Epithelioid Soft Tissue Neoplasm of the Soft Palate with a PTCH1-GLI1 Fusion: A Case Report and Review of the Literature
Language English Country United States Media print-electronic
Document type Case Reports, Journal Article, Review
Grant support
SVV 22639
ministerstvo školství, mládeže a tělovýchovy
PubMed
34655412
PubMed Central
PMC9187807
DOI
10.1007/s12105-021-01388-4
PII: 10.1007/s12105-021-01388-4
Knihovny.cz E-resources
- Keywords
- Epithelioid soft tissue neoplasm, Hedgehog signaling pathway, Oral cavity, PTCH1-GLI1 gene fusion, S100 protein, Soft palate,
- MeSH
- Adult MeSH
- Humans MeSH
- Myoepithelioma * pathology MeSH
- Biomarkers, Tumor genetics metabolism MeSH
- Soft Tissue Neoplasms * pathology MeSH
- Salivary Gland Neoplasms * MeSH
- Palate, Soft pathology MeSH
- Zinc Finger Protein GLI1 genetics metabolism MeSH
- S100 Proteins MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Review MeSH
- Names of Substances
- GLI1 protein, human MeSH Browser
- Biomarkers, Tumor MeSH
- Zinc Finger Protein GLI1 MeSH
- S100 Proteins MeSH
GLI1 fusions involving ACTB, MALAT1, PTCH1 and FOXO4 genes have been reported in a subset of malignant mesenchymal tumors with a characteristic nested epithelioid morphology and frequent S100 positivity. Typically, these multilobulated tumors consist of uniform epithelioid cells with bland nuclei and are organized into distinct nests and cords with conspicuously rich vasculature. We herein expand earlier findings by reporting a case of a 34-year-old female with an epithelioid mesenchymal tumor of the palate. The neoplastic cells stained positive for S100 protein and D2-40, whereas multiple other markers were negative. Genetic alterations were investigated by targeted RNA sequencing, and a PTCH1-GLI1 fusion was detected. Epithelioid mesenchymal tumors harboring a PTCH1-GLI1 fusion are vanishingly rare with only three cases reported so far. Due to the unique location in the mucosa of the soft palate adjacent to minor salivary glands, multilobulated growth, nested epithelioid morphology, focal clearing of the cytoplasm, and immunopositivity for S100 protein and D2-40, the differential diagnoses include primary salivary gland epithelial tumors, in particular myoepithelioma and myoepithelial carcinoma. Another differential diagnostic possibility is the ectomesenchymal chondromyxoid tumor. Useful diagnostic clues for tumors with a GLI1 rearrangement include a rich vascular network between the nests of neoplastic cells, tumor tissue bulging into vascular spaces, and absence of SOX10, GFAP and cytokeratin immunopositivity. Identifying areas with features of GLI1-rearranged tumors should trigger subsequent molecular confirmation. This is important for appropriate treatment measures as PTCH1-GLI1 positive mesenchymal epithelioid neoplasms have a propensity for locoregional lymph node and distant lung metastases.
Department of Oral and Maxillofacial Surgery University Hospital Olomouc Olomouc Czech Republic
Department of Pathology Bioptical Laboratory Ltd Mikulášské náměstí 4 326 00 Pilsen Czech Republic
Department of Pathology Bioptical Laboratory Ltd Pilsen Czech Republic
Department of Pathology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Institute of Biomedicine Pathology University of Turku and Turku University Hospital Turku Finland
Molecular and Genetic Laboratory Bioptical Laboratory Ltd Pilsen Czech Republic
See more in PubMed
Dahlén A, Fletcher CD, Mertens F, et al. Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12) Am J Pathol. 2004;164(5):1645–1653. doi: 10.1016/S0002-9440(10)63723-6. PubMed DOI PMC
Antonescu CR, Agaram NP, Sung YS, Zhang L, Swanson D, Dickson BC. A distinct malignant epithelioid neoplasm with GLI1 gene rearrangements, frequent S100 protein expression, and metastatic potential: expanding the spectrum of pathologic entities with ACTB/MALAT1/PTCH1-GLI1 fusions. Am J Surg Pathol. 2018;42(4):553–560. doi: 10.1097/PAS.0000000000001010. PubMed DOI PMC
Agaram NP, Zhang L, Sung YS, et al. GLI1-amplifications expand the spectrum of soft tissue neoplasms defined by GLI1 gene fusions. Mod Pathol. 2019;32:1617–1626. doi: 10.1038/s41379-019-0293-x. PubMed DOI PMC
Koh NWC, Seow WY, Lee YT, Lam JCM, Lian DWQ. Pericytoma with t(7;12): the first ovarian case reported and a review of the literature. Int J Gynecol Pathol. 2019;38(5):479–484. doi: 10.1097/PGP.0000000000000542. PubMed DOI
Bridge JA, Sanders K, Huang D, et al. Pericytoma with t(7;12) and ACTB-GLI1 fusion arising in bone. Hum Pathol. 2012;43(9):1524–1529. doi: 10.1016/j.humpath.2012.01.019. PubMed DOI PMC
Prall OWJ, McEvoy CRE, Byrne DJ, et al. A malignant neoplasm from the jejunum with a MALAT1-GLI1 fusion and 26-year survival history. Int J Surg Pathol. 2020;28(5):553–562. doi: 10.1177/1066896919900548. PubMed DOI
Graham RP, Nair AA, Davila JI, et al. Gastroblastoma harbors a recurrent somatic MALAT1–GLI1 fusion gene. Mod Pathol. 2017;30(10):1443–1452. doi: 10.1038/modpathol.2017.68. PubMed DOI
Spans L, Fletcher CDM, Antonescu CR, et al. Recurrent MALAT1–GLI1 oncogenic fusion and GLI1 up-regulation define a subset of plexiform fibromyxoma. J Pathol. 2016;239(3):335–343. doi: 10.1002/path.4730. PubMed DOI PMC
Castro E, Cortes-Santiago N, Suarez Ferguson LM, Rao PH, Venkatramani R, López-Terrada D. Translocation t(7;12) as the sole chromosomal abnormality resulting in ACTB-GLI1 fusion in pediatric gastric pericytoma. Hum Pathol. 2016;53:137–141. doi: 10.1016/j.humpath.2016.02.015. PubMed DOI
Kerr DA, Pinto A, Subhawong TK, et al. Pericytoma with t(7;12) and ACTB-GLI1 fusion: reevaluation of an unusual entity and its relationship to the spectrum of GLI1 fusion-related neoplasms. Am J Surg Pathol. 2019;43(12):1682–1692. doi: 10.1097/PAS.0000000000001360. PubMed DOI PMC
Xu B, Chang K, Fople AL, et al. Head and neck mesenchymal neoplasms with GLI1 gene alterations: a pathologic entity with distinct histologic features and potential for distant metastasis. Am J Surg Pathol. 2020;44(6):729–736. doi: 10.1097/PAS.0000000000001439. PubMed DOI PMC
Ichikawa D, Yamashita K, Okuno Y, et al. Integrated diagnosis based on transcriptome analysis in suspected pediatric sarcomas. NPJ Genomic Med. 2021;6:49. doi: 10.1038/s41525-021-00210-y. PubMed DOI PMC
Dalin MG, Katabi N, Persson M, et al. Multi-dimensional genomic analysis of myoepithelial carcinoma identifies prevalent oncogenic gene fusions. Nat Commun. 2017;8(1):1197. doi: 10.1038/s41467-017-01178-z. PubMed DOI PMC
Skálová A, Agaimy A, Vanecek T, et al. Molecular profiling of clear cell myoepithelial carcinoma of salivary glands with EWSR1 rearrangement identifies frequent PLAG1 gene fusions but no EWSR1 fusion transcripts. Am J Surg Pathol. 2021;45(1):1–13. doi: 10.1097/PAS.0000000000001591. PubMed DOI
Pettus JR, Kerr DA, Stan RV, et al. Primary myxoid and epithelioid mesenchymal tumor of the kidney with a novel GLI1-FOXO4 fusion. Genes Chromosom Cancer. 2021;60(2):116–122. doi: 10.1002/gcc.22916. PubMed DOI
Sari IN, Phi LTH, Jun N, Wijaya YT, Lee S, Kwon HY. Hedgehog signaling in cancer: a prospective therapeutic target for eradicating cancer stem cells. Cells. 2018;7(11):208. doi: 10.3390/cells7110208. PubMed DOI PMC
Carpenter RL, Lo HW. Hedgehog pathway and GLI1 isoforms in human cancer. Discov Med. 2012;13(69):105–113. PubMed PMC
Laco J, Mottl R, Höbling W, et al. Cyclin D1 expression in ectomesenchymal chondromyxoid tumor of the anterior tongue. Int J Surg Pathol. 2016;24(7):586–594. doi: 10.1177/1066896916652221. PubMed DOI
Dickson BC, Antonescu CR, Argyris PP, et al. Ectomesenchymal chondromyxoid tumor: a neoplasm characterized by recurrent RREB1-MKL2 fusions. Am J Surg Pathol. 2018;42(10):1297–1305. doi: 10.1097/PAS.0000000000001096. PubMed DOI PMC
Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel) 2016;8(2):22. doi: 10.3390/cancers8020022. PubMed DOI PMC