New cyanobacterial genus Argonema is hidding in soil crusts around the world

. 2022 May 03 ; 12 (1) : 7203. [epub] 20220503

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35504986
Odkazy

PubMed 35504986
PubMed Central PMC9065122
DOI 10.1038/s41598-022-11288-4
PII: 10.1038/s41598-022-11288-4
Knihovny.cz E-zdroje

Cyanobacteria are crucial primary producers in soil and soil crusts. However, their biodiversity in these habitats remains poorly understood, especially in the tropical and polar regions. We employed whole genome sequencing, morphology, and ecology to describe a novel cyanobacterial genus Argonema isolated from Antarctica. Extreme environments are renowned for their relatively high number of endemic species, but whether cyanobacteria are endemic or not is open to much current debate. To determine if a cyanobacterial lineage is endemic is a time consuming, elaborate, and expensive global sampling effort. Thus, we propose an approach that will help to overcome the limits of the sampling effort and better understand the global distribution of cyanobacterial clades. We employed a Sequencing Read Archive, which provides a rich source of data from thousands of environmental samples. We developed a framework for a characterization of the global distribution of any microbial species using Sequencing Read Archive. Using this approach, we found that Argonema is actually cosmopolitan in arid regions. It provides further evidence that endemic microbial taxa are likely to be much rarer than expected.

Zobrazit více v PubMed

Belnap, J., Büdel, B., Lang O.L. Biological Soil Crusts: Characteristics and Distribution in Biological Soil Crusts: Structure, Function, and Management, Vol. 150 (eds. Belnap, J. & Lange O.L.) 3–30 (Springer, Berlin, Heidelberg, 2001). 10.1007/978-3-642-56475-8_1.

Henao LJ, Mazeau K. Molecular modelling studies of clay-exopolysaccharide complexes: soil aggregation and water retention phenomena. Mater. Sci. Eng. C. 2009;29(8):2326–2332. doi: 10.1016/j.msec.2009.06.001. DOI

Chamizo S, Mugnai G, Rossi F, Certini G, De Philipps R. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insight for applicability in soil restoration. Front. Environ. Sci. 2018;6:49. doi: 10.3389/fenvs.2018.00049. DOI

Ortiz M, et al. Microbial nitrogen cycling in Antarctic soils. Microorganisms. 2020;8(9):1442. doi: 10.3390/microorganisms8091442. PubMed DOI PMC

Green, T.G.A., Broady, P.A. Biological Soil Crusts of Antarctica in Biological Soil Crusts: Structure, Function, and Management, Vol. 150 (eds. Belnap, J. & Lange, O. L.). 133–139 (Springer, Berlin, Heidelberg, 2003) 10.1007/978-3-642-56475-8_11.

Guiry, M.D., Guiry, G.M. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 14 April 2021, (2021).

Lambrechts S, Willems A, Tahon G. Uncovering the uncultivated majority in antarctic soils: toward a synergistic approach. Front. Microbiol. 2019;10:242. doi: 10.3389/fmicb.2019.00242. PubMed DOI PMC

Turner J. Antarctic Climate Change and the Environment. Cambridge: Scientific Committee on Antarctic Research; 2009.

Jungblut AD, Hawe I. Using captain Scott´s discovery specimens to unlock the past: has Antarctic cyanobacterial diversity changed over the last 100 years? Proc. R. Soc. B. 2017 doi: 10.1098/rspb.2017.0833. PubMed DOI PMC

Dvořák P, Casamatta DA, Hašler P, Jahodářová E, Norwich AR, Poulíčková A. Diversity of the cyanobacteria. In: Hallenbeck P, editor. Modern Topics in the Phototrophic Prokaryotes. Springer International Publishing; 2017. pp. 3–46.

Dvořák P, Hašler P, Casamatta DA, Poulíčková A. Underestimated cyanobacterial diversity: trends and perspective of research in tropical environments. Fottea. 2021;21(2):110–127. doi: 10.5507/fot.2021.009. DOI

Komárek J, Anagnostidis K. Süsswasserflora von Mitteleuropa. Cyanoprokaryota. 2nd part, Oscillatoriales. München: Elsevier GmbH; 2005.

