The superior growth of Kluyveromyces marxianus at very low potassium concentrations is enabled by the high-affinity potassium transporter Hak1
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
CA18229
COST
Ministry of Education
University of Córdoba
720824
European Union
PubMed
39363175
PubMed Central
PMC11484806
DOI
10.1093/femsyr/foae031
PII: 7810273
Knihovny.cz E-zdroje
- Klíčová slova
- Kluyveromyces marxianu, K+–H+ symporter, affinity, potassium, transporter, uniporter,
- MeSH
- draslík * metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- genový knockout MeSH
- Kluyveromyces * genetika metabolismus růst a vývoj MeSH
- koncentrace vodíkových iontů MeSH
- membránové potenciály MeSH
- proteiny přenášející kationty * genetika metabolismus MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae * genetika metabolismus růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- draslík * MeSH
- fungální proteiny MeSH
- proteiny přenášející kationty * MeSH
The non-conventional yeast Kluyveromyces marxianus has recently emerged as a promising candidate for many food, environment, and biotechnology applications. This yeast is thermotolerant and has robust growth under many adverse conditions. Here, we show that its ability to grow under potassium-limiting conditions is much better than that of Saccharomyces cerevisiae, suggesting a very efficient and high-affinity potassium uptake system(s) in this species. The K. marxianus genome contains two genes for putative potassium transporters: KmHAK1 and KmTRK1. To characterize the products of the two genes, we constructed single and double knock-out mutants in K. marxianus and also expressed both genes in an S. cerevisiae mutant, that lacks potassium importers. Our results in K. marxianus and S. cerevisiae revealed that both genes encode efficient high-affinity potassium transporters, contributing to potassium homeostasis and maintaining plasma-membrane potential and cytosolic pH. In K. marxianus, the presence of HAK1 supports growth at low K+ much better than that of TRK1, probably because the substrate affinity of KmHak1 is about 10-fold higher than that of KmTrk1, and its expression is induced ~80-fold upon potassium starvation. KmHak1 is crucial for salt stress survival in both K. marxianus and S. cerevisiae. In co-expression experiments with ScTrk1 and ScTrk2, its robustness contributes to an increased tolerance of S. cerevisiae cells to sodium and lithium salt stress.
Zobrazit více v PubMed
Albacar M, Sacka L, Calafi C et al. The toxic effects of Ppz1 overexpression involve Nha1-mediated deregulation of K+ and H+ homeostasis. J Fungi. 2021;7:1010. 10.3390/jof7121010. PubMed DOI PMC
Aleman F, Caballero F, Rodenas R et al. The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression. Front Plant Sci. 2014;5:430. 10.3389/fpls.2014.00430. PubMed DOI PMC
Arino J, Ramos J, Sychrova H. Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev. 2010;74:95–120. 10.1128/MMBR.00042-09. PubMed DOI PMC
Arino J, Ramos J, Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast. 2019;36:177–93. 10.1002/yea.3355. PubMed DOI
Borovikova D, Herynkova P, Rapoport A et al. Potassium uptake system Trk2 is crucial for yeast cell viability during anhydrobiosis. FEMS Microbiol Lett. 2014;350:28–33. 10.1111/1574-6968.12344. PubMed DOI
Caro G, Bieber J, Ruiz-Castilla FJ et al. Trk1, the sole potassium-specific transporter in Candida glabrata, contributes to the proper functioning of various cell processes. World J Microbiol Biotechnol. 2019;35:124. 10.1007/s11274-019-2698-6. PubMed DOI
Elicharova H, Husekova B, Sychrova H. Three Candida albicans potassium uptake systems differ in their ability to provide Saccharomyces cerevisiae trk1trk2 mutants with necessary potassium. FEMS Yeast Res. 2016;16:fov039. 10.1093/femsyr/fow039. PubMed DOI
Hanscho M, Ruckerbauer DE, Chauhan N et al. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Res. 2012;12:796–808. 10.1111/j.1567-1364.2012.00830.x. PubMed DOI
Hess DC, Lu WY, Rabinowitz JD et al. Ammonium toxicity and potassium limitation in yeast. PLoS Biol. 2006;4:2012–23. 10.1371/journal.pbio.0040351. PubMed DOI PMC
Inokuma K, Ishii J, Hara KY et al. Complete genome sequence of Kluyveromyces marxianus NBRC1777, a nonconventional thermotolerant yeast. Genome Announc. 2015;3:e00389–15. 10.1128/genomeA.00389-15. PubMed DOI PMC
Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9. 10.1038/s41586-021-03819-2. PubMed DOI PMC
Kodedova M, Sychrova H. Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae. PLoS One. 2015;10:e0139306. 10.1371/journal.pone.0139306. PubMed DOI PMC
Kurtzman CP, Fell JW, Boekhout T. 2010. The Yeasts, A Taxonomic Study. 5th Edition edn. Amsterdam, Elsevier, 477–9.
