Pichia Toolkit: Use of the combinatorial library screening system for expression of a marine laccase
Status Publisher Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40411648
DOI
10.1007/s12223-025-01276-2
PII: 10.1007/s12223-025-01276-2
Knihovny.cz E-resources
- Keywords
- Marine biotechnology, Multicopper oxidase, Synthetic biology,
- Publication type
- Journal Article MeSH
Pnh_Lac1 (Lac1) gene from the marine-derived fungus Peniophora sp. CBMAI 1063 was expressed in Pichia pastoris using the Pichia Toolkit system. Constitutive (pGAP, pPET9, pG1, pG6, and pADH2) and methanol-inducible (pAOX1, pDAS1, and pPMP20) promoters were assessed in combination with 21 different signal peptides and His-tag about efficiency in laccase production. Next, 3,200 variants were screened, different culture conditions were evaluated, and an investigation was performed in a bench-scale bioreactor for the best variant selected. The influence of promoters and signal peptides on Lac1 expression was demonstrated in the constitutive libraries. The change from pG6 to pGAP resulted in a 171-fold increase in production. Changing the alpha-mating factor peptide by the native signal peptide of the Lac1 gene decreased laccase production 22-fold. The promoters pGAP (constitutive library) and pAOX1 (inductive library) performed best. The association with the signal peptide αAmylase-αMFD was more efficient for both promoters. The constitutive expression of Lac1 had a 1.37-fold greater production compared to the inducible expression achieved by pAOX1 and was considered more suitable for laccase expression. Culturing the best producer variant pGAP_αA1 at pH 6 and 18 °C resulted in the best production rate in deep-well plates (90 U/L). Constitutive laccase production in a 2-L bioreactor resulted in a peak production of 178 U/L after 78 h. Pichia Toolkit was efficient in the selection of the best molecular regulation and secretion of Lac1. Our findings contribute to the development of marine biotechnology and will serve as the basis for Lac1 production optimization.
See more in PubMed
Agmon N, Mitchell LA, Cai Y, Ikushima S, Chuang J, Zheng A, Choi WJ, Martin JA, Caravelli K, Stracquadanio G, Boeke JD (2015) Yeast Golden Gate (yGG) for the efficient assembly of S. cerevisiae transcription units. ACS Synth Biol 4:853–859. https://doi.org/10.1021/sb500372z PubMed DOI
Antošová Z, Sychrová H (2016) Yeast hosts for the production of recombinant laccases: a review. Mol Biotechnol 58:93–116. https://doi.org/10.1007/s12033-015-9910-1 PubMed DOI
Ata O, Ergun BG, Fickers P, Heistinger L, Mattanovich D, Rebnegger C, Gasser B (2021) What makes Komagataella phaffii non-conventional? FEMS Yeast Res 21:1–15. https://doi.org/10.1093/femsyr/foab059 DOI
Bazon ML, Perez-Riverol A, Dos Santos-Pinto JRA, Fernandes LGR, Lasa AM, Justo-Jacomini DL, Palma MS, Zollner RL, Brochetto-Braga MR (2017) Heterologous expression, purification and immunoreactivity of the antigen 5 from Polybia paulista wasp venom. Toxins (Basel) 9:1–14. https://doi.org/10.3390/toxins9090259 DOI
Benchling (2021) Benchling [Biology Software]. https://benchling.com . Accessed 12 Jan 2025
Bertrand B, Martínez-Morales F, Trejo-Hernández MR (2017) Upgrading laccase production and biochemical properties: strategies and challenges. Biotechnol Prog 33:1015–1034. https://doi.org/10.1002/btpr.2482 PubMed DOI
Bonugli-Santos RC, Vieira GAL, Collins C, Fernandes TCC, Marin-Morales MA, Murray P, Sette LD (2016) Enhanced textile dye decolorization by marine-derived basidiomycete Peniophora sp. CBMAI 1063 using integrated statistical design. Environ Sci Pollut Res 23:8659–8668. https://doi.org/10.1007/s11356-016-6053-2 DOI
Brenelli LB, Persinoti GF, Cairo JPLF, Liberato MV, Gonçalves TA, Otero IVR, Mainardi PH, Felby C, Sette LD, Squina FM (2019) Novel redox-active enzymes for ligninolytic applications revealed from multiomics analyses of Peniophora sp. CBMAI 1063, a laccase hyper-producer strain. Sci Rep 9:1–15. https://doi.org/10.1038/s41598-019-53608-1 DOI
Bronikowski A, Hagedoorn PL, Koschorreck K, Urlacher VB (2017) Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express 7:1–13. https://doi.org/10.1186/s13568-017-0368-3 DOI
