Organic Nanocrystal Fabrication Using the Process of Resonant Second-Harmonic Generation of Light
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34056209
PubMed Central
PMC8153771
DOI
10.1021/acsomega.0c05156
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Laser ablation with the use of ultra-short laser pulses is a widely used technique for the fabrication of nanoparticles of metals, inorganic and hybrid materials. However, fabrication of fragile organic nanocrystals via laser ablation is rarely used due to easy photodegradation of molecules. The method employing laser irradiation of the target material is beneficial as no other chemicals are used in the production of nanoparticles, except for a given material and a solvent. In this work, we test the concept of formation of nonlinear optical (NLO) organic nanocrystals dispersion in water by irradiation of the microcrystals of the NLO material with nonabsorbed infrared nanosecond light pulses. These pulses, due to a nonlinear optical process active in a noncentrosymmetric organic crystal, such as those studied in this work, DCNP dye (3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole), produce nanosecond pulses of second-harmonic (SH) light. Due to doubling of photon energy, they are reabsorbed in the volume of DCNP microcrystals and thermal shocks fracture them into nanometer size crystals. To the best of our knowledge, such process and its interpretation have not been described yet in the literature.
Zobrazit více v PubMed
Jin R.; Wu G.; Li Z.; Mirkin C. A.; Schatz G. C. What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies?. J. Am. Chem. Soc. 2003, 125, 1643–1654. 10.1021/ja021096v. PubMed DOI
Alivisatos P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52. 10.1038/nbt927. PubMed DOI
Roduner E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592. 10.1039/b502142c. PubMed DOI
Scholes G. D. Controlling the Optical Properties of Inorganic Nanoparticles. Adv. Funct. Mater. 2008, 18, 1157–1172. 10.1002/adfm.200800151. DOI
Zeng H.; Sun S. Syntheses, Properties, and Potential Applications of Multicomponent Magnetic Nanoparticles. Adv. Funct. Mater. 2008, 18, 391–400. 10.1002/adfm.200701211. DOI
Kaeser A.; Schenning A. P. H. J. Fluorescent Nanoparticles Based on Self-Assembled π-Conjugated Systems. Adv. Mater. 2010, 22, 2985–2997. 10.1002/adma.201000427. PubMed DOI
Tan Y.; Xu K.; Li L.; Liu C.; Song C.; Wang P. Fabrication of size-controlled starch-based nanospheres by nanoprecipitation. Appl. Mater. Interfaces 2009, 1, 956–959. 10.1021/am900054f. PubMed DOI
Merisko-Liversidge E. M.; Liversidge G. G. Drug Nanoparticles: Formulating Poorly Water-Soluble Compounds. Toxicol. Pathol. 2008, 36, 43–48. 10.1177/0192623307310946. PubMed DOI
Park D. H.; Jo S. G.; Hong Y. K.; Cui C.; Lee H.; Ahn D. J.; Kim J.; Joo J. Highly bright and sharp light emission of a single nanoparticle of crystalline rubrene. J. Mater. Chem. 2011, 21, 8002–8007. 10.1039/c1jm10530b. DOI
Keck C.; Müller R. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. J. Pharm. Biopharm. 2006, 62, 3–16. 10.1016/j.ejpb.2005.05.009. PubMed DOI
Zhao Y. S.; Yang W.; Yao J. Organic nanocrystals with tunable morphologies and optical properties prepared through a sonication technique. Phys. Chem. Chem. Phys. 2006, 8, 3300–3303. 10.1039/b604645m. PubMed DOI
Li B.; Kawakami T.; Hiramatsu M. Enhancement of organic nanoparticle preparation by laser ablation in aqueous solution using surfactants. Appl. Surf. Sci. 2003, 210, 171–176. 10.1016/s0169-4332(03)00009-6. DOI
Tan D.; Ma Z.; Xu B.; Dai Y.; Ma G.; He M.; Jin Z.; Qiu J. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution. Phys. Chem. Chem. Phys. 2011, 13, 20255–20261. 10.1039/c1cp21366k. PubMed DOI
Stuart B. C.; Feit M. D.; Herman S.; Rubenchik A. M.; Shore B. W.; Perry M. D. Optical ablation by high-power short-pulse lasers. J. Opt. Soc. Am. B 1996, 13, 459–468. 10.1364/josab.13.000459. DOI
Šmejkal P.; Pfleger J.; Šišková K.; Vlckova B.; Dammer O.; Slouf M. In-situ study of Ag nanoparticle hydrosol optical spectra evolution during laser ablation/fragmentation. Appl. Phys. Mater. Sci. Process 2004, 79, 1307–1309. 10.1007/s00339-004-2758-z. DOI
Pfleger J.; Smejkal P.; Vlckova B.; Slouf M.. Preparation of Ag nanoparticles by two wavelengths laser ablation and fragmentation. Advanced Organic and Inorganic Optical Materials; Krumins A., Millers D., Muzikante I., Sternbergs A., Zauls V., Eds.; International Society for Optics and Photonics, 2003; Vol. 5122, pp 198–205.
