The global speciation continuum of the cyanobacterium Microcoleus

. 2024 Mar 08 ; 15 (1) : 2122. [epub] 20240308

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38459017

Grantová podpora
19-12994Y Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
23-06507S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 38459017
PubMed Central PMC10923798
DOI 10.1038/s41467-024-46459-6
PII: 10.1038/s41467-024-46459-6
Knihovny.cz E-zdroje

Speciation is a continuous process driven by genetic, geographic, and ecological barriers to gene flow. It is widely investigated in multicellular eukaryotes, yet we are only beginning to comprehend the relative importance of mechanisms driving the emergence of barriers to gene flow in microbial populations. Here, we explored the diversification of the nearly ubiquitous soil cyanobacterium Microcoleus. Our dataset consisted of 291 genomes, of which 202 strains and eight herbarium specimens were sequenced for this study. We found that Microcoleus represents a global speciation continuum of at least 12 lineages, which radiated during Eocene/Oligocene aridification and exhibit varying degrees of divergence and gene flow. The lineage divergence has been driven by selection, geographical distance, and the environment. Evidence of genetic divergence and selection was widespread across the genome, but we identified regions of exceptional differentiation containing candidate genes associated with stress response and biosynthesis of secondary metabolites.

Zobrazit více v PubMed

Shapiro, B. J. What Microbial Population Genomics Has Taught Us About Speciation. In Population Genomics: Microorganisms, Vol. 1 (eds. Polz, M. F. & Rajora, O. P.) 31–47 (Springer International Publishing, 2018).

Koonin EV, Makarova KS, Wolf YI. Evolution of microbial genomics: conceptual shifts over a Quarter Century. Trends Microbiol. 2021;29:582–592. doi: 10.1016/j.tim.2021.01.005. PubMed DOI PMC

Nosil P, Feder JL. Genomic divergence during speciation: causes and consequences. Philos. Trans. R. Soc. B. 2012;367:332–342. doi: 10.1098/rstb.2011.0263. PubMed DOI PMC

Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol. Rev. 2001;25:39–67. doi: 10.1016/S0168-6445(00)00040-1. PubMed DOI

Whitaker RJ, Banfield JF. Population genomics in natural microbial communities. Trends Ecol. Evol. 2006;21:508–516. doi: 10.1016/j.tree.2006.07.001. PubMed DOI

Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol. Rev. 2013;37:936–954. doi: 10.1111/1574-6976.12023. PubMed DOI

Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 2014;22:235–247. doi: 10.1016/j.tim.2014.02.006. PubMed DOI PMC

Stankowski S, Ravinet M. Defining the speciation continuum. Evolution. 2021;75:1256–1273. doi: 10.1111/evo.14215. PubMed DOI

Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007;315:476–480. doi: 10.1126/science.1127573. PubMed DOI PMC

Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 2009;3:199–208. doi: 10.1038/ismej.2008.93. PubMed DOI

Bobay L-M, Ochman H. Biological species are universal across Life’s domains. Genome Biol. Evol. 2017;9:491–501. doi: 10.1093/gbe/evx026. PubMed DOI PMC

Rosen MJ, Davison M, Bhaya D, Fisher DS. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science. 2015;348:1019–1023. doi: 10.1126/science.aaa4456. PubMed DOI

Shapiro BJ, et al. Population genomics of early events in the ecological differentiation of bacteria. Science. 2012;336:48–51. doi: 10.1126/science.1218198. PubMed DOI PMC

Cadillo-Quiroz H, et al. Patterns of gene flow define species of Thermophilic Archaea. PLoS Biol. 2012;10:e1001265. doi: 10.1371/journal.pbio.1001265. PubMed DOI PMC

Pérez-Carrascal OM, et al. Coherence of Microcystis species revealed through population genomics. ISME J. 2019;13:2887–2900. doi: 10.1038/s41396-019-0481-1. PubMed DOI PMC

Stanojković A, Skoupý S, Škaloud P, Dvořák P. High genomic differentiation and limited gene flow indicate recent cryptic speciation within the genus Laspinema (cyanobacteria) Front. Microbiol. 2022;13:977454. doi: 10.3389/fmicb.2022.977454. PubMed DOI PMC