Bustos C, Quezada J, Veas R, Altamirano C, Braun-Galleani S, Fickers P, Berrios J (2022) Advances in cell engineering of the Komagataella phaffii platform for recombinant protein production. Metabolites 12:1–20. https://doi.org/10.3390/metabo12040346 DOI
Çalik P, Ata Ö, Güneş H, Massahi A, Boy E, Keskin A, Öztürk S, Zerze GH, Özdamar TH (2015) Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters. Biochem Eng J 95:20–36. https://doi.org/10.1016/j.bej.2014.12.003 DOI
Carson M, Johnson DH, McDonald H, Brouillette C, DeLucas LJ (2007) His-tag impact on structure. Acta Crystallogr D Biol Crystallogr 63:295–301. https://doi.org/10.1107/S0907444906052024 PubMed DOI
Chuang J, Boeke JD, Mitchell LA (2018) Coupling yeast Golden Gate and VEGAS for efficient assembly of the violacein pathway in Saccharomyces cerevisiae. In: Jensen MK, Keasling JD (eds) Synthetic metabolic pathways: Methods and protocols. Springer, New York, pp 211–225 DOI
Debnath R, Saha T (2020) An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. Biocatal Agric Biotechnol 26:101645. https://doi.org/10.1016/j.bcab.2020.101645 DOI
Ensani M, Mojerlou S, Zamani SM (2023) Enhanced laccase activity in Trametes versicolor (L.: Fr.) Pilát by host substrate and copper. Braz J Microbiol 54:1565–1572. https://doi.org/10.1007/s42770-023-01096-x PubMed DOI PMC
Geisel N (2011) Constitutive versus responsive gene expression strategies for growth in changing environments. PLoS ONE 6:23–25. https://doi.org/10.1371/journal.pone.0027033 DOI
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385. https://doi.org/10.1007/s00018-009-0169-1 PubMed DOI
Gomaa OM, Momtaz OA (2015) Copper induction and differential expression of laccase in Aspergillus flavus. Braz J Microbiol 46:285–292. https://doi.org/10.1590/S1517-838246120120118 PubMed DOI PMC
Hong F, Meinander NQ, Jönsson LJ (2002) Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol Bioeng 79:438–449. https://doi.org/10.1002/bit.10297 PubMed DOI
Jahic M, Gustavsson M, Jansen AK, Martinelle M, Enfors SO (2003) Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. J Biotechnol 102:45–53. https://doi.org/10.1016/S0168-1656(03)00003-8 PubMed DOI
Jahic M, Veide A, Charoenrat T, Teeri T, Enfors SO (2006) Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnol Prog 22:1465–1473. https://doi.org/10.1021/bp060171t PubMed DOI
Liu SH, Tsai SL, Guo PY, Lin CW (2020) Inducing laccase activity in white rot fungi using copper ions and improving the efficiency of azo dye treatment with electricity generation using microbial fuel cells. Chemosphere 243:125304. https://doi.org/10.1016/j.chemosphere.2019.125304 PubMed DOI
Loi M, Glazunova O, Fedorova T, Logrieco AF, Mulè G (2021) Fungal laccases: the forefront of enzymes for sustainability. J Fungi 7:1–25. https://doi.org/10.3390/jof7121048 DOI
Lõoke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50:325–328. https://doi.org/10.2144/000113672 PubMed DOI PMC
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33:1177–1193. https://doi.org/10.1016/j.biotechadv.2015.05.008 PubMed DOI
Majorek KA, Kuhn ML, Chruszcz M, Anderson WF, Minor W (2014) Double trouble - Buffer selection and his-tag presence may be responsible for non reproducibility of biomedical experiments. Protein Sci 23:1359–1368. https://doi.org/10.1002/pro.2520 PubMed DOI PMC
Massahi A, Çalik P (2015) In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J Theor Biol 364:179–188. https://doi.org/10.1016/j.jtbi.2014.08.048 PubMed DOI
Menezes CBA, Bonugli-Santos RC, Miqueletto PB, Passarini MRZ, Silva CHD, Justo MR, Leal RR, Fantinatti-Garboggini F, Oliveira VM, Berlinck RGS, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. Microbiol Res 165:466–482. https://doi.org/10.1016/j.micres.2009.09.005 PubMed DOI
Meng L, Liu Y, Yin X, Zhou H, Wu J, Wu M, Yang L (2020) Effects of his-tag on catalytic activity and enantioselectivity of recombinant transaminases. Appl Biochem Biotechnol 190:880–895. https://doi.org/10.1007/s12010-019-03117-8 PubMed DOI