Lam FH, Ghaderi A, Fink GR et al. Biofuels. Engineering alcohol tolerance in yeast. Science. 2014;346:71–75. 10.1126/science.1257859. PubMed DOI PMC
Maresova L, Sychrova H. Applications of a microplate reader in yeast physiology research. BioTechniques. 2007;43:667–72. 10.2144/000112620. PubMed DOI
Martinez JL, Sychrova H, Ramos J. Monovalent cations regulate expression and activity of the Hak1 potassium transporter in Debaryomyces hansenii. Fung Genet Biol. 2011;48:177–84. 10.1016/j.fgb.2010.06.013. PubMed DOI
Masaryk J, Sychrova H. Yeast Trk1 potassium transporter gradually changes its affinity in response to both external and internal signals. J Fungi. 2022;8:432. 10.3390/jof8050432. PubMed DOI PMC
Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998;394:192–5. 10.1038/28190. PubMed DOI
Morrissey JP, Etschmann MM, Schrader J et al. Cell factory applications of the yeast kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast. 2015;32:3–16. 10.1002/yea.3054. PubMed DOI
Navarette C, Petrezselyova S, Barretto L et al. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance both in potassium sufficient and limiting conditions. FEMS Yeast Res. 2010;10:508–17. PubMed
Omasits U, Ahrens CH, Muller S et al. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014;30:884–6. 10.1093/bioinformatics/btt607. PubMed DOI
Papouskova K, Gomez M, Kodedova M et al. Heterologous expression reveals unique properties of Trk K+ importers from nonconventional biotechnologically relevant yeast species together with their potential to support saccharomyces cerevisiae growth. Yeast. 2023;40:68–83. 10.1002/yea.3834. PubMed DOI
Perkins J, Gadd GM. Accumulation and intracellular compartmentation of lithium ions in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1993;107:255–60. 10.1111/j.1574-6968.1993.tb06039.x. PubMed DOI
Prista C, Gonzalez-Hernandez JC, Ramos J et al. Cloning and characterization of two K+ transporters of debaryomyces hansenii. Microbiology. 2007;153:3034–43. 10.1099/mic.0.2007/006080-0. PubMed DOI
Rajkumar A, Morrissey J. Protocols for marker-free gene knock-out and knock-down in Kluyveromyces marxianus using CRISPR/Cas9. FEMS Yeast Res. 2022;22:foab067. 10.1093/femsyr/foab067. PubMed DOI PMC
Rajkumar A, Varela J, Juergens H et al. Biological parts for Kluyveromyces marxianus synthetic biology. Front Bioeng Biotechnol. 2019;7:fbioe.2019.00097. 10.3389/fbioe.2019.00097. PubMed DOI PMC
Ramos J, Arino J, Sychrova H. Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol Lett. 2011;317:1–8. 10.1111/j.1574-6968.2011.02214.x. PubMed DOI
Ramos J, Haro R, Rodriguez-Navarro A. Regulation of potassium fluxes in Saccharomyces cerevisiae. Biochim Biophys A. 1990;1029:211–7. 10.1016/0005-2736(90)90156-I. PubMed DOI
Reisser C, Dick C, Kruglyak L et al. Genetic basis of ammonium toxicity resistance in a sake strain of yeast: a mendelian case. G3. 2013;3:733–40. 10.1534/g3.113.005884. PubMed DOI PMC
Rodriguez-Navarro A. Potassium transport in fungi and plants. Biochim Biophys A—Rev Biomembranes. 2000;1469:1–30. 10.1016/S0304-4157(99)00013-1. PubMed DOI
Ruiz-Castilla FJ, Bieber J, Caro G et al. Regulation and activity of CaTrk1, CaAcu1 and CaHak1, the three plasma membrane potassium transporters in Candida albicans. Biochim Biophys A-Biomembranes. 2021a;1863:83486. PubMed
Ruiz-Castilla FJ, Perez FSR, Ramos-Moreno L et al. Candida albicans potassium transporters. Int J Mol Sci. 2022;23:4884. 10.3390/ijms23094884. PubMed DOI PMC
Ruiz-Castilla FJ, Rodriguez-Castro E, Michan C et al. The potassium transporter Hak1 in Candida albicans, regulation and physiological effects at limiting potassium and under acidic conditions. J Fungi. 2021b;7:362. 10.3390/jof7050362. PubMed DOI PMC
Varadi M, Anyango S, Deshpande M et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–44. 10.1093/nar/gkab1061. PubMed DOI PMC
Varela JA, Puricelli M, Montini N et al. Expansion and diversification of MFS transporters in Kluyveromyces marxianus. Front Microbiol. 2018;9:3330. 10.3389/fmicb.2018.03330. PubMed DOI PMC
Xie S, Shen B, Zhang C et al. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One. 2014;9:e100448. 10.1371/journal.pone.0100448. PubMed DOI PMC
Xu X, Williams TC, Divne C et al. Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnol Biofuels. 2019;12:97. 10.1186/s13068-019-1427-6. PubMed DOI PMC
Zimmermannova O, Salazar A, Sychrova H et al. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance. FEMS Yeast Res. 2015;15:fov029. 10.1093/femsyr/fov029. PubMed DOI
Zayats V, Stockner T, Pandey SK et al. A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues. Biochim Biophys Acta. 2015;1848:1183–95. 10.1016/j.bbamem.2015.02.007. PubMed DOI