Pessi, I.S. The cyanobacterial biota of polar regions: a molecular approach. Doctoral thesis. Université de Liège; http://hdl.handle.net/2268/214693 (2017)

Dvořák P, Jahodářová E, Casamatta DA, Hašler P, Poulíčková A. Difference without distinction? Gaps in cyanobacterial systematics; when more is just too much. Fottea. 2018;18(1):130–136. doi: 10.5507/fot.2017.023. DOI

Mühlsteinová R, Johansen JR, Pietrasiak N, Martin MP. Polyphasic characterization of Kastovskya adunca gen. nov. et comb. Nov. (Cyanobacteria: Oscillatoriales). from desert soils of the Atacama Desert Chile. Phytotaxa. 2014;163(4):216–228. doi: 10.11646/phytotaxa.163.4.2. DOI

Ribeiro KF, Duarte L, Crossetti LO. Everything is not everywhere: a tale on the biogeography of cyanobacteria. Hydrobiologia. 2018;820:23–48. doi: 10.1007/s10750-018-3669-x. DOI

Dvořák P, Casamatta DA, Poulíčková A, Hašler P, Ondřej V, Sanges R. Synechococcus: 3 billion years of global dominance. Mol. Ecol. 2014;23(22):5538–5551. doi: 10.1111/mec.12948. PubMed DOI

Komárek J, Kaštovský J, Mares J, Johansen R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014;86(4):295–335.

Komárek J. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 2016;51(3):346–353. doi: 10.1080/09670262.2016.1163738. DOI

Johnson SJ, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019 doi: 10.1038/s41467-019-13036-1. PubMed DOI PMC

Berube PM, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci. Data. 2018;5:180154. doi: 10.1038/sdata.2018.154. PubMed DOI PMC

Jahodářová E, Dvořák P, Hašler P, Holušová K, Poulíčková A. Elainella gen. nov.: a new tropical cyanobacterium characterized using a complex genomic approach. Eur. J. Phycol. 2017;53(1):39–51. doi: 10.1080/09670262.2017.1362591. DOI

Engene N, et al. Moorea producens gen. nov., sp. Nov. and Moorea bouillonii comb. Nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 2012;62(5):1171–1178. doi: 10.1099/ijs.0.033761-0. PubMed DOI PMC

Engene N., Tronholm A. Moorena gen. nov., a valid name for “Moorea Engene et al.” nom. Inval. (Ocsillatoriaceae, Cyanobacteria). Notulae algarum ISSN 2009-8987 (2009)

Corrêa FB, Saraiva JP, Stadler PF, da Rocha UN. TerrestrialMetagenomeDB: a public repository of curated and standardized metadata for terrestrial metagenomes. Nucl. Acids Res. 2019 doi: 10.1093/nar/gkz994. PubMed DOI PMC

Orr MC, et al. Taxonomy must engage with new technologies and evolve to face future challenges. Nat. Ecol. Evol. 2021;5:3–4. doi: 10.1038/s41559-020-01360-5. PubMed DOI

Strunecký O, Elster J, Komárek J. Taxonomic revision of the freshwater cyanobacterium “Phormidium” murrayi = Wilmottia murrayi. J. Czech Phycol. Soc. 2011;11(1):57–71. doi: 10.5507/fot.2011.007. DOI

Engene N, Coates RC, Gerwick W. 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J. Phycol. 2010;46(3):591–601. doi: 10.1111/j.1529-8817.2010.00840.x. DOI

Mühlsteinová R, Hauer T, De Ley P, Pietrasiak N. Seeking the true Oscillatoria: a quest for reliable phylogenetic and taxonomic reference point. Preslia. 2018;90:151–169. doi: 10.23855/preslia.2018.151. DOI

Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 2009;69(9):5157–5169. doi: 10.1128/AEM.69.9.5157-5169.2003. PubMed DOI PMC