Zheng M.-L.; Chen W.-Q.; Fujita K.; Duan X.-M.; Kawata S. Dendrimer adjusted nanocrystals of DAST: organic crystal with enhanced nonlinear optical properties. Nanoscale 2010, 2, 913–916. 10.1039/b9nr00402e. PubMed DOI
Sanz N.; Gaillot A.-C.; Usson Y.; Baldeck P. L.; Ibanez A. Organic nanocrystals grown in sol-gel coatings. J. Mater. Chem. 2000, 10, 2723–2726. 10.1039/b004989l. DOI
Fang H.-H.; Yang J.; Ding R.; Chen Q.-D.; Wang L.; Xia H.; Feng J.; Ma Y.-G.; Sun H.-B. Polarization dependent two-photon properties in an organic crystal. Appl. Phys. Lett. 2010, 97, 101101.10.1063/1.3486683. DOI
Tseng R. J.; Chan R.; Tung V. C.; Yang Y. Anisotropy in Organic Single-Crystal Photovoltaic Characteristics. Adv. Mater. 2008, 20, 435–438. 10.1002/adma.200701374. DOI
Stillhart M.; Schneider A.; Günter P. Optical properties of 4-N,N-dimethylamino-4̂′-N̂′-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies. J. Opt. Soc. Am. B 2008, 25, 1914–1919. 10.1364/josab.25.001914. DOI
Fukumura H.; Masuhara H. The mechanism of dopant-induced laser ablation: Possibility of cyclic multiphotonic absorption in excited states. Chem. Phys. Lett. 1994, 221, 373–378. 10.1016/0009-2614(94)00277-0. DOI
Volkov V. V.; Asahi T.; Masuhara H.; Masuhara A.; Kasai H.; Oikawa H.; Nakanishi H. Size-dependent optical properties of polydiacetylene nanocrystal. J. Phys. Chem. B 2004, 108, 7674–7680. 10.1021/jp031369o. DOI
Tamaki Y.; Asahi T.; Masuhara H. Tailoring nanoparticles of aromatic and dye molecules by excimer laser irradiation. Appl. Surf. Sci. 2000, 168, 85–88. 10.1016/s0169-4332(00)00596-1. DOI
Tamaki Y.; Asahi T.; Masuhara H. Nanoparticle Formation of Vanadyl Phthalocyanine by Laser Ablation of Its Crystalline Powder in a Poor Solvent†. J. Phys. Chem. A 2002, 106, 2135–2139. 10.1021/jp012518a. DOI
Sugiyama T.; Asahi T.; Takeuchi H.; Masuhara H. Size and phase control in quinacridone nanoparticle formation by laser ablation in water. Jpn. J. Appl. Phys. 2006, 45, 384–388. 10.1143/jjap.45.384. DOI
Asahi T.; Sugiyama T.; Masuhara H. Laser fabrication and spectroscopy of organic nanoparticles. Acc. Chem. Res. 2008, 41, 1790–1798. 10.1021/ar800125s. PubMed DOI
Yasukuni R.; Asahi T.; Sugiyama T.; Masuhara H.; Sliwa M.; Hofkens J.; Schryver F. C.; Auweraer M.; Herrmann A.; Müllen K. Fabrication of fluorescent nanoparticles of dendronized perylenediimide by laser ablation in water. Appl. Phys. A 2008, 93, 5–9. 10.1007/s00339-008-4661-5. DOI
Suzuki D.; Nakabayashi S.; Yoshikawa H. Y. Control of Organic Crystal Shape by Femtosecond Laser Ablation. Cryst. Growth Des. 2018, 18, 4829–4833. 10.1021/acs.cgd.8b00697. DOI
Yasukuni R.; Sliwa M.; Hofkens J.; De Schryver F. C.; Herrmann A.; Müllen K.; Asahi T. Size-dependent optical properties of dendronized perylenediimide nanoparticle prepared by laser ablation in water. Jpn. J. Appl. Phys. 2009, 48, 065002.10.1143/jjap.48.065002. DOI
Flores-Castañeda M.; González E. C.; Ruiz-Aguilar I.; Camps E.; Cruces M. P.; Pimentel E.; Camacho-López M. Preparation and characterization of organic nanoparticles by laser ablation in liquids technique and their biological activity. Mater. Res. Express 2019, 6, 105091.10.1088/2053-1591/ab3cf1. DOI
