K+–H+ symporter
Dotaz
Zobrazit nápovědu
Maintenance of proper intracellular concentrations of monovalent cations, mainly sodium and potassium, is a requirement for survival of any cell. In the budding yeast Saccharomyces cerevisiae, monovalent cation homeostasis is determined by the active extrusion of protons through the Pma1 H+ -ATPase (reviewed in another chapter of this issue), the influx and efflux of these cations through the plasma membrane transporters (reviewed in this chapter), and the sequestration of toxic cations into the vacuoles. Here, we will describe the structure, function, and regulation of the plasma membrane transporters Trk1, Trk2, Tok1, Nha1, and Ena1, which play a key role in maintaining physiological intracellular concentrations of Na+ , K+ , and H+ , both under normal growth conditions and in response to stress.
- MeSH
- buněčná membrána genetika metabolismus MeSH
- draslík metabolismus MeSH
- draslíkové kanály genetika metabolismus MeSH
- homeostáza MeSH
- iontový transport MeSH
- kationty jednomocné metabolismus MeSH
- Na(+)-H(+) antiport genetika metabolismus MeSH
- proteiny přenášející kationty genetika metabolismus MeSH
- protonové ATPasy MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sodík metabolismus MeSH
- sodíko-draslíková ATPasa genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- MeSH
- dusík močoviny v krvi MeSH
- inhibitory Na-K-Cl symportérů škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- srdeční selhání farmakoterapie krev terapie MeSH
- výsledek terapie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- komentáře MeSH
Dekkera bruxellensis is important for lambic beer fermentation but is considered a spoilage yeast in wine fermentation. We compared two D. bruxellensis strains isolated from wine and found that they differ in some basic properties, including osmotolerance. The genomes of both strains contain two highly similar copies of genes encoding putative glycerol-proton symporters from the STL family that are important for yeast osmotolerance. Cloning of the two DbSTL genes and their expression in suitable osmosensitive Saccharomyces cerevisiae mutants revealed that both identified genes encode functional glycerol uptake systems, but only DbStl2 has the capacity to improve the osmotolerance of S. cerevisiae cells.
- MeSH
- Dekkera genetika izolace a purifikace metabolismus fyziologie MeSH
- druhová specificita MeSH
- fungální proteiny genetika metabolismus MeSH
- genom bakteriální genetika MeSH
- glycerol metabolismus MeSH
- osmoregulace genetika MeSH
- protony MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika MeSH
- symportéry genetika metabolismus MeSH
- testy genetické komplementace MeSH
- víno mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- MeSH
- dusičnany * toxicita MeSH
- jod moč MeSH
- kreatinin moč MeSH
- lidé MeSH
- perchloráty * moč toxicita MeSH
- pracovní expozice * MeSH
- referenční hodnoty MeSH
- regresní analýza MeSH
- štítná žláza anatomie a histologie účinky léků MeSH
- symportéry antagonisté a inhibitory MeSH
- thiokyanatany * toxicita MeSH
- thyreotropin krev MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- souhrny MeSH
Recently, we have identified two astrocytic subpopulations in the cortex of GFAP-EGFP mice, in which the astrocytes are visualized by the enhanced green-fluorescent protein (EGFP) under the control of the human glial fibrillary acidic protein (GFAP) promotor. These astrocytic subpopulations, termed high response- (HR-) and low response- (LR-) astrocytes, differed in the extent of their swelling during oxygen-glucose deprivation (OGD). In the present study we focused on identifying the ion channels or transporters that might underlie the different capabilities of these two astrocytic subpopulations to regulate their volume during OGD. Using three-dimensional confocal morphometry, which enables quantification of the total astrocytic volume, the effects of selected inhibitors of K⁺ and Cl⁻ channels/transporters or glutamate transporters on astrocyte volume changes were determined during 20 minute-OGD in situ. The inhibition of volume regulated anion channels (VRACs) and two-pore domain potassium channels (K(2P)) highlighted their distinct contributions to volume regulation in HR-/LR-astrocytes. While the inhibition of VRACs or K(2P) channels revealed their contribution to the swelling of HR-astrocytes, in LR-astrocytes they were both involved in anion/K⁺ effluxes. Additionally, the inhibition of Na⁺-K⁺-Cl⁻ co-transporters in HR-astrocytes led to a reduction of cell swelling, but it had no effect on LR-astrocyte volume. Moreover, employing real-time single-cell quantitative polymerase chain reaction (PCR), we characterized the expression profiles of EGFP-positive astrocytes with a focus on those ion channels and transporters participating in astrocyte swelling and volume regulation. The PCR data revealed the existence of two astrocytic subpopulations markedly differing in their gene expression levels for inwardly rectifying K⁺ channels (Kir4.1), K(2P) channels (TREK-1 and TWIK-1) and Cl⁻ channels (ClC2). Thus, we propose that the diverse volume changes displayed by cortical astrocytes during OGD mainly result from their distinct expression patterns of ClC2 and K(2P) channels.