Komárek J. Delimitation of the family Oscillatoriaceae (Cyanobacteria) according to the modern polyphasic approach (Introductory review) Braz. J. Bot. 2018;41:449–456. doi: 10.1007/s40415-017-0415-y. DOI

Boden JS, Grego M, Bolhuis H, Sánchez-Barcaldo P. Draft genome sequences of three filamentous cyanobacteria isolated from brackish habitats. J. Genomics. 2021;9:20–25. doi: 10.7150/jgen.53678. PubMed DOI PMC

Larsson J, Nylander JA, Bergman B. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol. Biol. 2011 doi: 10.1186/1471-2148-11-187. PubMed DOI PMC

Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. PNAS. 2009;106(45):19126–19131. doi: 10.1073/pnas.0906412106. PubMed DOI PMC

Finlay BJ, Esteban GF, Clarke KJ, Olmo JL. Biodiversity of terrestrial protozoa appears homogenous across local and global spatial scales. Protist. 2001;152(4):355–366. doi: 10.1078/1434-4610-00073. PubMed DOI

Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Boinformatics. 2015;32(6):929–931. doi: 10.1093/bioinformatics/btv681. PubMed DOI PMC

Prabha R, Singh DP. Cyanobacterial phylogenetic analysis based on phylogenomics approaches render evolutionary diversification and adaptation: an overview of representative orders. 3 Biotech. 2019 doi: 10.1007/s13205-019-1635-6. PubMed DOI PMC

Durrel LW, Shields LM. Characteristics of soil algae relating to crust formation. Trans. Am. Microsc. Soc. 1961;80(1):73–79. doi: 10.2307/3223709. DOI

da Silva Malone CF, et al. Cephalothrix gen. nov. (Cyanobacteria): towards an intraspecific phylogenetic evaluation by multilocus analyses. Int. J. Syst. Evol. Microbiol. 2015 doi: 10.1099/ijs.0.000369. PubMed DOI

Thu NK, Tanabe Y, Yoshida M, Matsuura H, Watanabe MM. Aerosakkonema funiforme gen. et sp. Nov. (Oscillatoriales), a new gas-vacuolated oscillatorioid cyanobacterium isolated from a mesotrophic reservoir. Phycologia. 2012;51(6):672–683. doi: 10.2216/11-130.1. DOI

McGregor GB, Sendall BC. Potamosiphon australiensis gen. nov., sp nov. (Oscillatoriales), a new filamentous cyanobacterium from subtropical north-eastern Australia. Phytotaxa. 2019;387(2):077–093. doi: 10.11646/phytotaxa.387.2.1. DOI

McGregor GB, Sendall BC. Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of Microseira gen. nov. J. Phycol. 2014;51(1):109–119. doi: 10.1111/jpy.1256. PubMed DOI

Gomont, M. Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie.-Lyngbyées. Annales des Sciences Naturelles, Botanique, Série7(16): 91–264, pls 1–7 (1892 '1893').

Compére, P. Algues de la région du lac Tchad. II. Cyanophycées-Cah. O.R.S.T.O.M., ser. Hydrobiol8(3/4):165–198 (1974)

Ishida T, Yokota A, Sugiyama J. Phylogenetic relationships of filamentous cyanobacterial taxa inferred from 16S rRNA sequence divergence. J. Gen. Appl. Microbiol. 1997;43(4):237–241. doi: 10.2323/jgam.43.237. PubMed DOI

Zhu T, Hou S, Lu X, Hess WR. Draft genome sequences of nine cyanobacterial strains from diverse habitats. Genome Announc. 2017 doi: 10.1128/genomeA.01676-16. PubMed DOI PMC

Anagnostidis, K., Komárek, J. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Archiv für Hydrobiologie, Supplement 80: 327–472 (1988)

Sciuto K, Andreoli C, Rascio N, La Rocca N, Moro I. Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria) Cladistics. 2010 doi: 10.1111/j.1096-0031.2011.00386.x. PubMed DOI

Strunecký O, Elster J, Komárek J. Phylogenetic relationship between geographically separate Phormidium Cyanobacteria: is there a link between north and south polar regions? Polar Biol. 2010;33(10):1419–1428. doi: 10.1007/s00300-010-0834-8. DOI

Salmasso N, Cerasino L, Bosciani A, Capelli C. Planktic Tychonema (Cyanobacteria) in the large lakes south of the Alps: phylogenetic assessment and toxigenic potential. FEMS Microbiol. Ecol. 2016 doi: 10.1093/femsec/fiw155. PubMed DOI

West, W., West, G.S. Part VII. Freshwater algae in British Antarctic Expedition, Vol. 1 (ed. Murray, J.) 264–298 (Portsmouth, New Hampshire, 1911).