Akimoto I.; Ohata M.; Ozaki N.; Gu P. Size dependent optical properties of quinacridonequinone nanoparticles prepared by liquid laser ablation in water. Chem. Phys. Lett. 2012, 552, 102–107. 10.1016/j.cplett.2012.09.048. DOI
Wagener P.; Barcikowski S. Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet. Appl. Phys. A 2010, 101, 435–439. 10.1007/s00339-010-5814-x. DOI
Omura K.; Yanagihara R.; Wada H. Preparation of silicon naphthalocyanine nanoparticles by laser ablation in liquid and their optical properties. J. Appl. Phys. 2019, 58, 128002.10.7567/1347-4065/ab50cc. DOI
Nichols W. T.; Malyavanatham G.; Henneke D. E.; O’Brien D. T.; Becker M. F.; Keto J. W. Bimodal Nanoparticle Size Distributions Produced by Laser Ablation of Microparticles in Aerosols. J. Nanopart. Res. 2002, 4, 423–432. 10.1023/a:1021644123428. DOI
Nichols W. T.; Keto J. W.; Henneke D. E.; Brock J. R.; Malyavanatham G.; Becker M. F.; Glicksman H. D. Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol. Appl. Phys. Lett. 2001, 78, 1128–1130. 10.1063/1.1347385. DOI
Amendola V.; Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?. Phys. Chem. Chem. Phys. 2013, 15, 3027–3046. 10.1039/c2cp42895d. PubMed DOI
Zeng H.; Du X.-W.; Singh S. C.; Kulinich S. A.; Yang S.; He J.; Cai W. Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review. Adv. Funct. Mater. 2012, 22, 1333–1353. 10.1002/adfm.201102295. DOI
Suzuki D.; Nakabayashi S.; Yoshikawa H. Y. Control of Organic Crystal Shape by Femtosecond Laser Ablation. Growth Des. 2018, 18, 4829–4833. 10.1021/acs.cgd.8b00697. DOI
Zulina N. A.; Achor S. U.; Denisyuk I. Y. Nanoparticles of organic nonlinear optical molecular crystals synthesized by laser ablation in liquid. Opt. Quant. Electron. 2016, 48, 489.10.1007/s11082-016-0757-x. DOI
Boutinguiza M.; Lusquiños F.; Riveiro A.; Comesaña R.; Pou J. Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture. Appl. Surf. Sci. 2009, 255, 5382–5385. 10.1016/j.apsusc.2008.09.030. DOI
Fang H.-H.; Yang J.; Ding R.; Feng J.; Chen Q.-D.; Sun H.-B. Top down fabrication of organic nanocrystals by femtosecond laser induced transfer method. CrystEngComm 2012, 14, 4596–4600. 10.1039/c2ce06579g. DOI
Allen S.; McLean T. D.; Gordon P. F.; Bothwell B. D.; Hursthouse M. B.; Karaulov S. A. A novel organic electro-optic crystal: 3-(1,1-dicyanoethenyl)-1-phenyl- 4,5-dihydro-1H-pyrazole. J. Appl. Phys. 1988, 64, 2583–2590. 10.1063/1.341646. DOI
Cole J. M.; Wilson C. C.; Howard J. A. K.; Cruickshank F. R. Quantitative analysis of hydrogen bonding and atomic thermal motion in the organic non-linear optical material DCNP using X-ray and neutron diffraction. Acta Crystallogr., Sect. B: Struct. Sci. 2000, 56, 1085–1093. 10.1107/s0108768100008855. PubMed DOI
Black S. N.; Davey R. J.; Morley P. R.; Halfpenny P.; Shepherd E. E. A.; Sherwood J. N. Crystal growth and characterisation of the electro-optic material 3-(2,2-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole. J. Mater. Chem. 1993, 3, 129–132. 10.1039/jm9930300129. DOI
