Organic Nanocrystal Fabrication Using the Process of Resonant Second-Harmonic Generation of Light

. 2021 Apr 27 ; 6 (16) : 10547-10556. [epub] 20210415

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34056209

Laser ablation with the use of ultra-short laser pulses is a widely used technique for the fabrication of nanoparticles of metals, inorganic and hybrid materials. However, fabrication of fragile organic nanocrystals via laser ablation is rarely used due to easy photodegradation of molecules. The method employing laser irradiation of the target material is beneficial as no other chemicals are used in the production of nanoparticles, except for a given material and a solvent. In this work, we test the concept of formation of nonlinear optical (NLO) organic nanocrystals dispersion in water by irradiation of the microcrystals of the NLO material with nonabsorbed infrared nanosecond light pulses. These pulses, due to a nonlinear optical process active in a noncentrosymmetric organic crystal, such as those studied in this work, DCNP dye (3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole), produce nanosecond pulses of second-harmonic (SH) light. Due to doubling of photon energy, they are reabsorbed in the volume of DCNP microcrystals and thermal shocks fracture them into nanometer size crystals. To the best of our knowledge, such process and its interpretation have not been described yet in the literature.

Zobrazit více v PubMed

Jin R.; Wu G.; Li Z.; Mirkin C. A.; Schatz G. C. What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies?. J. Am. Chem. Soc. 2003, 125, 1643–1654. 10.1021/ja021096v. PubMed DOI

Alivisatos P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52. 10.1038/nbt927. PubMed DOI

Roduner E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592. 10.1039/b502142c. PubMed DOI

Scholes G. D. Controlling the Optical Properties of Inorganic Nanoparticles. Adv. Funct. Mater. 2008, 18, 1157–1172. 10.1002/adfm.200800151. DOI

Zeng H.; Sun S. Syntheses, Properties, and Potential Applications of Multicomponent Magnetic Nanoparticles. Adv. Funct. Mater. 2008, 18, 391–400. 10.1002/adfm.200701211. DOI

Kaeser A.; Schenning A. P. H. J. Fluorescent Nanoparticles Based on Self-Assembled π-Conjugated Systems. Adv. Mater. 2010, 22, 2985–2997. 10.1002/adma.201000427. PubMed DOI

Tan Y.; Xu K.; Li L.; Liu C.; Song C.; Wang P. Fabrication of size-controlled starch-based nanospheres by nanoprecipitation. Appl. Mater. Interfaces 2009, 1, 956–959. 10.1021/am900054f. PubMed DOI

Merisko-Liversidge E. M.; Liversidge G. G. Drug Nanoparticles: Formulating Poorly Water-Soluble Compounds. Toxicol. Pathol. 2008, 36, 43–48. 10.1177/0192623307310946. PubMed DOI

Park D. H.; Jo S. G.; Hong Y. K.; Cui C.; Lee H.; Ahn D. J.; Kim J.; Joo J. Highly bright and sharp light emission of a single nanoparticle of crystalline rubrene. J. Mater. Chem. 2011, 21, 8002–8007. 10.1039/c1jm10530b. DOI

Keck C.; Müller R. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. J. Pharm. Biopharm. 2006, 62, 3–16. 10.1016/j.ejpb.2005.05.009. PubMed DOI

Zhao Y. S.; Yang W.; Yao J. Organic nanocrystals with tunable morphologies and optical properties prepared through a sonication technique. Phys. Chem. Chem. Phys. 2006, 8, 3300–3303. 10.1039/b604645m. PubMed DOI

Li B.; Kawakami T.; Hiramatsu M. Enhancement of organic nanoparticle preparation by laser ablation in aqueous solution using surfactants. Appl. Surf. Sci. 2003, 210, 171–176. 10.1016/s0169-4332(03)00009-6. DOI

Tan D.; Ma Z.; Xu B.; Dai Y.; Ma G.; He M.; Jin Z.; Qiu J. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution. Phys. Chem. Chem. Phys. 2011, 13, 20255–20261. 10.1039/c1cp21366k. PubMed DOI

Stuart B. C.; Feit M. D.; Herman S.; Rubenchik A. M.; Shore B. W.; Perry M. D. Optical ablation by high-power short-pulse lasers. J. Opt. Soc. Am. B 1996, 13, 459–468. 10.1364/josab.13.000459. DOI