Retchless AC, Lawrence JG. Temporal fragmentation of speciation in bacteria. Science. 2007;317:1093–1096. doi: 10.1126/science.1144876. PubMed DOI

Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. Biogeography of the Sulfolobus islandicus pan-genome. Proc. Natl Acad. Sci. USA. 2009;106:8605–8610. doi: 10.1073/pnas.0808945106. PubMed DOI PMC

Shapiro BJ, Polz MF. Microbial speciation. Cold Spring Harb. Perspect. Biol. 2015;7:a018143. doi: 10.1101/cshperspect.a018143. PubMed DOI PMC

Roux C, et al. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol. 2016;14:e2000234. doi: 10.1371/journal.pbio.2000234. PubMed DOI PMC

Kollár J, Poulíčková A, Dvořák P. On the relativity of species, or the probabilistic solution to the species problem. Mol. Ecol. 2022;31:411–418. doi: 10.1111/mec.16218. PubMed DOI

Coyne JA, Orr HA. Patterns of speciation in Drosophila. Evolution. 1989;43:362–381. doi: 10.2307/2409213. PubMed DOI

Coyne, J. A. & Orr, H. A. Speciation Sinauer Associates, Vol. 1 (2004).

Nosil P, Feder JL, Flaxman SM, Gompert Z. Tipping points in the dynamics of speciation. Nat. Ecol. Evol. 2017;1:0001. doi: 10.1038/s41559-016-0001. PubMed DOI

Turner TL, Hahn MW. Genomic islands of speciation or genomic islands and speciation? Mol. Ecol. 2010;19:848–850. doi: 10.1111/j.1365-294X.2010.04532.x. PubMed DOI

Martin SH, et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 2013;23:1817–1828. doi: 10.1101/gr.159426.113. PubMed DOI PMC

Renaut S, Owens GL, Rieseberg LH. Shared selective pressure and local genomic landscape lead to repeatable patterns of genomic divergence in sunflowers. Mol. Ecol. 2014;23:311–324. doi: 10.1111/mec.12600. PubMed DOI

Wu C-I. The genic view of the process of speciation: genic view of the process of speciation. J. Evolut. Biol. 2001;14:851–865. doi: 10.1046/j.1420-9101.2001.00335.x. DOI

Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow. Trends Genet. 2012;28:342–350. doi: 10.1016/j.tig.2012.03.009. PubMed DOI

Coleman ML, et al. Genomic Islands and the ecology and evolution of Prochlorococcus. Science. 2006;311:1768–1770. doi: 10.1126/science.1122050. PubMed DOI

Kashtan N, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–420. doi: 10.1126/science.1248575. PubMed DOI

Nosil, P. Ecological speciation, Vol. 1 (Oxford University Press, 2012).

Lawniczak MKN, et al. Widespread Divergence Between Incipient Anopheles gambiae Species Revealed by Whole Genome Sequences. Science. 2010;330:512–514. doi: 10.1126/science.1195755. PubMed DOI PMC

Egan SP, et al. Experimental evidence of genome‐wide impact of ecological selection during early stages of speciation‐with‐gene‐flow. Ecol. Lett. 2015;18:817–825. doi: 10.1111/ele.12460. PubMed DOI PMC

Pennisi E. Disputed islands. Science. 2014;345:611–613. doi: 10.1126/science.345.6197.611. PubMed DOI

Dvořák P, et al. Synechococcus: 3 billion years of global dominance. Mol. Ecol. 2014;23:5538–5551. doi: 10.1111/mec.12948. PubMed DOI

Garcia-Pichel F, Wojciechowski MF. The evolution of a capacity to build supra-cellular ropes enabled filamentous Cyanobacteria to colonize highly erodible substrates. PLoS ONE. 2009;4:e7801. doi: 10.1371/journal.pone.0007801. PubMed DOI PMC

Hašler P, et al. Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria) Fottea. 2012;12:341–356. doi: 10.5507/fot.2012.024. DOI

Belnap, J. & Lange, O. L. Structure and Functioning of Biological Soil Crusts: A Synthesys. In Biological Soil Crusts: Structure, Function, and Management, Vol. 150 (eds. Belnap, J. & Lange, O. L.) 471-479 (Springer International Publishing 2001).