McKnight, D.M., Alger, A., Tate, C., Shupe, G., Spaulding, S.in Longitudinal patterns in algal abundance and species distribution in meltwater streams in Taylor Valley, Southern Victoria Land, Antarctica. (eds Priscu, J. C.) Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, Vol. 72. Doi: 10.1029/AR072p0109 (1998).

Nadeau TL, Milbrandt E, Castenholz RW. Evolutionary relationships of cultivated Antarctic Oscillatorians (Cyanobacteria) J. Phycol. 2001;37(4):650–654. doi: 10.1046/j.1529-8817.2001.037004650.x. DOI

Broady PA, Kibblewhite AL. Morphological characterization of Oscillatoriales (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarct. Sci. 1991;3(1):35–45. doi: 10.1017/s095410209100007x. DOI

Van Goor ACJ. Zur Kenntnis der Oscillatoriaceen. Reçueil des Travaux Botaniques Néerlandais. 1918;15(3):255–262.

Gardner NL. New Myxophyceae from Porto Rico. Mem. N. Y. Bot. Gard. 1927;7:1–44.

Gain L. Note sur trois espéces nouvelles d'algues marines provenant de la région antarctique sud-américaine. Bulletin du Museum National d'Histoire Naturelle. 1911;17:482–484.

Adler RF, et al. The global precipitation climatology project (GPCP) monthly analysis (new version 23) and a review of 2017 global precipitation. Atmosphere. 2018;9(4):138. doi: 10.3390/atmos9040138. PubMed DOI PMC

Becking LGMB. Geobiologie of inleiding tot de milieukunde. WP Van Stockum & Zoon; 1934. pp. 18–19.

Dvořák P, Hašler P, Poulíčková A. Phylogeography of the microcoleus vaginatus (Cyanobacteria) from three continents – a spatial and temporal characterization. Plos One. 2012 doi: 10.1371/journal.pone.0040153. PubMed DOI PMC

Staub R. Ernährungphysiologish-autökologishe Untersuchung an den planktonishen Blaualge Oscillatoria rubescens DC. Schweiz. Z. Hydrol. 1961;23:82–198.

Hammer O, Harper DAT, Ryan D. PAST: paleontological statistics software package for education and data analysis. Paleontol. Electron. 2001;4(1):1–9.

Larsson A. AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics. 2014;30(22):3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 2004;35(5):1792–1797. doi: 10.1093/nar/ghk340. PubMed DOI PMC

Ronquist F, Huelsenbeck JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Miller, M.A., Pfeiffer, W., and Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proc. of the Gateway Computing Environments Workshop (GCE), pp. 1–8 (2010).

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msz312. PubMed DOI PMC

Harrington, B. et al. Inkscape. http://www.inkscape.org/ (2005)

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 2003;31(13):3406–3415. doi: 10.1093/nar/gkg595. PubMed DOI PMC

Johansen JR, Casamatta DA. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algol. Stud. 2005;117(1):71–93. doi: 10.1127/1864-1318/2005/0117-0071. DOI

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

Li H, et al. 1000 genome project data processing subgroup, the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Soergel DAW, Dey N, Knight R, Brenner SE. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME. 2012;6(7):1440–1444. doi: 10.1038/ismej.2011.208. PubMed DOI PMC

R Core Team, R: A Language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021).

South A., rnaturalearth: World Map Data from Natural Earth. CRAN. http://github.com/ropenscilabs/rnaturalearth. (2017).

Wickham H., ggplot2: elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org. (2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...