Šmejkal P.; Pfleger J.; Šišková K.; Vlckova B.; Dammer O.; Slouf M. In-situ study of Ag nanoparticle hydrosol optical spectra evolution during laser ablation/fragmentation. Appl. Phys. Mater. Sci. Process 2004, 79, 1307–1309. 10.1007/s00339-004-2758-z. DOI

Pfleger J.; Smejkal P.; Vlckova B.; Slouf M.. Preparation of Ag nanoparticles by two wavelengths laser ablation and fragmentation. Advanced Organic and Inorganic Optical Materials; Krumins A., Millers D., Muzikante I., Sternbergs A., Zauls V., Eds.; International Society for Optics and Photonics, 2003; Vol. 5122, pp 198–205.

Zheng M.-L.; Chen W.-Q.; Fujita K.; Duan X.-M.; Kawata S. Dendrimer adjusted nanocrystals of DAST: organic crystal with enhanced nonlinear optical properties. Nanoscale 2010, 2, 913–916. 10.1039/b9nr00402e. PubMed DOI

Sanz N.; Gaillot A.-C.; Usson Y.; Baldeck P. L.; Ibanez A. Organic nanocrystals grown in sol-gel coatings. J. Mater. Chem. 2000, 10, 2723–2726. 10.1039/b004989l. DOI

Fang H.-H.; Yang J.; Ding R.; Chen Q.-D.; Wang L.; Xia H.; Feng J.; Ma Y.-G.; Sun H.-B. Polarization dependent two-photon properties in an organic crystal. Appl. Phys. Lett. 2010, 97, 101101.10.1063/1.3486683. DOI

Tseng R. J.; Chan R.; Tung V. C.; Yang Y. Anisotropy in Organic Single-Crystal Photovoltaic Characteristics. Adv. Mater. 2008, 20, 435–438. 10.1002/adma.200701374. DOI

Stillhart M.; Schneider A.; Günter P. Optical properties of 4-N,N-dimethylamino-4̂′-N̂′-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies. J. Opt. Soc. Am. B 2008, 25, 1914–1919. 10.1364/josab.25.001914. DOI

Fukumura H.; Masuhara H. The mechanism of dopant-induced laser ablation: Possibility of cyclic multiphotonic absorption in excited states. Chem. Phys. Lett. 1994, 221, 373–378. 10.1016/0009-2614(94)00277-0. DOI

Volkov V. V.; Asahi T.; Masuhara H.; Masuhara A.; Kasai H.; Oikawa H.; Nakanishi H. Size-dependent optical properties of polydiacetylene nanocrystal. J. Phys. Chem. B 2004, 108, 7674–7680. 10.1021/jp031369o. DOI

Tamaki Y.; Asahi T.; Masuhara H. Tailoring nanoparticles of aromatic and dye molecules by excimer laser irradiation. Appl. Surf. Sci. 2000, 168, 85–88. 10.1016/s0169-4332(00)00596-1. DOI

Tamaki Y.; Asahi T.; Masuhara H. Nanoparticle Formation of Vanadyl Phthalocyanine by Laser Ablation of Its Crystalline Powder in a Poor Solvent†. J. Phys. Chem. A 2002, 106, 2135–2139. 10.1021/jp012518a. DOI

Sugiyama T.; Asahi T.; Takeuchi H.; Masuhara H. Size and phase control in quinacridone nanoparticle formation by laser ablation in water. Jpn. J. Appl. Phys. 2006, 45, 384–388. 10.1143/jjap.45.384. DOI

Asahi T.; Sugiyama T.; Masuhara H. Laser fabrication and spectroscopy of organic nanoparticles. Acc. Chem. Res. 2008, 41, 1790–1798. 10.1021/ar800125s. PubMed DOI

Yasukuni R.; Asahi T.; Sugiyama T.; Masuhara H.; Sliwa M.; Hofkens J.; Schryver F. C.; Auweraer M.; Herrmann A.; Müllen K. Fabrication of fluorescent nanoparticles of dendronized perylenediimide by laser ablation in water. Appl. Phys. A 2008, 93, 5–9. 10.1007/s00339-008-4661-5. DOI