- MeSH
- astrocyty cytologie účinky léků metabolismus MeSH
- biologické modely MeSH
- chloridové kanály metabolismus MeSH
- draslíkové kanály metabolismus MeSH
- gliový fibrilární kyselý protein metabolismus MeSH
- glukosa nedostatek MeSH
- kyslík MeSH
- lidé MeSH
- modulátory membránového transportu farmakologie MeSH
- mozková kůra cytologie MeSH
- myši transgenní MeSH
- myši MeSH
- pohlavní dimorfismus MeSH
- regulace genové exprese účinky léků MeSH
- sodík-draslík-chloridové symportéry metabolismus MeSH
- stanovení celkové genové exprese MeSH
- symportéry metabolismus MeSH
- techniky in vitro MeSH
- velikost buňky účinky léků MeSH
- vezikulární transportní proteiny pro glutamát metabolismus MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Undecanesulfonate is transported by uncoupling protein-1. Its inability to induce H+ uniport with reconstituted uncoupling protein-1 supports fatty acid cycling hypothesis. Rial et al. [Rial, E., Aguirregoitia, E., Jimenez-Jimenez, J., & Ledesma, A. (2004). Alkylsulfonates activate the uncoupling protein UCP1: Implications for the transport mechanism. Biochimica et Biophysica Acta, 1608, 122-130], have challenged the fatty acid cycling by observing uncoupling of brown adipose tissue mitochondria due to undecanesulfonate, interpreted as allosteric activation of uncoupling protein-1. We have estimated undecanesulfonate effects after elimination of endogenous fatty acids by carnitine cycle in the presence or absence of bovine serum albumin. We show that the undecanesulfonate effect is partly due to fatty acid release from albumin when undecanesulfonate releases bound fatty acid and partly represents a non-specific uncoupling protein-independent acceleration of respiration, since it proceeds also in rat heart mitochondria lacking uncoupling protein-1 and membrane potential is not decreased upon addition of undecanesulfonate without albumin. When the net fatty acid-induced uncoupling was assayed, the addition of undecanesulfonate even slightly inhibited the uncoupled respiration. We conclude that undecanesulfonate does not allosterically activate uncoupling protein-1 and that fatty acid cycling cannot be excluded on a basis of its non-specific effects.
- MeSH
- alkylsulfonany farmakologie metabolismus MeSH
- biologické modely MeSH
- biologický transport účinky léků MeSH
- hnědá tuková tkáň metabolismus účinky léků MeSH
- iontové kanály MeSH
- iontový transport účinky léků MeSH
- křečci praví MeSH
- krysa rodu rattus MeSH
- mastné kyseliny metabolismus MeSH
- membránové potenciály účinky léků MeSH
- membránové proteiny metabolismus MeSH
- mitochondriální membrány fyziologie účinky léků MeSH
- mitochondriální proteiny MeSH
- mitochondrie metabolismus účinky léků MeSH
- protony MeSH
- sérový albumin hovězí farmakologie MeSH
- spotřeba kyslíku účinky léků MeSH
- srdeční mitochondrie metabolismus účinky léků MeSH
- transportní proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH