High genomic differentiation and limited gene flow indicate recent cryptic speciation within the genus Laspinema (cyanobacteria)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36160208
PubMed Central
PMC9500459
DOI
10.3389/fmicb.2022.977454
Knihovny.cz E-zdroje
- Klíčová slova
- cryptic species, cyanobacteria, gene flow, phylogenomics, recombination, sympatric speciation,
- Publikační typ
- časopisecké články MeSH
The sympatric occurrence of closely related lineages displaying conserved morphological and ecological traits is often characteristic of free-living microbes. Gene flow, recombination, selection, and mutations govern the genetic variability between these cryptic lineages and drive their differentiation. However, sequencing conservative molecular markers (e.g., 16S rRNA) coupled with insufficient population-level sampling hindered the study of intra-species genetic diversity and speciation in cyanobacteria. We used phylogenomics and a population genomic approach to investigate the extent of local genomic diversity and the mechanisms underlying sympatric speciation of Laspinema thermale. We found two cryptic lineages of Laspinema. The lineages were highly genetically diverse, with recombination occurring more frequently within than between them. That suggests the existence of a barrier to gene flow, which further maintains divergence. Genomic regions of high population differentiation harbored genes associated with possible adaptations to high/low light conditions and stress stimuli, although with a weak diversifying selection. Overall, the diversification of Laspinema species might have been affected by both genomic and ecological processes.
Department of Botany Faculty of Science Charles University Prague Prague Czechia
Department of Botany Faculty of Science Palacký University Olomouc Olomouc Czechia
Zobrazit více v PubMed
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. . (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi: 10.1089/cmb.2012.0021, PMID: PubMed DOI PMC
Barraclough T. G., Balbi K. J., Ellis R. J. (2012). Evolving concepts of bacterial species. Evol. Biol. 39, 148–157. doi: 10.1007/s11692-012-9181-8 DOI
Bobay L. M. (2020). “The prokaryotic species concept and challenges,” in The Pangenome. eds. Tettelin H., Medini D. (Cham: Springer; ), 21–49. PubMed
Bobay L. M., Ochman H. (2017). Biological species are universal across life's domains. Genome Biol. Evol. 9, 491–501. doi: 10.1093/gbe/evx026, PMID: PubMed DOI PMC
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170, PMID: PubMed DOI PMC
Cadillo-Quiroz H., Didelot X., Held N. L., Herrera A., Darling A., Reno M. L., et al. . (2012). Patterns of gene flow define species of thermophilic archaea. PLoS Biol. 10:e1001265. doi: 10.1371/journal.pbio.1001265, PMID: PubMed DOI PMC
Carrolo M., Pinto F. R., Melo-Cristino J., Ramirez M. (2009). Pherotypes are driving genetic differentiation within Streptococcus pneumoniae. BMC Microbiol. 9, 1–10. doi: 10.1186/1471-2180-9-191, PMID: PubMed DOI PMC
Casamatta D. A., Vis M. L., Sheath R. G. (2003). Cryptic species in cyanobacterial systematics: a case study of Phormidium retzii (Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data. Aquat. Bot. 77, 295–309. doi: 10.1016/j.aquabot.2003.08.005 DOI
Chaguza C., Andam C. P., Harris S. R., Cornick J. E., Yang M., Bricio-Moreno L., et al. . (2016). Recombination in Streptococcus pneumoniae lineages increase with carriage duration and size of the polysaccharide capsule. MBio 7, e01053–e01016. doi: 10.1128/mBio.01053-16, PMID: PubMed DOI PMC
Chase A. B., Arevalo P., Brodie E. L., Polz M. F., Karaoz U., Martiny J. B. (2019). Maintenance of sympatric and allopatric populations in free-living terrestrial bacteria. MBio 10, e02361–e02319. doi: 10.1128/mBio.02361-19, PMID: PubMed DOI PMC
Coleman M. L., Chisholm S. W. (2010). Ecosystem-specific selection pressures revealed through comparative population genomics. Proc. Natl. Acad. Sci. U. S. A. 107, 18634–18639. doi: 10.1073/pnas.1009480107, PMID: PubMed DOI PMC
Cordero O. X., Ventouras L. A., DeLong E. F., Polz M. F. (2012). Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc. Natl. Acad. Sci. U. S. A. 109, 20059–20064. doi: 10.1073/pnas.1213344109, PMID: PubMed DOI PMC
Croucher N. J., Page A. J., Connor T. R., Delaney A. J., Keane J. A., Bentley S. D., et al. . (2015). Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43:e15. doi: 10.1093/nar/gku1196, PMID: PubMed DOI PMC
Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. . (2011). The variant call format and VCFtools. Bioinformatics 27, 2156–2158. doi: 10.1093/bioinformatics/btr330, PMID: PubMed DOI PMC
Duval C., Hamlaoui S., Piquet B., Toutirais G., Yepremian C., Reinhart A., et al. . (2020). Characterization of cyanobacteria isolated from thermal muds of Balaruc-les-Bains (France) and description of a new genus and species Pseudochroococcus couteii. bioRxiv. doi: 10.1101/2020.12.12.422513 PubMed DOI PMC
Dvořák P., Casamatta D. A., Hašler P., Jahodářová E., Norwich A. R., Poulíčková A. (2017). “Diversity of the cyanobacteria,” in Modern Topics in the Phototrophic Prokaryotes. ed. Hallenbeck P. C. (Cham: Springer; ), 3–46.
Dvořák P., Casamatta D. A., Poulíčková A., Hašler P., Ondřej V., Sanges R. (2014). Synechococcus: 3 billion years of global dominance. Mol. Ecol. 23, 5538–5551. doi: 10.1111/mec.12948, PMID: PubMed DOI
Dvořák P., Poulíčková A., Hašler P., Belli M., Casamatta D. A., Papini A. (2015). Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodivers. Conserv. 24, 739–757. doi: 10.1007/s10531-015-0888-6 DOI
Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. doi: 10.1093/nar/gkh340, PMID: PubMed DOI PMC
Emms D. M., Kelly S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238–214. doi: 10.1186/s13059-019-1832-y, PMID: PubMed DOI PMC
Felsenstein J. (2005). PHYLIP: Phylogeny Inference Package, Version 3.6. Seattle, WA: University of Washington.
Fraser C., Hanage W. P., Spratt B. G. (2007). Recombination and the nature of bacterial speciation. Science 315, 476–480. doi: 10.1126/science.1127573, PMID: PubMed DOI PMC
Galtier N., Daubin V. (2008). Dealing with incongruence in phylogenomic analyses. Philos. Trans. R. Soc. B Biol. Sci. 363, 4023–4029. doi: 10.1098/rstb.2008.0144, PMID: PubMed DOI PMC
González-Torres P., Rodríguez-Mateos F., Antón J., Gabaldón T. (2019). Impact of homologous recombination on the evolution of prokaryotic core genomes. MBio 10, e02494–e02418. doi: 10.1128/mBio.02494-18, PMID: PubMed DOI PMC
Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. (2007). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91. doi: 10.1099/ijs.0.64483-0, PMID: PubMed DOI
Grundmann G. L. (2004). Spatial scales of soil bacterial diversity – the size of a clone. FEMS Microbiol. Ecol. 48, 119–127. doi: 10.1016/j.femsec.2004.01.010, PMID: PubMed DOI
Hadfield J., Croucher N. J., Goater R. J., Abudahab K., Aanensen D. M., Harris S. R. (2018). Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34, 292–293. doi: 10.1093/bioinformatics/btx610, PMID: PubMed DOI PMC
Harris H. M. B., Bourin M. J. B., Claesson M. J., O'Toole P. W. (2017). Phylogenomics and comparative genomics of lactobacillus salivarius, a mammalian gut commensal. Microb. Genom. 3:e000115. doi: 10.1099/mgen.0.000115, PMID: PubMed DOI PMC
Hašler P., Dvořák P., Johansen J. R., Kitner M., Ondřej V., Poulíčková A. (2012). Morphological and molecular study of epipelic filamentous genera Phormidium, microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/cyanobacteria). Fottea 12, 341–356. doi: 10.5507/fot.2012.024 DOI
Heidari F., Hauer T., Zima J. R. H., Riahi H. (2018). New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea 18, 137–149. doi: 10.5507/fot.2017.024 DOI
Held N. L., Herrera A., Cadillo-Quiroz H., Whitaker R. J. (2010). CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS One 5:e12988. doi: 10.1371/journal.pone.0012988, PMID: PubMed DOI PMC
Hoang D. T., Chernomor O., Von Haeseler A., Minh B. Q., Vinh L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. doi: 10.1093/molbev/msx281, PMID: PubMed DOI PMC
Hunt D. E., David L. A., Gevers D., Preheim S. P., Alm E. J., Polz M. F. (2008). Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320, 1081–1085. doi: 10.1126/science.1157890, PMID: PubMed DOI
Huson D. H., Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. doi: 10.1093/molbev/msj030 PubMed DOI
Jaspers E., Overmann J. (2004). Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl. Environ. Microbiol. 70, 4831–4839. doi: 10.1128/AEM.70.8.4831-4839.2004, PMID: PubMed DOI PMC
Jeltsch A. (2003). Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? Gene 317, 13–16. doi: 10.1016/S0378-1119(03)00652-8, PMID: PubMed DOI
Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. doi: 10.1038/nmeth.4285, PMID: PubMed DOI PMC
Kashtan N., Roggensack S. E., Rodrigue S., Thompson J. W., Biller S. J., Coe A., et al. . (2014). Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420. doi: 10.1126/science.1248575, PMID: PubMed DOI
Kollár J., Poulíčková A., Dvořák P. (2022). On the relativity of species, or the probabilistic solution to the species problem. Mol. Ecol. 31, 411–418. doi: 10.1111/mec.16218, PMID: PubMed DOI
Komárek J., Anagnostidis K. (2005). “Cyanoprokaryota 2. Teil: oscillatoriales,” in Süsswasserflora von Mitteleuropa. eds. Büdel B., Gärdner G., Krienitz L., Schagerl M. (München: Elsevier; ), 759.
Koonin E. V., Makarova K. S., Wolf Y. I. (2021). Evolution of microbial genomics: conceptual shifts over a quarter century. Trends Microbiol. 29, 582–592. doi: 10.1016/j.tim.2021.01.005, PMID: PubMed DOI PMC
Korber B. (2000). “HIV signature and sequence variation analysis,” in Computational Analysis of HIV Molecular Sequences. eds. Rodrigo A. G., Learn G. H. (Dordrecht: Kluwer Academic Publishers; ), 55–72.
Larsson A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278. doi: 10.1093/bioinformatics/btu531, PMID: PubMed DOI PMC
Li H., Durbin R. (2009). Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 25, 1754–1760. doi: 10.1093/bioinformatics/btp324, PMID: PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. . (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. doi: 10.1093/bioinformatics/btp352, PMID: PubMed DOI PMC
Mager D. M., Thomas A. D. (2011). Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J. Arid Environ. 75, 91–97. doi: 10.1016/j.jaridenv.2010.10.001 DOI
Martin S. H., Dasmahapatra K. K., Nadeau N. J., Salazar C., Walters J. R., Simpson F., et al. . (2013). Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 23, 1817–1828. doi: 10.1101/gr.159426.113, PMID: PubMed DOI PMC
Martin D. P., Lemey P., Posada D. (2011). Analysing recombination in nucleotide sequences. Mol. Ecol. Resour. 11, 943–955. doi: 10.1111/j.1755-0998.2011.03026.x PubMed DOI
Martinez-Urtaza J., Van Aerle R., Abanto M., Haendiges J., Myers R. A., Trinanes J., et al. . (2017). Genomic variation and evolution of Vibrio parahaemolyticus ST36 over the course of a transcontinental epidemic expansion. MBio 8, e01425–e01417. doi: 10.1128/mBio.01425-17, PMID: PubMed DOI PMC
Mayr E. (1942). Systematics and the Origin of Species. New York, NY: Columbia University Press.
