Differences in Nectar Traits between Ornithophilous and Entomophilous Plants on Mount Cameroon
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-10781S
Grantová Agentura České Republiky
20-16499S
Grantová Agentura České Republiky
PRIMUS/17/SCI/8
Univerzita Karlova v Praze
UNCE204069
Univerzita Karlova v Praze
PubMed
34200999
PubMed Central
PMC8226534
DOI
10.3390/plants10061161
PII: plants10061161
Knihovny.cz E-zdroje
- Klíčová slova
- Afrotropics, fructose, glucose, insect, nectar, phylogenetic signal, plant–pollinator interactions, pollination syndrome, sucrose, sunbirds,
- Publikační typ
- časopisecké články MeSH
Despite a growing number of studies, the role of pollinators as a selection agent for nectar traits remains unclear. Moreover, the lack of data from some biogeographic regions prohibits us from determining their general importance and global patterns. We analyzed nectar carbohydrate traits and determined the main pollinators of 66 plant species in the tropical forests of Mount Cameroon (tropical West Africa). The measured nectar traits included total sugar amounts and proportions of sucrose and hexoses (i.e., glucose and fructose). We report the nectar properties for plants visited by five pollinator groups (bees, butterflies, moths, hoverflies, and specialized birds). Our results indicate that, rather than specific evolution in each of the five plant groups, there was a unique nectar-trait evolution in plants pollinated by specialized birds. The ornithophilous plants had a higher proportion of sucrose and produced larger sugar amounts than the plants pollinated by insects. We also demonstrated a significant phylogenetic signal in the nectar properties in some lineages of the studied plants.
Biology Centre Czech Academy of Sciences Branišovská 31 CZ 370 05 České Budějovice Czech Republic
Bokwango Buea Southwest Region Cameroon
Department of Zoology and Animal Physiology Faculty of Science University of Buea Buea 63 Cameroon
Naturalis Biodiversity Center Darwinweg 2 2233 CR Leiden The Netherlands
Zobrazit více v PubMed
Endress P.K. Floral structure and evolution of primitive angiosperms: Recent advances. Plant. Syst. Evol. 1994;192:79–97. doi: 10.1007/BF00985910. DOI
Labandeira C.C., Kvaček J., Mostovski M.B. Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. TAXON. 2007;56:663–695. doi: 10.2307/25065852. DOI
Lau J.Y.Y., Pang C., Ramsden L., Saunders R.M.K. Stigmatic exudate in the Annonaceae: Pollinator reward, pollen germination medium or extragynoecial compitum? J. Integr. Plant Biol. 2017;59:881–894. doi: 10.1111/jipb.12598. PubMed DOI PMC
González-Teuber M., Heil M. Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal. Behav. 2009;4:809–813. doi: 10.4161/psb.4.9.9393. PubMed DOI PMC
Nicolson S.W., Thornburg R.W. Nectar Chemistry. In: Nicolson S.W., Nepi M., Pacini E., editors. Nectaries and Nectar. Springer Science and Business Media LLC; Dordrecht, The Netherlands: 2007. pp. 215–264.
