Phylogeography of the Microcoleus vaginatus (Cyanobacteria) from three continents--a spatial and temporal characterization
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22761955
PubMed Central
PMC3384635
DOI
10.1371/journal.pone.0040153
PII: PONE-D-12-06366
Knihovny.cz E-zdroje
- MeSH
- DNA primery MeSH
- fylogeneze * MeSH
- polymerázová řetězová reakce MeSH
- pravděpodobnostní funkce MeSH
- sekvence nukleotidů MeSH
- sinice klasifikace MeSH
- zeměpis * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA primery MeSH
It has long been assumed that cyanobacteria have, as with other free-living microorganisms, a ubiquitous occurrence. Neither the geographical dispersal barriers nor allopatric speciation has been taken into account. We endeavoured to examine the spatial and temporal patterns of global distribution within populations of the cyanobacterium Microcoleus vaginatus, originated from three continents, and to evaluate the role of dispersal barriers in the evolution of free-living cyanobacteria. Complex phylogeographical approach was applied to assess the dispersal and evolutionary patterns in the cyanobacterium Microcoleus vaginatus (Oscillatoriales). We compared the 16S rRNA and 16S-23S ITS sequences of strains which had originated from three continents (North America, Europe, and Asia). The spatial distribution was investigated using a phylogenetic tree, network, as well as principal coordinate analysis (PCoA). A temporal characterization was inferred using molecular clocks, calibrated from fossil DNA. Data analysis revealed broad genetic diversity within M. vaginatus. Based on the phylogenetic tree, network, and PCoA analysis, the strains isolated in Europe were spatially separated from those which originated from Asia and North America. A chronogram showed a temporal limitation of dispersal barriers on the continental scale. Dispersal barriers and allopatric speciation had an important role in the evolution of M. vaginatus. However, these dispersal barriers did not have a permanent character; therefore, the genetic flow among populations on a continental scale was only temporarily present. Furthermore, M. vaginatus is a recently evolved species, which has been going through substantial evolutionary changes.
Zobrazit více v PubMed
Martiny JBH, Bohanna BJM, Brown JH, Colwell RK, Fuhrman JA, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–112. PubMed
Ramette A, Tiedje JM. Biogeography: and emerging cornerstone for understanding prokaryotic diversity, ecology and evolution. Microb Ecol. 2007;53:197–207. PubMed
Baas Becking LGM. Geobiologie of inleiding tot de miliekunde. W. P. van Stockum, the Hague. 1934.
Finlay BJ. Global dispersal of free-living microbial eukaryote species. Science. 2002;296:1061–1063. PubMed
Norton TA, Melkonian M, Andersen RA. Algal biodiversity. Phycologia. 1996;35:308–326.
Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, et al. Polyphasic study of Antarctic cyanobacterial strains. J Phycol. 2006;42:1257–1270.
Telford RJ, Vandvik V, Birks HJB. Dispersal limitations matter for microbial morphospecies. Science. 2006;312:1015. PubMed
Telford RJ, Vandvik V, Birks HJB. Response to comment on “dispersal limitations matter for microbial morphospecies”. Science. 2007;316:1124. PubMed
Vyverman W, Verleyen E, Sabbe K, Vanhoutte K, Sterken M, et al. Historical processes constrain patterns in global diatom diversity. Ecology. 2007;88:1924–1931. PubMed
Evans KM, Wortley AH, Mann DG. An assessment of potential diatom “Barcode” genes (cox1, rbcL, 18S and ITSr DNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist. 2007;158:349–364. PubMed
Poulíčková A, Veselá J, Neustupa J, Škaloud P. Pseudocryptic diversity versus cosmopolitanism in diatoms: a case study on Navicula cryptcephala Kutz. (Bacillariophyceae) and morphologically similar taxa. Protist. 2010;161:353–369. PubMed
Hájek M, Roleček J, Cottenie K, Kintrova K, Horsák M, Poulíčková A, et al. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitats: comparison of organisms with different dispersal abilities sampled in the same plots. J Biogeogr. 2011;38:1683–1693.
