fitness
Four pathogenic Candida species differ in salt tolerance