Residues R177 and S178 of the human Na+/H+ antiporter NHA2 are involved in its inhibition by the flavonoid phloretin

. 2025 Mar ; 599 (6) : 901-911. [epub] 20241231

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39737617

Grantová podpora
21-08985S Grantová Agentura České Republiky

The Homo sapiens Na+/H+ antiporter NHA2 (SLC9B2) transports Na+ or Li+ in exchange for protons across cell membranes, and its dysfunction results in various pathologies. The activity of HsNHA2 is specifically inhibited by the flavonoid phloretin. Using bioinformatic modeling, we predicted two amino acids (R177 and S178) as being important for the binding of phloretin to the HsNHA2 molecule. Functional expression of HsNHA2 in Saccharomyces cerevisiae and its site-directed mutagenesis revealed that while the R177T mutation resulted in an antiporter that was less sensitive to phloretin, the S178T mutation enhanced the inhibitory effect of phloretin on HsNHA2. Our data corroborate the transport properties of HsNHA2 and its interactions with an inhibitor and can be helpful for the development of new therapeutics targeting this antiporter and its pleiotropic physiological functions.

Zobrazit více v PubMed

Padan E and Landau M (2016) Sodium‐proton (Na+/H+) antiporters: properties and roles in health and disease. Met Ions Life Sci 16, 391–458. PubMed

Masrati G, Dwivedi M, Rimon A, Gluck‐Margolin Y, Kessel A, Ashkenazy H, Mayrose I, Padan E and Ben‐Tal N (2018) Broad phylogenetic analysis of cation/proton antiporters reveals transport determinants. Nat Commun 9, 4205. PubMed PMC

Pedersen SF and Counillon L (2019) The SLC9A‐C mammalian Na+/H+ exchanger family: molecules, mechanisms, and physiology. Physiol Rev 99, 2015–2113. PubMed

Chintapalli VR, Kato A, Henderson L, Hirata T, Woods DJ, Overend G, Davies SA, Romero MF and Dow JA (2015) Transport proteins NHA1 and NHA2 are essential for survival, but have distinct transport modalities. Proc Natl Acad Sci U S A 112, 11720–11725. PubMed PMC

Chen SR, Chen M, Deng SL, Hao XX, Wang XX and Liu YX (2016) Sodium‐hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death Dis 7, e2152. PubMed PMC

Xiang M, Feng M, Muend S and Rao R (2007) A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc Natl Acad Sci U S A 104, 18677–18681. PubMed PMC

Liu HM, He JY, Zhang Q, Lv WQ, Xia X, Sun CQ, Zhang WD and Deng HW (2018) Improved detection of genetic loci in estimated glomerular filtration rate and type 2 diabetes using a pleiotropic cFDR method. Mol Genet Genomics 293, 225–235. PubMed PMC

Deisl C, Simonin A, Anderegg M, Albano G, Kovacs G, Ackermann D, Moch H, Dolci W, Thorens B, A Hediger M et al. (2013) Sodium/hydrogen exchanger NHA2 is critical for insulin secretion in beta‐cells. Proc Natl Acad Sci U S A 110, 10004–10009. PubMed PMC

Deisl C, Anderegg M, Albano G, Luscher BP, Cerny D, Soria R, Bouillet E, Rimoldi S, Scherrer U and Fuster DG (2016) Loss of sodium/hydrogen exchanger NHA2 exacerbates obesity‐ and aging‐induced glucose intolerance in mice. PLoS One 11, e0163568. PubMed PMC

Fuster DG, Zhang J, Shi M, Bobulescu IA, Andersson S and Moe OW (2008) Characterization of the sodium/hydrogen exchanger NHA2. J Am Soc Nephrol 19, 1547–1556. PubMed PMC

Kondapalli KC, Todd Alexander R, Pluznick JL and Rao R (2017) NHA2 is expressed in distal nephron and regulated by dietary sodium. J Physiol Biochem 73, 199–205. PubMed PMC

Anderegg MA, Albano G, Hanke D, Deisl C, Uehlinger DE, Brandt S, Bhardwaj R, Hediger MA and Fuster DG (2021) The sodium/proton exchanger NHA2 regulates blood pressure through a WNK4‐NCC dependent pathway in the kidney. Kidney Int 99, 350–363. PubMed

Prasad H, Dang DK, Kondapalli KC, Natarajan N, Cebotaru V and Rao R (2019) NHA2 promotes cyst development in an in vitro model of polycystic kidney disease. J Physiol 597, 499–519. PubMed PMC

Battaglino RA, Pham L, Morse LR, Vokes M, Sharma A, Odgren PR, Yang M, Sasaki H and Stashenko P (2008) NHA‐oc/NHA2: a mitochondrial cation‐proton antiporter selectively expressed in osteoclasts. Bone 42, 180–192. PubMed PMC