Miniewicz A.; Palewska K.; Lipiński J.; Kowal R.; Swedek B. On the spectroscopic and nonlinear optical properties of 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP). Mol. Cryst. Liq. Cryst. 1994, 253, 41–50. 10.1080/10587259408055242. DOI
Miniewicz A.; Palewska K.; Sznitko L.; Lipinski J. Single- and Two-Photon Excited Fluorescence in Organic Nonlinear Optical Single Crystal 3-(1,1-Dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole. J. Phys. Chem. A 2011, 115, 10689–10697. 10.1021/jp204435s. PubMed DOI
Morawski O.; Sobolewski A. L.; Kozankiewicz B.; Sznitko L.; Miniewicz A. On the origin of fluorescence emission in optically non-linear DCNP crystals. Phys. Chem. Chem. Phys. 2014, 16, 26887–26892. 10.1039/c4cp03634d. PubMed DOI
Makowska-Janusik M.; Kajzar F.; Miniewicz A.; Mydlova L.; Rau I. First Principle Calculations of the Electronic and Vibrational Properties of the 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole Molecule. J. Phys. Chem. A 2015, 119, 1347–1358. 10.1021/jp510102q. PubMed DOI
Sznitko L.; Mysliwiec J.; Parafiniuk K.; Szukalski A.; Palewska K.; Bartkiewicz S.; Miniewicz A. Amplified spontaneous emission in polymethyl methacrylate doped with 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP). Chem. Phys. Lett. 2011, 512, 247–250. 10.1016/j.cplett.2011.07.046. DOI
Mysliwiec J.; Sznitko L.; Szukalski A.; Parafiniuk K.; Bartkiewicz S.; Miniewicz A.; Sahraoui B.; Rau I.; Kajzar F. Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices. Opt. Mater. 2012, 34, 1725–1728. 10.1016/j.optmat.2012.01.041. DOI
Tian T.; Cai B.; Ye T.; Cheng Q.; Zhan P.; Xu G.; Zhang L.; Sugihara O. One-minute self-assembly of millimetre-long DAST crystalline microbelts via substrate-supported rapid evaporation crystallization. RSC Adv. 2017, 7, 31691–31695. 10.1039/c7ra04912a. DOI
Cyprych K.; Sznitko L.; Morawski O.; Miniewicz A.; Rau I.; Mysliwiec J. Spontaneous crystalization and aggregation of DCNP pyrazoline-based organic dye as a way to tailor random lasers. J. Phys. D: Appl. Phys. 2015, 48, 195101–195109. 10.1088/0022-3727/48/19/195101. DOI
Bittner S.; Lafargue C.; Gozhyk I.; Djellali N.; Milliet L.; Hickox-Young D. T.; Ulysse C.; Bouche D.; Dubertrand R.; Bogomolny E.; Zyss J.; Lebental M. Origin of emission from square-shaped organic microlasers. Europhys. Lett. 2016, 113, 54002–54008. 10.1209/0295-5075/113/54002. DOI
Brasselet S. Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging. Adv. Opt Photon 2011, 3, 205–271. 10.1364/aop.3.000205. DOI
He G. S.Nonlinear Optics and Photonics; Oxford University Press, 2015; Chapter 3.
Boyd R. W.Nonlinear Optics; Academic Press: Rochester, New York, 1992; p. 76.
He G. S.; Tan L.-S.; Zheng Q.; Prasad P. N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245–1330. 10.1021/cr050054x. PubMed DOI
Kurtz S. K.; Perry T. T. A Powder Technique for the Evaluation of Nonlinear Optical Materials. J. Appl. Phys. 1968, 39, 3798–3813. 10.1063/1.1656857. DOI