Obst U, Lu TK, Sieber V (2017) A modular toolkit for generating Pichia pastoris secretion libraries. ACS Synth Biol 6:1016–1025. https://doi.org/10.1021/acssynbio.6b00337 PubMed DOI
Otero IVR, Ferro M, Bacci M, Ferreira H, Sette LD (2017) De novo transcriptome assembly: a new laccase multigene family from the marine-derived basidiomycete Peniophora sp. CBMAI 1063. AMB Express. https://doi.org/10.1186/s13568-017-0526-7
Otero IVR, Haslbeck M, Santello LC, Ferreira H, Sieber V, Sette LD (2025) Heterologous laccase from the marine environment: purification, characterization, and degradation of synthetic dyes. Biocatal Agric Biotechnol 63:1–14. https://doi.org/10.1016/j.bcab.2024.103485 DOI
Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924. https://doi.org/10.1128/AEM.66.3.920-924.2000 PubMed DOI PMC
Perez-Pinera P, Han N, Cleto S, Cao J, Purcell O, Shah KA, Lee K, Ram R, Lu TK (2016) Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care. Nat Commun 7:1–10. https://doi.org/10.1038/ncomms12211 DOI
Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S (2010) Heterologous laccase production and its role in industrial applications. Bioeng Bugs 1:252–262. https://doi.org/10.4161/bbug.1.4.11438 PubMed DOI PMC
Raschmanová H, Weninger A, Knejzlík Z, Melzoch K, Kovar K (2021) Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins. Appl Microbiol Biotechnol 105:4397–4414. https://doi.org/10.1007/s00253-021-11336-5 PubMed DOI PMC
Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226. https://doi.org/10.1016/j.tibtech.2006.03.006 PubMed DOI
Sabaty M, Grosse S, Adryanczyk G, Boiry S, Biaso F, Arnoux P, Pignol D (2013) Detrimental effect of the 6 His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis. BMC Biochem 14:1–12. https://doi.org/10.1186/1471-2091-14-28 DOI
Sharghi S, Ahmadi FS, Kakhki AM, Farsi M (2024) Copper increases laccase gene transcription and extracellular laccase activity in Pleurotus eryngii KS004. Braz J Microbiol 55:111–116. https://doi.org/10.1007/s42770-024-01257-6 PubMed DOI PMC
Sinzinger K, Obst U, Güner S, Döring M, Haslbeck M, Schieder D, Sieber V (2024) The Pichia pastoris enzyme production platform: From combinatorial library screening to bench-top fermentation on residual cyanobacterial biomass. J Bioresour Bioprod 9:43–57. https://doi.org/10.1016/j.jobab.2023.12.005 DOI
Sodhi AS, Bhatia S, Batra N (2024) Laccase: Sustainable production strategies, heterologous expression and potential biotechnological applications. Int J Biol Macromol 280:135745. https://doi.org/10.1016/j.ijbiomac.2024.135745 PubMed DOI
Theerachat M, Guieysse D, Morel S, Remaud-Siméon M, Chulalaksananukul W (2019) Laccases from marine organisms and their applications in the biodegradation of toxic and environmental pollutants: a review. Appl Biochem Biotechnol 187:583–611. https://doi.org/10.1007/s12010-018-2829-9 PubMed DOI
Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol 30:385–404. https://doi.org/10.1016/j.nbt.2012.11.010 PubMed DOI
Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6:1–11. https://doi.org/10.1371/journal.pone.0016765 DOI
Yang Z, Zhang Z (2018) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnol Adv 36:182–195. https://doi.org/10.1016/j.biotechadv.2017.11.002 PubMed DOI
Zahrl RJ, Prielhofer R, Burgard J, Mattanovich D, Gasser B (2023) Synthetic activation of yeast stress response improves secretion of recombinant proteins. N Biotechnol 73:19–28. https://doi.org/10.1016/j.nbt.2023.01.001 PubMed DOI
Zepeda AB, Pessoa A, Farías JG (2018) Carbon metabolism influenced for promoters and temperature used in the heterologous protein production using Pichia pastoris yeast. Braz J Microbiol 49:119–127. https://doi.org/10.1016/j.bjm.2018.03.010 PubMed DOI PMC
Zhou XS, Zhang YX (2002) Decrease of proteolytic degradation of recombinant hirudin produced by Pichia pastoris by controlling the specific growth rate. Biotechnol Lett 24:1449–1453. https://doi.org/10.1023/A:1019831406141 DOI
Zhu T, Sun H, Wang M, Li Y (2019) Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals: current status and future perspectives. Biotechnol J 14:1–13. https://doi.org/10.1002/biot.201800694 DOI