Dvořák P, Hašler P, Poulíčková A. Phylogeography of the Microcoleus vaginatus (Cyanobacteria) from Three Continents – A Spatial and Temporal Characterization. PLoS ONE. 2012;7:e40153. doi: 10.1371/journal.pone.0040153. PubMed DOI PMC

Couradeau E, Giraldo-Silva A, De Martini F, Garcia-Pichel F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome. 2019;7:55. doi: 10.1186/s40168-019-0661-2. PubMed DOI PMC

Belnap J, Gardner JS. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Gt. Basin Naturalist. 1993;53:40–47.

Nelson C, Giraldo-Silva A, Garcia-Pichel F. A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus. ISME J. 2021;15:282–292. doi: 10.1038/s41396-020-00781-1. PubMed DOI PMC

Stanojković A, Skoupý S, Hašler P, Poulíčková A, Dvořák P. Geography and climate drive the distribution and diversification of the cosmopolitan cyanobacterium Microcoleus (Oscillatoriales, Cyanobacteria) Eur. J. Phycol. 2022;57:396–405. doi: 10.1080/09670262.2021.2007420. DOI

Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–220. PubMed

Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–884. doi: 10.1038/44766. PubMed DOI

Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more liable. Evolution. 2003;57:717–745. PubMed

Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics. 2022;38:5315–5316. doi: 10.1093/bioinformatics/btac672. PubMed DOI PMC

Bobay, L. M. The Prokaryotic Species Concept and Challenges. In The Pangenome: Diversity, Dynamics and Evolution of Genomes, Vol. 1 (eds. Tettelin, H. & Medini, D.) 21–49 (Springer International Publishing, 2020). PubMed

Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007;7:214. doi: 10.1186/1471-2148-7-214. PubMed DOI PMC

Page AJ, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3693. doi: 10.1093/bioinformatics/btv421. PubMed DOI PMC

Whelan FJ, Rusilowicz M, McInerney JO. Coinfinder: detecting significant associations and dissociations in pangenomes. Microb. Genomics. 2020;6:e000338. doi: 10.1099/mgen.0.000338. PubMed DOI PMC

Zhu, Q., Kosoy, M. & Dittmar, K. HGTector: an automated method facilitating genome-wide discovery of putative horizontal gene transfers. BMC Genomics15, 717 (2014). PubMed PMC

Oliveira PH, Touchon M, Rocha EPC. Regulation of genetic flux between bacteria by restriction–modification systems. Proc. Natl Acad. Sci. USA. 2016;113:5658–5663. doi: 10.1073/pnas.1603257113. PubMed DOI PMC

Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6:241–252. doi: 10.1080/00401706.1964.10490181. DOI

Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952;47:583–621. doi: 10.1080/01621459.1952.10483441. DOI

Croucher NJ, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15–e15. doi: 10.1093/nar/gku1196. PubMed DOI PMC

Dykhuizen DE, Green L. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 1991;173:7257–7268. doi: 10.1128/jb.173.22.7257-7268.1991. PubMed DOI PMC

Mayr, E. Systematics and the Origin of Species, Vol. 1 (Columbia University Press, New York, 1942).

Chase AB, et al. Maintenance of sympatric and allopatric populations in free-living terrestrial bacteria. mBio. 2019;10:e02361-19. doi: 10.1128/mBio.02361-19. PubMed DOI PMC

Michel AP, et al. Widespread genomic divergence during sympatric speciation. Proc. Natl Acad. Sci. USA. 2010;107:9724–9729. doi: 10.1073/pnas.1000939107. PubMed DOI PMC

Hadany L, Beker T. On the evolutionary advantage of fitness-associated recombination. Genetics. 2003;165:2167–2179. doi: 10.1093/genetics/165.4.2167. PubMed DOI PMC

Redfield RJ. Genes for breakfast: the have-your-cake and-eat-lt-too of bacterial transformation. J. Heredity. 1993;84:400–404. doi: 10.1093/oxfordjournals.jhered.a111361. PubMed DOI