Coesel PFM, Krienitz L. Diversity and geographic distribution of desmids and other coccoid green algae. Biodivers and Conserv. 2008;17:381–392.
Neustupa J, Šťastný J, Nemjová K, Mazalová P, Goodyer E, et al. A novel, combined approach to assessing species delimitation and biogeography within the well-known desmid species Micrasterias fimbriata and M. rotata (Desmidiales, Steptophyta). Hydrobiologia. 2011;667:223–239.
Whitaker RJ. Allopatric origins of microbial species. Philos T R Soc B. 2006;361:1975–1984. PubMed PMC
Garcia-Pichel F, Prufert-Bebout L, Muyzer G. Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microb. 1996;62:3284–3291. PubMed PMC
Van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, et al. Lack of phylogeographic structure in the freshwater cyanobactrium Microcystis aeruginosa suggests global dispersal. PloS ONE. 2011. DOI:10.1371/journal.pone.0019561. PubMed PMC
Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50:513–524. PubMed
Cohan FM. What are bacterial species? Annu Rev Microbiol. 2002;56:457–487. PubMed
Papke RT, Ramsin NB, Bateson MM, Ward DM. Geographical isolation in hot spring cyanobacteria. Environ Microbiol. 2003;5:650–659. PubMed
Miller SR, Castenholz RW, Pedersen D. Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microb. 2007;73:4751–4759. PubMed PMC
Garcia-Pichel F, Lopez-Cortez A, Nubel U. Phylogenetic and morphological diversity of cyanobacteria in soil deserts crusts from the Colorado Plateau. Appl Environ Microb. 2001;67:1902–1910. PubMed PMC
Boyer SL, Johansen JR, Howard GL. Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. J Phycol. 2002;38:1222–1225.
Komárek J, Anagnostidis K. Büdel B, Gärdner G, Krienitz L, Schagerl M, editors. Cyanoprokaryota. 2. Teil: Oscillatoriales. 2005. Süsswasserflora von Mitteleuropa, vol. 1 9/2. München: Elsevier. 759 p.
Hašler P, Dvořák P, Johansen JR, Kitner M, Ondřej V, et al. Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea In press. 2012.
Siegesmund MA, Johansen JR, Karsten U, Friedl T. Coleofasciculus gen. nov. (cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol. 2008;44:1572–1585. PubMed
Komárek J. Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia. 2010;1:245–259.
Itemam I, Rippka R, Tandeau de Marcac N, Herdmann M. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology. 2000;146:1275–1286. PubMed
Boyer SL, Fletchner V, Johansen JR. Is the 16S-23S rRNA internal transcribed spacer (ITS) region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol. 2001;18:1057–1069. PubMed
Huson DH, Bryant D. Application of Phylogenetic Networks in Evolutionary Studies. Mol Biol Evol. 2006;23:254–267. PubMed
Doroghazi JR, Buckley DH. Widespread homologous recombination within and between Streptomyces species. ISME J. 2010;4:1136–1143. PubMed
Andersen RA. Algal culturing techniques. London: Academic Press. 578 p. 2005.
Staub R. Research on physiology of nutrients of the planktonic cyanobacterium Oscillatoria rubescens. Schweizerische Zeitschrift Für Hydrologie. 1961;23:83–198.
Larkin MA, Blackshields G, Brown NP, Duenna R, McGettigan PA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. PubMed
Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman A. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microb. 2005;71:7724–7736. PubMed PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony Methods. Mol Biol Evol. 2011;28:2731–2739. PubMed PMC
Schwarz GE. Estimating the dimension of a model. Ann Stat. 1978;6:461–464.
Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–120. PubMed
Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour. 2006;6:288–295. PubMed PMC
Martin AP. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microb. 2002;68:3673–3682. PubMed PMC
Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010;4:17–27. PubMed PMC
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:699–710. PubMed PMC
Panieri G, Lugli S, Manzi V, Roveri M, Schreiber BC, et al. Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology. 2010;8:101–111. PubMed
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. PubMed PMC
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA. 2010.
Rambaut A, Drummond AJ. Tracer v1.5, available from. 2004. http://beast.bio.ed.ac.uk/Tracer. (accessed on October 21, 2011).
Kuo C, Ochman H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biology Direct DOI. 2009. pp. 10.1186/1745–6150-4-35. PubMed PMC
Strunecký O, Elster J, Komárek J. Taxonomic revision of the freshwater cyanobacterium “Phomidium” murrayi = Wilmottia murrayi. Fottea. 2011;11:57–71.
Behnke A, Friedl T, Chepurnov VA, Mann DG. Reproductive compatibility and rDNA sequences analyses in the Sellaphora pupula species complex (Bacillariophyta). J Phycol. 2004;40:193–208. PubMed
Amato A, Kooistra WHCF, Ghiron LJH, Mann DG, Pröshold T. Reproductive isolation among sympatric cryptic species in marine diatoms. Protist. 2007;158:193–207. PubMed
Kooistra WHCF, Sarno D, Balzano S, Gu H, Andersen RA. Global diversity an biogeography of Skeletonema species (Bacillariophyta). Protist. 2008;159:177–193. PubMed
Vanormelingen P, Chepurnov VA, Mann DG, Sabbe K, Vyverman W. Genetic divergence and reproductive barriers among morphologically heterogenous sympatric clones of Eunotia bilunaris sensu lato (Bacillariophyta). Protist. 2008;159:73–90. PubMed
Bock C, Krienitz L, Pröschold T. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea. 2011;11:293–312.
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22:148–155. PubMed
Wiley EO, Mayden RL. Wheeler QD, Meier R, editors. The evolutionary species concept. 2000. pp. 70–89. Species concepts and the phylogenetic theory, a debate. New York: Columbia University Press.
Johansen JR, Casamatta DA. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological studies. 2005;117:71–93.
Miehe G, Winiger M, Böhner J, Zhang YL. The climatic diagram map of High Asia. Purpose and concepts. Erdkunde. 2001;55:94–97.
Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacteria ecotypes in the cold biosphere. ISME J. 2010;4:191–202. PubMed
Strunecký O, Elster J, Komárek J. Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biol. 2010;33:1419–1428.
Kellogg CA, Griffin DW. Aerobiology and the global transport of desert dust. Trends Ecol Evol. 2006;21:638–644. PubMed
Lodders N, Stackebrandt E, Nubel U. Frequent genetic recombination in natural populations of the marine cyanobacterium Microcoleus chthnoplastes. Environ Microbiol. 2005;7:434–442. PubMed
Cohan FM, Koeppel AF. The origins of ecological diversity in prokaryotes. Curr Biol. 2008;18:1024–1034. PubMed
Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–976. PubMed
Hay WW, DeConto RM, Wold CN, Wilson KM, Voigt S, et al. Alternative global Cretaceous paleogeography. Barrera E, Johnson CC, editors. Evolution of the Cretaceous Ocean-Climate System, Special Paper 332. Boulder: Geological Society of America. 1999. pp. 1–47.
Ochman H, Elwyn S, Moran NA. Calibrating bacterial evolution. Proc Natl Acad Sci U S A. 1999;96:12638–12643. PubMed PMC
Ochman H, Wilson AC. Evolution in bacteria – evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:74–86. PubMed
Moran NA, Munson MA, Baumann P, Ishikawa H. A molecular clock in endosymbiotic bacteria is calibrated using the insect host. P Roy Soc B-Biol Sci. 1993;253:167–171.
Whitton BA, Potts M. The ecology of cyanobacteria. Their diversity in time and space. Berlin: Springer. 2000. 669