Davis A.R., Pylatuik J.D., Paradis J.C., Low N.H. Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta. 1998;205:305–318. doi: 10.1007/s004250050325. PubMed DOI
Belmonte E., Cardemil L., Arroyo M.T.K. Floral nectary structure and nectar composition in Eccremocarpus scaber (Bignoniaceae), a hummingbird-pollinated plant of central Chile. Am. J. Bot. 1994;81:493–503. doi: 10.1002/j.1537-2197.1994.tb15474.x. DOI
Lohaus G., Schwerdtfeger M. Comparison of Sugars, Iridoid Glycosides and Amino Acids in Nectar and Phloem Sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus. PLoS ONE. 2014;9:e87689. doi: 10.1371/journal.pone.0087689. PubMed DOI PMC
Heil M. Nectar: Generation, regulation and ecological functions. Trends Plant Sci. 2011;16:191–200. doi: 10.1016/j.tplants.2011.01.003. PubMed DOI
Wenzler M., Hölscher D., Oerther T., Schneider B. Nectar formation and floral nectary anatomy of Anigozanthos flavidus: A combined magnetic resonance imaging and spectroscopy study. J. Exp. Bot. 2008;59:3425–3434. doi: 10.1093/jxb/ern191. PubMed DOI PMC
Heil M., Rattke J., Boland W. Postsecretory Hydrolysis of Nectar Sucrose and Specialization in Ant/Plant Mutualism. Science. 2005;308:560–563. doi: 10.1126/science.1107536. PubMed DOI
Pozo M.I., Van Kemenade G., Van Oystaeyen A., Aledón-Catalá T., Benavente A., Ende W.V.D., Wäckers F., Jacquemyn H. The impact of yeast presence in nectar on bumble bee behavior and fitness. Ecol. Monogr. 2020;90 doi: 10.1002/ecm.1393. DOI
Jackson S., Nicolson S.W. Xylose as a nectar sugar: From biochemistry to ecology. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2002;131:613–620. doi: 10.1016/S1096-4959(02)00028-3. PubMed DOI
Baker H.G., Baker I. Floral nectar constituents in relation to pollinator type. In: Jones C.E., Little R.J., editors. Handbook of Experimental Pollination Biology. Van Nostrand Reinhold; New York, NY, USA: 1983. pp. 117–141.
Abrahamczyk S., Kessler M., Hanley D., Karger D.N., Müller M.P.J., Knauer A.C., Keller F., Schwerdtfeger M., Humphreys A.M. Pollinator adaptation and the evolution of floral nectar sugar composition. J. Evol. Biol. 2016;30:112–127. doi: 10.1111/jeb.12991. PubMed DOI
Adler L.S., Bronstein J.L. Attracting antagonists: Does floral nectar increase leaf herbivory? Ecology. 2004;85:1519–1526. doi: 10.1890/03-0409. DOI
Chalcoff V.R., Gleiser G., Ezcurra C., Aizen M.A. Pollinator type and secondarily climate are related to nectar sugar composition across the angiosperms. Evol. Ecol. 2017;31:585–602. doi: 10.1007/s10682-017-9887-2. DOI
Percival M.S. Types of nectar in angiosperms. New Phytol. 1961;60:235–281. doi: 10.1111/j.1469-8137.1961.tb06255.x. DOI
Mitchell R.J. Heritability of nectar traits: Why do we know so little? Ecology. 2004;85:1527–1533. doi: 10.1890/03-0388. DOI
Parachnowitsch A.L., Manson J.S., Sletvold N. Evolutionary ecology of nectar. Ann. Bot. 2018;123:247–261. doi: 10.1093/aob/mcy132. PubMed DOI PMC
Faegri K., van der Pijl L. The Principles of Pollination Ecology. Pergamon Press; Oxford, UK: 1979.