Bouma‐Gregson K, Crits‐Christoph A, Olm MR, Power ME, Banfield JF. Microcoleus (Cyanobacteria) form watershed‐wide populations without strong gradients in population structure. Mol. Ecol. 2022;31:86–103. doi: 10.1111/mec.16208. PubMed DOI PMC

Cordero OX, Ventouras L-A, DeLong EF, Polz MF. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc. Natl Acad. Sci. USA. 2012;109:20059–20064. doi: 10.1073/pnas.1213344109. PubMed DOI PMC

Baas-Becking, L. G. M. Geobiologie of Inleiding tot de Milieukunde. Vol. 18/19. W. P. Van Stockum & Zoon, The Hague. (1934).

Finlay BJ. Global dispersal of free-living microbial eukaryote species. Science. 2002;296:1061–1063. doi: 10.1126/science.1070710. PubMed DOI

Ribeiro KF, Ferrero AP, Duarte L, Turchetto‐Zolet AC, Crossetti LO. Comparative phylogeography of two free‐living cosmopolitan cyanobacteria: insights on biogeographic and latitudinal distribution. J. Biogeogr. 2020;47:1106–1118. doi: 10.1111/jbi.13785. DOI

Dapper AL, Payseur BA. Connecting theory and data to understand recombination rate evolution. Philos. Trans. R. Soc. B. 2017;372:20160469. doi: 10.1098/rstb.2016.0469. PubMed DOI PMC

Polz MF, Alm EJ, Hanage WP. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 2013;29:170–175. doi: 10.1016/j.tig.2012.12.006. PubMed DOI PMC

Tonkin-Hill G, et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020;21:180. doi: 10.1186/s13059-020-02090-4. PubMed DOI PMC

Chen MH, et al. Characterization of the RcsC-YojN-RcsB phosphorelay signaling pathway involved in capsular synthesis in Escherichia coli. Biosci. Biotechnol. Biochem. 2001;65:2364–2367. doi: 10.1271/bbb.65.2364. PubMed DOI

Takeda S, Fujisawa Y, Matsubara M, Aiba H, Mizuno T. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC YojN RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol. Microbiol. 2001;40:440–450. doi: 10.1046/j.1365-2958.2001.02393.x. PubMed DOI

Rajeev L, et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 2013;7:2178–2191. doi: 10.1038/ismej.2013.83. PubMed DOI PMC

Murik O, et al. What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect: desiccation resistance genes in Cyanobacteria. Environ. Microbiol. 2017;19:535–550. doi: 10.1111/1462-2920.13486. PubMed DOI

Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001;292:686–693. doi: 10.1126/science.1059412. PubMed DOI

Sun J, Windley BF. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia. Geology. 2015;43:1015–1018. doi: 10.1130/G37165.1. DOI

Mirabello L, Conn JE. Population analysis using the nuclear white gene detects Pliocene/Pleistocene lineage divergence within Anopheles nuneztovari in South America. Med. Vet. Entomol. 2008;22:109–119. doi: 10.1111/j.1365-2915.2008.00731.x. PubMed DOI

Lee-Yaw JA, Grassa CJ, Joly S, Andrew RL, Rieseberg LH. An evaluation of alternative explanations for widespread cytonuclear discordance in annual sunflowers (Helianthus) N. Phytologist. 2019;221:515–526. doi: 10.1111/nph.15386. PubMed DOI

Casteleyn G, et al. Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc. Natl Acad. Sci. USA. 2010;107:12952–12957. doi: 10.1073/pnas.1001380107. PubMed DOI PMC

Den Bakker HC, et al. Comparative genomics of the bacterial genus Listeria: genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics. 2010;11:688. doi: 10.1186/1471-2164-11-688. PubMed DOI PMC

Škaloud P, et al. Speciation in protists: spatial and ecological divergence processes cause rapid species diversification in a freshwater chrysophyte. Mol. Ecol. 2019;28:1084–1095. doi: 10.1111/mec.15011. PubMed DOI

Eronen JT, et al. Neogene aridification of the Northern Hemisphere. Geology. 2012;40:823–826. doi: 10.1130/G33147.1. DOI