Suzuki D.; Nakabayashi S.; Yoshikawa H. Y. Control of Organic Crystal Shape by Femtosecond Laser Ablation. Cryst. Growth Des. 2018, 18, 4829–4833. 10.1021/acs.cgd.8b00697. DOI

Yasukuni R.; Sliwa M.; Hofkens J.; De Schryver F. C.; Herrmann A.; Müllen K.; Asahi T. Size-dependent optical properties of dendronized perylenediimide nanoparticle prepared by laser ablation in water. Jpn. J. Appl. Phys. 2009, 48, 065002.10.1143/jjap.48.065002. DOI

Flores-Castañeda M.; González E. C.; Ruiz-Aguilar I.; Camps E.; Cruces M. P.; Pimentel E.; Camacho-López M. Preparation and characterization of organic nanoparticles by laser ablation in liquids technique and their biological activity. Mater. Res. Express 2019, 6, 105091.10.1088/2053-1591/ab3cf1. DOI

Akimoto I.; Ohata M.; Ozaki N.; Gu P. Size dependent optical properties of quinacridonequinone nanoparticles prepared by liquid laser ablation in water. Chem. Phys. Lett. 2012, 552, 102–107. 10.1016/j.cplett.2012.09.048. DOI

Wagener P.; Barcikowski S. Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet. Appl. Phys. A 2010, 101, 435–439. 10.1007/s00339-010-5814-x. DOI

Omura K.; Yanagihara R.; Wada H. Preparation of silicon naphthalocyanine nanoparticles by laser ablation in liquid and their optical properties. J. Appl. Phys. 2019, 58, 128002.10.7567/1347-4065/ab50cc. DOI

Nichols W. T.; Malyavanatham G.; Henneke D. E.; O’Brien D. T.; Becker M. F.; Keto J. W. Bimodal Nanoparticle Size Distributions Produced by Laser Ablation of Microparticles in Aerosols. J. Nanopart. Res. 2002, 4, 423–432. 10.1023/a:1021644123428. DOI

Nichols W. T.; Keto J. W.; Henneke D. E.; Brock J. R.; Malyavanatham G.; Becker M. F.; Glicksman H. D. Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol. Appl. Phys. Lett. 2001, 78, 1128–1130. 10.1063/1.1347385. DOI

Amendola V.; Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?. Phys. Chem. Chem. Phys. 2013, 15, 3027–3046. 10.1039/c2cp42895d. PubMed DOI

Zeng H.; Du X.-W.; Singh S. C.; Kulinich S. A.; Yang S.; He J.; Cai W. Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review. Adv. Funct. Mater. 2012, 22, 1333–1353. 10.1002/adfm.201102295. DOI

Suzuki D.; Nakabayashi S.; Yoshikawa H. Y. Control of Organic Crystal Shape by Femtosecond Laser Ablation. Growth Des. 2018, 18, 4829–4833. 10.1021/acs.cgd.8b00697. DOI

Zulina N. A.; Achor S. U.; Denisyuk I. Y. Nanoparticles of organic nonlinear optical molecular crystals synthesized by laser ablation in liquid. Opt. Quant. Electron. 2016, 48, 489.10.1007/s11082-016-0757-x. DOI

Boutinguiza M.; Lusquiños F.; Riveiro A.; Comesaña R.; Pou J. Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture. Appl. Surf. Sci. 2009, 255, 5382–5385. 10.1016/j.apsusc.2008.09.030. DOI

Fang H.-H.; Yang J.; Ding R.; Feng J.; Chen Q.-D.; Sun H.-B. Top down fabrication of organic nanocrystals by femtosecond laser induced transfer method. CrystEngComm 2012, 14, 4596–4600. 10.1039/c2ce06579g. DOI

Allen S.; McLean T. D.; Gordon P. F.; Bothwell B. D.; Hursthouse M. B.; Karaulov S. A. A novel organic electro-optic crystal: 3-(1,1-dicyanoethenyl)-1-phenyl- 4,5-dihydro-1H-pyrazole. J. Appl. Phys. 1988, 64, 2583–2590. 10.1063/1.341646. DOI

