Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P41 RR004050
NCRR NIH HHS - United States
P41 RR004050-24
NCRR NIH HHS - United States
P41-RR004050
NCRR NIH HHS - United States
PubMed
21724952
PubMed Central
PMC3542135
DOI
10.1099/ijs.0.033761-0
Knihovny.cz E-zdroje
- MeSH
- biologické pigmenty metabolismus MeSH
- biologické přípravky metabolismus MeSH
- biosyntetické dráhy genetika MeSH
- DNA bakterií chemie genetika MeSH
- fotosyntéza MeSH
- fylogeneze MeSH
- mikroskopie MeSH
- molekulární sekvence - údaje MeSH
- mořská voda mikrobiologie MeSH
- peptidsynthasy genetika MeSH
- polyketidsynthasy genetika MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- sinice klasifikace genetika izolace a purifikace metabolismus MeSH
- tropické klima MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- biologické pigmenty MeSH
- biologické přípravky MeSH
- DNA bakterií MeSH
- non-ribosomal peptide synthase MeSH Prohlížeč
- peptidsynthasy MeSH
- polyketidsynthasy MeSH
- ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
The filamentous cyanobacterial genus Moorea gen. nov., described here under the provisions of the International Code of Botanical Nomenclature, is a cosmopolitan pan-tropical group abundant in the marine benthos. Members of the genus Moorea are photosynthetic (containing phycocyanin, phycoerythrin, allophycocyanin and chlorophyll a), but non-diazotrophic (lack heterocysts and nitrogenase reductase genes). The cells (discoid and 25-80 µm wide) are arranged in long filaments (<10 cm in length) and often form extensive mats or blooms in shallow water. The cells are surrounded by thick polysaccharide sheaths covered by a rich diversity of heterotrophic micro-organisms. A distinctive character of this genus is its extraordinarily rich production of bioactive secondary metabolites. This is matched by genomes rich in polyketide synthase and non-ribosomal peptide synthetase biosynthetic genes which are dedicated to secondary metabolism. The encoded natural products are sometimes responsible for harmful algae blooms and, due to morphological resemblance to the genus Lyngbya, this group has often been incorrectly cited in the literature. We here describe two species of the genus Moorea: Moorea producens sp. nov. (type species of the genus) with 3L(T) as the nomenclature type, and Moorea bouillonii comb. nov. with PNG5-198(R) as the nomenclature type.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Botany Czech Academy of Science Dukelská 135 Třeboň Czech Republic
Zobrazit více v PubMed
Boyer S. L., Flechtner V. R., Johansen J. R. (2001). Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18, 1057–1069 10.1093/oxfordjournals.molbev.a003877 PubMed DOI
Cannone J. J., Subramanian S., Schnare M. N., Collett J. R., D’Souza L. M., Du Y., Feng B., Lin N., Madabusi L. V. & other authors (2002). The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 10.1186/1471-2105-3-2 PubMed DOI PMC
Casamatta D. A., Johansen J. R., Vis M. L., Broadwater S. T. (2005). Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41, 421–438 10.1111/j.1529-8817.2005.04062.x DOI
Castenholz R. W. (1988). Culturing of cyanobacteria. Methods Enzymol 167, 68–93
Castenholz R. W. (2001). Phylum BX. Cyanobacteria oxygenic photosynthetic bacteria. In Bergey’s Manual of Systematic Bacteriology, pp. 473–599 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer; 10.1007/978-0-387-21609-6_27 DOI
Engene N., Coates R. C., Gerwick W. H. (2010). 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycol 46, 591–601 10.1111/j.1529-8817.2010.00840.x DOI
Engene N., Choi H., Esquenazi E., Rottacker E. C., Ellisman M. H., Dorrestein P. C., Gerwick W. H. (2011). Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ Microbiol 13, 1601–1610 10.1111/j.1462-2920.2011.02472.x PubMed DOI PMC
Golubic S., Abed R. M. M., Palińska K., Pauillac S., Chinain M., Laurent D. (2010). Marine toxic cyanobacteria: diversity, environmental responses and hazards. Toxicon 56, 836–841 10.1016/j.toxicon.2009.07.023 PubMed DOI
Gugger M., Molica R., Le Berre B., Dufour P., Bernard C., Humbert J.-F. (2005). Genetic diversity of Cylindrospermopsis strains (cyanobacteria) isolated from four continents. Appl Environ Microbiol 71, 1097–1100 10.1128/AEM.71.2.1097-1100.2005 PubMed DOI PMC
Hoffmann L., Demoulin V. (1991). Marine cyanophyceae of Papua New Guinea. II. Lyngbya bouillonii sp. nov., a remarkable tropical reef-inhabiting blue-green alga. Belg J Bot 124, 82–88
Jones A. C., Monroe E. A., Podell S., Hess W. R., Klages S., Esquenazi E., Niessen S., Hoover H., Rothmann M. & other authors (2011). Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci U S A 108, 8815–8820 10.1073/pnas.1101137108 PubMed DOI PMC
Katoh K., Toh H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9, 286–298 10.1093/bib/bbn013 PubMed DOI
Liu L., Rein K. S. (2010). New peptides isolated from Lyngbya species: a review. Mar Drugs 8, 1817–1837 10.3390/md8061817 PubMed DOI PMC
Otsuka S., Suda S., Li R., Watanabe M., Oyaizu H., Matsumoto S., Watanabe M. M. (1999). Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172, 15–21 10.1111/j.1574-6968.1999.tb13443.x PubMed DOI
Posada D. (2008). jModelTest: phylogenetic model averaging. Mol Biol Evol 25, 1253–1256 10.1093/molbev/msn083 PubMed DOI
Ronquist F., Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 10.1093/bioinformatics/btg180 PubMed DOI
Sharp K., Arthur K. E., Gu L., Ross C., Harrison G., Gunasekera S. P., Meickle T., Matthew S., Luesch H. & other authors (2009). Phylogenetic and chemical diversity of three chemotypes of bloom-forming Lyngbya species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. Appl Environ Microbiol 75, 2879–2888 10.1128/AEM.02656-08 PubMed DOI PMC
Tandeau de Marsac N., Houmard J. (1988). Complementary chromatic adaption: physiological conditions and action spectra. Methods Enzymol 167, 318–328 10.1016/0076-6879(88)67037-6 DOI
Tidgewell K., Clark B. R., Gerwick W. H. (2010). The natural products chemistry of cyanobacteria. In Comprehensive Natural Products II Chemistry and Biology, vol. 2, pp. 141–188 Edited by Mander L., Lui H.-W. Oxford: Elsevier; 10.1016/B978-008045382-8.00041-1 DOI
Zwickl D. J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis, The University of Texas at Austin.
New cyanobacterial genus Argonema is hidding in soil crusts around the world
Evolutionary Patterns of Thylakoid Architecture in Cyanobacteria
GENBANK
EU315909