Herbert TD, et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 2016;9:843–847. doi: 10.1038/ngeo2813. DOI

Dvořák P, Jahodářová E, Stanojković A, Skoupý S, Casamatta DA. Population genomics meets the taxonomy of cyanobacteria. Algal Res. 2023;72:103128. doi: 10.1016/j.algal.2023.103128. DOI

Kuo C-H, Ochman H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol. Direct. 2009;4:35. doi: 10.1186/1745-6150-4-35. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–607. doi: 10.1093/bioinformatics/btv638. PubMed DOI

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC

Kistler, L. Ancient DNA Extraction from Plants. In Ancient DNA: Methods in Molecular Biology, Vol. 840 (eds. Shapiro, B. & Hofreiter, M.) 71−79 (Humana Press, 2012). PubMed

Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010;2010:pdb.prot5448. doi: 10.1101/pdb.prot5448. PubMed DOI

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI

Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at http://arxiv.org/abs/1207.3907 (2012).

Dinno, A. Package dunn.test. (R package version 1.3.5, 2017).

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC

Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evolution. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Mirarab S, Warnow T. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics. 2015;31:i44–i52. doi: 10.1093/bioinformatics/btv234. PubMed DOI PMC

Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinforma. 2018;19:153. doi: 10.1186/s12859-018-2129-y. PubMed DOI PMC

Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. PubMed DOI

Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res. 2019;47:5539–5549. doi: 10.1093/nar/gkz361. PubMed DOI PMC

Beugin M, Gayet T, Pontier D, Devillard S, Jombart T. A fast likelihood solution to the genetic clustering problem. Methods Ecol. Evol. 2018;9:1006–1016. doi: 10.1111/2041-210X.12968. PubMed DOI PMC

Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI

Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018;9:5114. doi: 10.1038/s41467-018-07641-9. PubMed DOI PMC

Clarridge JE. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Rev. 2004;17:840–862. doi: 10.1128/CMR.17.4.840-862.2004. PubMed DOI PMC

Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evolution. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Helfrich, P., Rieb, E., Abrami, G., Lücking, A. & Mehler, A. TreeAnnotator: Versatile Visual Annotation of Hierarchical Text Relations. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). 1958–1963 (2018).

Yu Y, Harris AJ, Blair C, He X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenetics Evolution. 2015;87:46–49. doi: 10.1016/j.ympev.2015.03.008. PubMed DOI

Fick SE, Hijmans RJ. WorldClim2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI

Beckmann M, et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 2014;5:372–383. doi: 10.1111/2041-210X.12168. DOI

Haberl H, et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA. 2007;104:12942–12947. doi: 10.1073/pnas.0704243104. PubMed DOI PMC

Hijmans RJ, Williams E, Vennes C, Hijmans MRJ. Package ‘geosphere’. Spherical Trigonometry. 2017;1:1–45.

Oksanen, J. et al. Vegan: Community ecology package. (R package version 2.5.6, 2016).

Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: investigating evolutionary radiations. Bioinformatics. 2008;24:129–131. doi: 10.1093/bioinformatics/btm538. PubMed DOI

Kembel SW, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–1464. doi: 10.1093/bioinformatics/btq166. PubMed DOI

Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI

Hadfield J, et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics. 2018;34:292–293. doi: 10.1093/bioinformatics/btx610. PubMed DOI PMC

Wickham, H. reshape2: flexibility reshape data: a reboot of the reshape package. (R package version 1.4.4, 2017).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (R package version 3.3.5, 2016).

Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ. PopGenome: an efficient swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 2014;31:1929–1936. doi: 10.1093/molbev/msu136. PubMed DOI PMC

Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021;38:5825–5829. doi: 10.1093/molbev/msab293. PubMed DOI PMC

Baddeley, A., Lawrence, T. & Rubak, E. Globe: Plot 2D and 3D Views of the Earth, Including Major Coastline. (R package version 1.2.0, 2017).

Stanojković, A., Skoupý, S., Johannesson, H. & Dvořák, P. The global speciation continuum of the cyanobacterium Microcoleus, zenodo 10.5281/zenodo.10677429 (2024). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...