Trk1, the sole potassium-specific transporter in Candida glabrata, contributes to the proper functioning of various cell processes
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
XX
Plan Propio Investigación, University of Córdoba
XXII
Plan Propio Investigación, University of Córdoba
16-03398S
Czech Science Foundation
PubMed
31346773
DOI
10.1007/s11274-019-2698-6
PII: 10.1007/s11274-019-2698-6
Knihovny.cz E-zdroje
- Klíčová slova
- Candida glabrata, Membrane potential, Potassium transport, Saccharomyces cerevisiae, Salt tolerance, Trk1,
- MeSH
- buněčná membrána metabolismus MeSH
- Candida glabrata genetika metabolismus MeSH
- draslík metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- homeostáza MeSH
- koncentrace vodíkových iontů MeSH
- proteiny přenášející kationty genetika metabolismus MeSH
- regulace genové exprese u hub MeSH
- sodík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- draslík MeSH
- fungální proteiny MeSH
- proteiny přenášející kationty MeSH
- sodík MeSH
Candida glabrata is a haploid yeast that is considered to be an emergent pathogen since it is the second most prevalent cause of candidiasis. Contrary to most yeasts, this species carries only one plasma membrane potassium transporter named CgTrk1. We show in this work that the activity of this transporter is regulated at the posttranslational level, and thus Trk1 contributes to potassium uptake under very different external cation concentrations. In addition to its function in potassium uptake, we report a diversity of physiological effects related to this transporter. CgTRK1 contributes to proper cell size, intracellular pH and membrane-potential homeostasis when expressed in Saccharomyces cerevisiae. Moreover, lithium influx experiments performed both in C. glabrata and S. cerevisiae indicate that the salt tolerance phenotype linked to CgTrk1 can be related to a high capacity to discriminate between potassium and lithium (or sodium) during the transport process. In summary, we show that CgTRK1 exerts a diversity of pleiotropic physiological roles and we propose that the corresponding protein may be an attractive pharmacological target for the development of new antifungal drugs.
Department of Biochemistry and Molecular Biology University of Córdoba 14071 Córdoba Spain
Department of Microbiology University of Córdoba 14071 Córdoba Spain
Zobrazit více v PubMed
Methods Enzymol. 2002;347:441-51 PubMed
Eukaryot Cell. 2004 Apr;3(2):359-68 PubMed
Nature. 2004 Jul 1;430(6995):35-44 PubMed
BMC Evol Biol. 2006 Nov 22;6:99 PubMed
Med Mycol. 2007 Jun;45(4):321-46 PubMed
Yeast. 2010 Jun;27(6):317-25 PubMed
Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120 PubMed
FEMS Yeast Res. 2010 Aug 1;10(5):508-17 PubMed
Fungal Genet Biol. 2011 Feb;48(2):177-84 PubMed
FEMS Microbiol Lett. 2011 Apr;317(1):1-8 PubMed
Biochim Biophys Acta. 1990 Nov 16;1029(2):211-7 PubMed
BMC Genomics. 2013 Sep 14;14:623 PubMed
J Gen Physiol. 2014 Jun;143(6):659-78 PubMed
Yeast. 2014 Aug;31(8):279-88 PubMed
Biochim Biophys Acta. 2015 May;1848(5):1183-95 PubMed
FEMS Yeast Res. 2015 Jun;15(4):fov029 PubMed
PLoS One. 2015 Sep 29;10(9):e0139306 PubMed
Can J Microbiol. 2016 May;62(5):394-401 PubMed
PLoS One. 2016 Apr 08;11(4):e0153374 PubMed
FEMS Yeast Res. 2016 Jun;16(4): PubMed
FEMS Yeast Res. 2017 Aug 1;17(5): PubMed
J Mycol Med. 2018 Dec;28(4):645-650 PubMed
Yeast. 2019 Apr;36(4):177-193 PubMed
Med Mycol. 2018 Dec 6;: PubMed
Eur J Biochem. 1986 Jan 15;154(2):307-11 PubMed
J Bacteriol. 1984 Sep;159(3):940-5 PubMed
J Bacteriol. 1994 Jan;176(1):249-52 PubMed
FEMS Microbiol Lett. 1996 Jan 15;135(2-3):157-60 PubMed
Clin Microbiol Rev. 1995 Oct;8(4):462-78 PubMed
Appl Environ Microbiol. 1997 Oct;63(10):4005-9 PubMed
J Biol Chem. 1998 Jun 12;273(24):14838-44 PubMed
Yeast. 1998 Sep 30;14(13):1189-97 PubMed