Cole J. M.; Wilson C. C.; Howard J. A. K.; Cruickshank F. R. Quantitative analysis of hydrogen bonding and atomic thermal motion in the organic non-linear optical material DCNP using X-ray and neutron diffraction. Acta Crystallogr., Sect. B: Struct. Sci. 2000, 56, 1085–1093. 10.1107/s0108768100008855. PubMed DOI

Black S. N.; Davey R. J.; Morley P. R.; Halfpenny P.; Shepherd E. E. A.; Sherwood J. N. Crystal growth and characterisation of the electro-optic material 3-(2,2-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole. J. Mater. Chem. 1993, 3, 129–132. 10.1039/jm9930300129. DOI

Miniewicz A.; Palewska K.; Lipiński J.; Kowal R.; Swedek B. On the spectroscopic and nonlinear optical properties of 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP). Mol. Cryst. Liq. Cryst. 1994, 253, 41–50. 10.1080/10587259408055242. DOI

Miniewicz A.; Palewska K.; Sznitko L.; Lipinski J. Single- and Two-Photon Excited Fluorescence in Organic Nonlinear Optical Single Crystal 3-(1,1-Dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole. J. Phys. Chem. A 2011, 115, 10689–10697. 10.1021/jp204435s. PubMed DOI

Morawski O.; Sobolewski A. L.; Kozankiewicz B.; Sznitko L.; Miniewicz A. On the origin of fluorescence emission in optically non-linear DCNP crystals. Phys. Chem. Chem. Phys. 2014, 16, 26887–26892. 10.1039/c4cp03634d. PubMed DOI

Makowska-Janusik M.; Kajzar F.; Miniewicz A.; Mydlova L.; Rau I. First Principle Calculations of the Electronic and Vibrational Properties of the 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole Molecule. J. Phys. Chem. A 2015, 119, 1347–1358. 10.1021/jp510102q. PubMed DOI

Sznitko L.; Mysliwiec J.; Parafiniuk K.; Szukalski A.; Palewska K.; Bartkiewicz S.; Miniewicz A. Amplified spontaneous emission in polymethyl methacrylate doped with 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP). Chem. Phys. Lett. 2011, 512, 247–250. 10.1016/j.cplett.2011.07.046. DOI

Mysliwiec J.; Sznitko L.; Szukalski A.; Parafiniuk K.; Bartkiewicz S.; Miniewicz A.; Sahraoui B.; Rau I.; Kajzar F. Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices. Opt. Mater. 2012, 34, 1725–1728. 10.1016/j.optmat.2012.01.041. DOI

Tian T.; Cai B.; Ye T.; Cheng Q.; Zhan P.; Xu G.; Zhang L.; Sugihara O. One-minute self-assembly of millimetre-long DAST crystalline microbelts via substrate-supported rapid evaporation crystallization. RSC Adv. 2017, 7, 31691–31695. 10.1039/c7ra04912a. DOI

Cyprych K.; Sznitko L.; Morawski O.; Miniewicz A.; Rau I.; Mysliwiec J. Spontaneous crystalization and aggregation of DCNP pyrazoline-based organic dye as a way to tailor random lasers. J. Phys. D: Appl. Phys. 2015, 48, 195101–195109. 10.1088/0022-3727/48/19/195101. DOI

Bittner S.; Lafargue C.; Gozhyk I.; Djellali N.; Milliet L.; Hickox-Young D. T.; Ulysse C.; Bouche D.; Dubertrand R.; Bogomolny E.; Zyss J.; Lebental M. Origin of emission from square-shaped organic microlasers. Europhys. Lett. 2016, 113, 54002–54008. 10.1209/0295-5075/113/54002. DOI

Brasselet S. Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging. Adv. Opt Photon 2011, 3, 205–271. 10.1364/aop.3.000205. DOI

He G. S.Nonlinear Optics and Photonics; Oxford University Press, 2015; Chapter 3.

Boyd R. W.Nonlinear Optics; Academic Press: Rochester, New York, 1992; p. 76.

He G. S.; Tan L.-S.; Zheng Q.; Prasad P. N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245–1330. 10.1021/cr050054x. PubMed DOI

Kurtz S. K.; Perry T. T. A Powder Technique for the Evaluation of Nonlinear Optical Materials. J. Appl. Phys. 1968, 39, 3798–3813. 10.1063/1.1656857. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...