Petanidou T. Sugars in Mediterranean Floral Nectars: An Ecological and Evolutionary Approach. J. Chem. Ecol. 2005;31:1065–1088. doi: 10.1007/s10886-005-4248-y. PubMed DOI
Schmidt-Lebuhn A.N., Schwerdtfeger M., Kessler M., Lohaus G. Phylogenetic constraints vs. ecology in the nectar composition of Acanthaceae. Flora Morphol. Distrib. Funct. Ecol. Plants. 2007;202:62–69. doi: 10.1016/j.flora.2006.02.005. DOI
Perret M., Chautems A., Spichiger R., Peixoto M., Savolainen V. Nectar Sugar Composition in Relation to Pollination Syndromes in Sinningieae (Gesneriaceae) Ann. Bot. 2001;87:267–273. doi: 10.1006/anbo.2000.1331. PubMed DOI
Galetto L., Bernardello G. Nectar sugar composition in angiosperms from Chaco and Patagonia (Argentina): An animal visitor’s matter? Plant Syst. Evol. 2003;238:69–86. doi: 10.1007/s00606-002-0269-y. DOI
Wolff D. Nectar Sugar Composition and Volumes of 47 Species of Gentianales from a Southern Ecuadorian Montane Forest. Ann. Bot. 2006;97:767–777. doi: 10.1093/aob/mcl033. PubMed DOI PMC
Galetto L., Bernardello G., Sosa C.A. The relationship between floral nectar composition and visitors in Lycium (Solanaceae) from Argentina and Chile: What does it reflect? Flora Morphol. Distrib. Funct. Ecol. Plants. 1998;193:303–314. doi: 10.1016/S0367-2530(17)30851-4. DOI
Rodríguez-Riaño T., Ortega-Olivencia A., López J., Pérez-Bote J.L., Navarro-Pérez M.L. Main sugar composition of floral nectar in three species groups of Scrophularia (Scrophulariaceae) with different principal pollinators. Plant Biol. 2014;16:1075–1086. doi: 10.1111/plb.12159. PubMed DOI
Johnson S.D., Nicolson S. Evolutionary associations between nectar properties and specificity in bird pollination systems. Biol. Lett. 2007;4:49–52. doi: 10.1098/rsbl.2007.0496. PubMed DOI PMC
Bartoš M., Janeček Š., Padyšáková E., Patáčová E., Altman J., Pešata M., Kantorová J., Tropek R. Nectar properties of the sunbird-pollinated plant Impatiens sakeriana: A comparison with six other co-flowering species. South. Afr. J. Bot. 2012;78:63–74. doi: 10.1016/j.sajb.2011.05.015. DOI
Cheke R.A., Mann C.F., Allen R. Sunbirds: A Guide to the Sunbirds, Flowerpeckers, Spiderhunters and Sugarbirds of the World. Christopher Helm; London, UK: 2001.
Elisens W.J., Freeman C.E. Floral Nectar Sugar Composition and Pollinator Type Among New World Genera in Tribe Antirrhineae (Scrophulariaceae) Am. J. Bot. 1988;75:971. doi: 10.1002/j.1537-2197.1988.tb08802.x. DOI
Van Wyk B.E., Whitehead C.S., Glen H.F., Hardy D.S., Van Jaarsveld E.J., Smith G.F. Nectar sugar composition in the subfamily Alooideaec (Asphodelaceae) Biochem. Syst. Ecol. 1993;21:249–253. doi: 10.1016/0305-1978(93)90042-P. DOI
Nicolson S.W., Van Wyk B.-E. Nectar Sugars in Proteaceae: Patterns and Processes. Aust. J. Bot. 1998;46:489–504. doi: 10.1071/BT97039. DOI
Silva F.D.A., Chatt E.C., Mohd-Fadzil N.-A., Guirgis A., Guo X., Nettleton D., Nikolau B.J., Thornburg R. Metabolomic Profiling of Nicotiana Spp. Nectars Indicate That Pollinator Feeding Preference Is a Stronger Determinant than Plant Phylogenetics in Shaping Nectar Diversity. Metabolites. 2020;10:214. doi: 10.3390/metabo10050214. PubMed DOI PMC
Göttlinger T., Schwerdtfeger M., Tiedge K., Lohaus G. What Do Nectarivorous Bats Like? Nectar Composition in Bromeliaceae With Special Emphasis on Bat-Pollinated Species. Front. Plant Sci. 2019;10:205. doi: 10.3389/fpls.2019.00205. PubMed DOI PMC
Stiles F.G., Freeman C.E. Patterns in Floral Nectar Characteristics of Some Bird-Visited Plant Species from Costa Rica. Biotropica. 1993;25:191. doi: 10.2307/2389183. DOI
Baker H.G., Baker I., Hodges S. Sugar Composition of Nectars and Fruits Consumed by Birds and Bats in the Tropics and Subtropics. Biotropica. 1998;30:559–586. doi: 10.1111/j.1744-7429.1998.tb00097.x. DOI