McInerney J. O., McNally A., O'connell M. J. (2017). Why prokaryotes have pangenomes. Nat. Microbiol. 2, 1–5. doi: 10.1038/nmicrobiol.2017.40 PubMed DOI
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., et al. . (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303. doi: 10.1101/gr.107524.110, PMID: PubMed DOI PMC
Mirarab S., Warnow T. (2015). ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31, i44–i52. doi: 10.1093/bioinformatics/btv234, PMID: PubMed DOI PMC
Nguyen L. T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. doi: 10.1093/molbev/msu300, PMID: PubMed DOI PMC
Page A. J., Cummins C. A., Hunt M., Wong V. K., Reuter S., Holden M. T. G., et al. . (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693. doi: 10.1093/bioinformatics/btv421, PMID: PubMed DOI PMC
Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W. (2015). Check M: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. doi: 10.1101/gr.186072.114, PMID: PubMed DOI PMC
Pérez-Carrascal O. M., Terrat Y., Giani A., Fortin N., Greer C. W., Tromas N., et al. . (2019). Coherence of Microcystis species revealed through population genomics. ISME J. 13, 2887–2900. doi: 10.1038/s41396-019-0481-1, PMID: PubMed DOI PMC
Pfeifer B., Wittelsbürger U., Ramos-Onsins S. E., Lercher M. J. (2014). PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936. doi: 10.1093/molbev/msu136, PMID: PubMed DOI PMC
Pietrasiak N., Mühlsteinová R., Siegesmund M. A., Johansen J. R. (2014). Phylogenetic placement of Symplocastrum (Phormidiaceae, Cyanophyceae) with a new combination S. californicum and two new species: S. flechtnerae and S. torsivum. Phycologia 53, 529–541. doi: 10.2216/14-029.1 DOI
Pietrasiak N., Osorio-Santos K., Shalygin S., Martin M. P., Johansen J. R. (2019). When is a lineage a species? A case study in Myxacorys gen. Nov.(Synechococcales: cyanobacteria) with the description of two new species from the Americas. J. Phycol. 55, 976–996. doi: 10.1111/jpy.12897, PMID: PubMed DOI
Polz M. F., Alm E. J., Hanage W. P. (2013). Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 29, 170–175. doi: 10.1016/j.tig.2012.12.006, PMID: PubMed DOI PMC
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., et al. . (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795, PMID: PubMed DOI PMC
R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Rambaut A. (2012). FigTree, version 1.4.4, pp. Computer Program Distributed by the Author. Available at: http://tree.bio.ed.ac.uk/software/figtree/ (Accessed January 10, 2022).
Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., et al. . (2019). G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198. doi: 10.1093/nar/gkz369, PMID: PubMed DOI PMC
Reno M. L., Held N. L., Fields C. J., Burke P. V., Whitaker R. J. (2009). Biogeography of the Sulfolobus islandicus pan-genome. Proc. Natl. Acad. Sci. U. S. A. 106, 8605–8610. doi: 10.1073/pnas.0808945106, PMID: PubMed DOI PMC
Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. U. S. A. 106, 19126–19131. doi: 10.1073/pnas.0906412106, PMID: PubMed DOI PMC
Rocap G., Larimer F. W., Lamerdin J., Malfatti S., Chain P., Ahlgren N. A., et al. . (2003). Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047. doi: 10.1038/nature01947, PMID: PubMed DOI
Rodriguez-Valera F., Martin-Cuadrado A. B., López-Pérez M. (2016). Flexible genomic islands as drivers of genome evolution. Curr. Opin. Microbiol. 31, 154–160. doi: 10.1016/j.mib.2016.03.014, PMID: PubMed DOI
Rodriguez-Valera F., Ussery D. W. (2012). Is the pan-genome also a pan-selectome? F1000Research 1:16. doi: 10.12688/f1000research.1-16.v1 PubMed DOI PMC
Roux C., Fraisse C., Romiguier J., Anciaux Y., Galtier N., Bierne N. (2016). Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol. 14:e2000234. doi: 10.1371/journal.pbio.2000234, PMID: PubMed DOI PMC
Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J. C., Guirao-Rico S., Librado P., Ramos-Onsins S. E., et al. . (2017). DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 34, 3299–3302. doi: 10.1093/molbev/msx248, PMID: PubMed DOI
Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. doi: 10.1093/bioinformatics/btu153, PMID: PubMed DOI
Shapiro B. J., Friedman J., Cordero O. X., Preheim S. P., Timberlake S. C., Szabó G., et al. . (2012). Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51. doi: 10.1126/science.1218198 PubMed DOI PMC
Shapiro B. J., Polz M. F. (2014). Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 22, 235–247. doi: 10.1016/j.tim.2014.02.006, PMID: PubMed DOI PMC
Shapiro B. J., Polz M. F. (2015). Microbial speciation. Cold Spring Harb. Perspect. Biol. 7:a018143. doi: 10.1101/cshperspect.a018143, PMID: PubMed DOI PMC
Sheinman M., Arkhipova K., Arndt P. F., Dutilh B. E., Hermsen R., Massip F. (2021). Identical sequences found in distant genomes reveal frequent horizontal transfer across the bacterial domain. elife 10:e62719. doi: 10.7554/eLife.62719, PMID: PubMed DOI PMC
Simmons S. L., DiBartolo G., Denef V. J., Goltsman D. S. A., Thelen M. P., Banfield J. F. (2008). Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol. 6:e177. doi: 10.1371/journal.pbio.0060177, PMID: PubMed DOI PMC
Stanojković A., Skoupý S., Hašler P., Poulíčková A., Dvořák P. (2022). Geography and climate drive the distribution and diversification of the cosmopolitan cyanobacterium microcoleus (Oscillatoriales, cyanobacteria). Eur. J. Phycol. 1–10, 1–10. doi: 10.1080/09670262.2021.2007420 DOI
Staub R. (1961). Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens DC. Schweiz. Z. Hydrol. 23, 82–198.