Ha BG, Hong JM, Park JY, Ha MH, Kim TH, Cho JY, Ryoo HM, Choi JY, Shin HI, Chun SY et al. (2008) Proteomic profile of osteoclast membrane proteins: identification of Na+/H+ exchanger domain containing 2 and its role in osteoclast fusion. Proteomics 8, 2625–2639. PubMed

Lee SH, Kim T, Park ES, Yang S, Jeong D, Choi Y and Rho J (2008) NHE10, an osteoclast‐specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival. Biochem Biophys Res Commun 369, 320–326. PubMed

Hofstetter W, Siegrist M, Simonin A, Bonny O and Fuster DG (2010) Sodium/hydrogen exchanger NHA2 in osteoclasts: subcellular localization and role in vitro and in vivo . Bone 47, 331–340. PubMed

Charles JF, Coury F, Sulyanto R, Sitara D, Wu J, Brady N, Tsang K, Sigrist K, Tollefsen DM, He L et al. (2012) The collection of NFATc1‐dependent transcripts in the osteoclast includes numerous genes non‐essential to physiologic bone resorption. Bone 51, 902–912. PubMed PMC

Uzdavinys P, Coincon M, Nji E, Ndi M, Winkelmann I, von Ballmoos C and Drew D (2017) Dissecting the proton transport pathway in electrogenic Na+/H+ antiporters. Proc Natl Acad Sci U S A 114, E1101–E1110. PubMed PMC

Matsuoka R, Fudim R, Jung S, Zhang C, Bazzone A, Chatzikyriakidou Y, Robinson CV, Nomura N, Iwata S, Landreh M et al. (2022) Structure, mechanism and lipid‐mediated remodeling of the mammalian Na+/H+ exchanger NHA2. Nat Struct Mol Biol 29, 108–120. PubMed PMC

Kondapalli KC, Kallay LM, Muszelik M and Rao R (2012) Unconventional chemiosmotic coupling of NHA2, a mammalian Na+/H+ antiporter, to a plasma membrane H+ gradient. J Biol Chem 287, 36239–36250. PubMed PMC

Velazquez D, Prusa V, Masrati G, Yariv E, Sychrova H, Ben‐Tal N and Zimmermannova O (2022) Allosteric links between the hydrophilic N‐terminus and transmembrane core of human Na+/H+ antiporter NHA2. Protein Sci 31, E4460. PubMed PMC

Behzad S, Sureda A, Barreca D, Nabavi SF, Rastrelli L and Nabavi SM (2017) Health effects of phloretin: from chemistry to medicine. Phytochem Rev 16, 527–533.

Kinclova‐Zimmermannova O, Zavrel M and Sychrova H (2005) Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters. J Biol Chem 280, 30638–30647. PubMed

Ugolini S and Bruschi CV (1996) The red/white colony color assay in the yeast Saccharomyces cerevisiae: epistatic growth advantage of white ade8‐18, ade2 cells over red ade2 cells. Curr Genet 30, 485–492. PubMed

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK et al. (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47, 1739–1749. PubMed

Sastry GM, Adzhigirey M, Day T, Annabhimoju R and Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27, 221–234. PubMed

Olsson MH, Sondergaard CR, Rostkowski M and Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7, 525–537. PubMed

Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC and Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein‐ligand complexes. J Med Chem 49, 6177–6196. PubMed

Flegelova H, Haguenauer‐Tsapis R and Sychrova H (2006) Heterologous expression of mammalian Na+/H+ antiporters in Saccharomyces cerevisiae . Biochim Biophys Acta 1760, 504–516. PubMed

Flegelova H and Sychrova H (2005) Mammalian NHE2 Na+/H+ exchanger mediates efflux of potassium upon heterologous expression in yeast. FEBS Lett 579, 4733–4738. PubMed

Schushan M, Xiang M, Bogomiakov P, Padan E, Rao R and Ben‐Tal N (2010) Model‐guided mutagenesis drives functional studies of human NHA2, implicated in hypertension. J Mol Biol 396, 1181–1196. PubMed PMC

Anderegg MA, Gyimesi G, Ho TM, Hediger MA and Fuster DG (2022) The less well‐known little brothers: the SLC9B/NHA sodium proton exchanger subfamily‐structure, function, regulation and potential drug‐target approaches. Front Physiol 13, 898508. PubMed PMC

Kinclova‐Zimmermannova O, Falson P, Cmunt D and Sychrova H (2015) A hydrophobic filter confers the cation selectivity of Zygosaccharomyces rouxii plasma‐membrane Na+/H+ antiporter. J Mol Biol 427, 1681–1694. PubMed

Kinclova‐Zimmermannova O, Zavrel M and Sychrova H (2006) Importance of the seryl and threonyl residues of the fifth transmembrane domain to the substrate specificity of yeast plasma membrane Na+/H+ antiporters. Mol Membr Biol 23, 349–361. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...