Pender R.J., Morden C.W., Paull R.E. Investigating the pollination syndrome of the Hawaiian lobeliad genus Clermontia (Campanulaceae) using floral nectar traits. Am. J. Bot. 2014;101:201–205. doi: 10.3732/ajb.1300338. PubMed DOI
Del Rio C.M. Sugar Preferences in Hummingbirds: The Influence of Subtle Chemical Differences on Food Choice. Condor. 1990;92:1022. doi: 10.2307/1368738. DOI
Chalcoff V.R., Aizen M.A., Galetto L. Sugar preferences of the green-backed firecrown hummingbird (Sephanoides sephaniodes): A field experiment. Auk. 2008;125:60–66. doi: 10.1525/auk.2008.125.1.60. DOI
Downs C.T., Perrin M.R. Sugar preferences of some southern African nectarivorous birds. Ibis. 1996;138:455–459. doi: 10.1111/j.1474-919X.1996.tb08064.x. DOI
Fleming P.A., Bakken B.H., Lotz C.N., Nicolson S.W. Concentration and temperature effects on sugar intake and preferences in a sunbird and a hummingbird. Funct. Ecol. 2004;18:223–232. doi: 10.1111/j.0269-8463.2004.00818.x. DOI
Brown M., Downs C.T., Johnson S.D. Sugar preferences of nectar feeding birds—A comparison of experimental techniques. J. Avian Biol. 2008;39:479–483. doi: 10.1111/j.0908-8857.2008.04394.x. DOI
Lotz C.N., Nicolson S.W. Sugar Preferences of a Nectarivorus Passerine Bird, the Lesser Double-Collared Sunbird (Nectarinia Chalybea) Funct. Ecol. 1996;10:360. doi: 10.2307/2390284. DOI
Klomberg Y., Tropek R., Mertens J.E.J., Kobe I.N., Hodeček J., Raška J., Fominka N.T., Souto-Vilarós D., Janeček Š. Spatiotemporal shifts in the role of floral traits in shaping tropical plant-pollinator interactions. biorXiv. 2020 doi: 10.1101/2020.10.16.342386. PubMed DOI
Janeček Š., Riegert J., Sedláček O., Bartoš M., Hořák D., Reif J., Padyšáková E., Fainová D., Antczak M., Pešata M., et al. Food selection by avian floral visitors: An important aspect of plant-flower visitor interactions in West Africa. Biol. J. Linn. Soc. 2012;107:355–367. doi: 10.1111/j.1095-8312.2012.01943.x. DOI
Nsor C.A., Godsoe W., Chapman H.M. Promiscuous pollinators—Evidence from an Afromontane sunbird–plant pollen transport network. Biotropica. 2019;51:538–548. doi: 10.1111/btp.12669. DOI
Bachman W.W., Waller G.D. Honeybee Responses to Sugar Solutions of Different Compositions. J. Apic. Res. 1977;16:165–169. doi: 10.1080/00218839.1977.11099882. DOI
Mallinger R.E., Prasifka J.R. Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars. J. Appl. Entomol. 2017;141:561–573. doi: 10.1111/jen.12375. DOI
Kelber A. Sugar preferences and feeding strategies in the hawkmoth Macroglossum stellatarum. J. Comp. Physiol. A. 2003;189:661–666. doi: 10.1007/s00359-003-0440-0. PubMed DOI
Erhardt A. Preferences and non-preferences for nectar constituents in Ornithoptera priamus poseidon (Lepidoptera, Papilionidae) Oecologia. 1992;90:581–585. doi: 10.1007/BF01875453. PubMed DOI
Vandelook F., Janssens S.B., Gijbels P., Fischer E., Ende W.V.D., Honnay O., Abrahamczyk S. Nectar traits differ between pollination syndromes in Balsaminaceae. Ann. Bot. 2019;124:269–279. doi: 10.1093/aob/mcz072. PubMed DOI PMC
Torres C., Galetto L. Are Nectar Sugar Composition and Corolla Tube Length Related to the Diversity of Insects that Visit Asteraceae Flowers? Plant Biol. 2002;4:360–366. doi: 10.1055/s-2002-32326. DOI
Petanidou T., Goethals V., Smets E. Nectary structure of Labiatae in relation to their nectar secretion and characteristics in a Mediterranean shrub community? Does flowering time matter? Plant Syst. Evol. 2000;225:103–118. doi: 10.1007/BF00985461. DOI
Cable S., Cheek M. The Plants of Mount Cameroon, a Conservation Checklist. Royal Botanic Gardens, Kew; London, UK: 1998.