Stuart R. K., Brahamsha B., Busby K., Palenik B. (2013). Genomic island genes in a coastal marine Synechococcus strain confer enhanced tolerance to copper and oxidative stress. ISME J. 7, 1139–1149. doi: 10.1038/ismej.2012.175, PMID: PubMed DOI PMC
Suyama M., Torrents D., Bork P. (2006). PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612. doi: 10.1093/nar/gkl315, PMID: PubMed DOI PMC
Tamura K., Stecher G., Kumar S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027. doi: 10.1093/molbev/msab120, PMID: PubMed DOI PMC
Törönen P., Medlar A., Holm L. (2018). PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. 46, W84–W88. doi: 10.1093/nar/gky350, PMID: PubMed DOI PMC
Vos M., Didelot X. (2009). A comparison of homologous recombination rates in bacteria and archaea. ISME J. 3, 199–208. doi: 10.1038/ismej.2008.93, PMID: PubMed DOI
Vos M., Wolf A. B., Jennings S. J., Kowalchuk G. A. (2013). Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol. Rev. 37, 936–954. doi: 10.1111/1574-6976.12023, PMID: PubMed DOI
Walk S. T. (2015). The “cryptic” Escherichia. EcoSal Plus 6. doi: 10.1128/ecosalplus.ESP-0002-2015 PubMed DOI PMC
Ward D. M., Cohan F. M., Bhaya D., Heidelberg J. F., Kühl M., Grossman A. (2008). Genomics, environmental genomics and the issue of microbial species. Heredity 100, 207–219. doi: 10.1038/sj.hdy.6801011 PubMed DOI
Warnes M. G. R., Bolker B., Bonebakker L., Gentleman R., Huber W. (2016). Package 'gplots'. Various R Programming Tools for Plotting data.
Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.
Wiedenbeck J., Cohan F. M. (2011). Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 35, 957–976. doi: 10.1111/j.1574-6976.2011.00292.x, PMID: PubMed DOI
Wielgoss S., Didelot X., Chaudhuri R. R., Liu X., Weedall G. D., Velicer G. J., et al. . (2016). A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus. ISME J. 10, 2468–2477. doi: 10.1038/ismej.2016.34, PMID: PubMed DOI PMC
Wu Y. W., Simmons B. A., Singer S. W. (2016). Max bin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607. doi: 10.1093/bioinformatics/btv638, PMID: PubMed DOI
Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., et al. . (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645. doi: 10.1038/nrmicro3330, PMID: PubMed DOI
Zamani N., Russell P., Lantz H., Hoeppner M. P., Meadows J. R., Vijay N., et al. . (2013). Unsupervised genome-wide recognition of local relationship patterns. BMC Genomics 14, 1–11. doi: 10.1186/1471-2164-14-347, PMID: PubMed DOI PMC
Zamudio R., Haigh R. D., Ralph J. D., De Ste Croix M., Tasara T., Zurfluh K., et al. . (2020). Lineage-specific evolution and gene flow in listeria monocytogenes are independent of bacteriophages. Environ. Microbiol. 22, 5058–5072. doi: 10.1111/1462-2920.15111, PMID: PubMed DOI PMC
Zhang C., Rabiee M., Sayyari E., Mirarab S. (2018). ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153. doi: 10.1186/s12859-018-2129-y, PMID: PubMed DOI PMC
Zhaxybayeva O., Doolittle W. F., Papke R. T., Gogarten J. P. (2009). Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus. Genome Biol. Evol. 1, 325–339. doi: 10.1093/gbe/evp032, PMID: PubMed DOI PMC
Zimba P. V., Shalygin S., Huang I. S., Momčilović M., Abdulla H. (2020). A new boring toxin producer – Perforafilum tunnelli gen. & sp. nov.(Oscillatoriales, Cyanobacteria) isolated from Laguna Madre, Texas, USA. Phycologia 60, 10–24. doi: 10.1080/00318884.2020.1808389, PMID: PubMed DOI
figshare
10.6084/m9.figshare.20116118