Ustjuzhanin P., Kovtunovich V., Sáfián S., Maicher V., Tropek R. A newly discovered biodiversity hotspot of many-plumed moths in the Mount Cameroon area: First report on species diversity, with description of nine new species (Lepidoptera, Alucitidae) ZooKeys. 2018;777:119–139. doi: 10.3897/zookeys.777.24729. PubMed DOI PMC
Chlumská Z., Janeček Š., Doležal J. How to Preserve Plant Samples for Carbohydrate Analysis? Test of Suitable Methods Applicable in Remote Areas. Folia Geobot. Phytotaxon. 2013;49:1–15. doi: 10.1007/s12224-013-9153-5. DOI
Weinstein B.G. Motion Meerkat: Integrating motion video detection and ecological monitoring. Methods Ecol. Evol. 2015;6:357–362. doi: 10.1111/2041-210X.12320. DOI
Vogel S. Blütenbiologische Typen als Elemente der Sippengliederung. Gustav Fischer; Jena, Germany: 1954.
Willmer P. Pollination and Floral Ecology. Princeton University Press; Princeton, New Jersey, USA: 2011.
Smith S.A., Brown J.W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. doi: 10.1002/ajb2.1019. PubMed DOI
Paradis E., Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing Computer Program, Version 3.6.1. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 15 May 2021)]. Newest Version. Available online: http://www.r-project.org.
Keck F., Rimet F., Bouchez A., François K. phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 2016;6:2774–2780. doi: 10.1002/ece3.2051. PubMed DOI PMC
Münkemüller T., Lavergne S., Bzeznik B., Dray S., Jombart T., Schiffers K., Thuiller W. How to measure and test phylogenetic signal. Methods Ecol. Evol. 2012;3:743–756. doi: 10.1111/j.2041-210X.2012.00196.x. DOI
Garland T., Dickerman A.W., Janis C.M., Jones J.A. Phylogenetic Analysis of Covariance by Computer Simulation. Syst. Biol. 1993;42:265–292. doi: 10.1093/sysbio/42.3.265. DOI
Harmon L.J., Weir J.T., Brock C.D., Glor R.E., Challenger W. GEIGER: Investigating evolutionary radiations. Bioinformatics. 2007;24:129–131. doi: 10.1093/bioinformatics/btm538. PubMed DOI
Schluter D., Price T., Mooers A.Ø., Ludwig D. Likelihood of ancestor states in adaptive radiation. Evolution. 1997;51:1699–1711. doi: 10.1111/j.1558-5646.1997.tb05095.x. PubMed DOI
Hansen T.F. Stabilizing selection and the comparative analysis of adaptation. Evolution. 1997;51:1341–1351. doi: 10.1111/j.1558-5646.1997.tb01457.x. PubMed DOI
Butler M.A., King A. Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution. Am. Nat. 2004;164:683–695. doi: 10.1086/426002. PubMed DOI
Revell L.J. phytools: An R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2011;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
Beaulieu J.M., Jhwueng D.-C., Boettiger C., O’Meara B.C. Modeling stabilizing selection: Expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution. 2012;66:2369–2383. doi: 10.1111/j.1558-5646.2012.01619.x. PubMed DOI