Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites

. 2012 May ; 62 (Pt 5) : 1171-1178. [epub] 20110701

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21724952

Grantová podpora
P41 RR004050 NCRR NIH HHS - United States
P41 RR004050-24 NCRR NIH HHS - United States
P41-RR004050 NCRR NIH HHS - United States

The filamentous cyanobacterial genus Moorea gen. nov., described here under the provisions of the International Code of Botanical Nomenclature, is a cosmopolitan pan-tropical group abundant in the marine benthos. Members of the genus Moorea are photosynthetic (containing phycocyanin, phycoerythrin, allophycocyanin and chlorophyll a), but non-diazotrophic (lack heterocysts and nitrogenase reductase genes). The cells (discoid and 25-80 µm wide) are arranged in long filaments (<10 cm in length) and often form extensive mats or blooms in shallow water. The cells are surrounded by thick polysaccharide sheaths covered by a rich diversity of heterotrophic micro-organisms. A distinctive character of this genus is its extraordinarily rich production of bioactive secondary metabolites. This is matched by genomes rich in polyketide synthase and non-ribosomal peptide synthetase biosynthetic genes which are dedicated to secondary metabolism. The encoded natural products are sometimes responsible for harmful algae blooms and, due to morphological resemblance to the genus Lyngbya, this group has often been incorrectly cited in the literature. We here describe two species of the genus Moorea: Moorea producens sp. nov. (type species of the genus) with 3L(T) as the nomenclature type, and Moorea bouillonii comb. nov. with PNG5-198(R) as the nomenclature type.

Zobrazit více v PubMed

Boyer S. L., Flechtner V. R., Johansen J. R. (2001). Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18, 1057–1069 10.1093/oxfordjournals.molbev.a003877 PubMed DOI

Cannone J. J., Subramanian S., Schnare M. N., Collett J. R., D’Souza L. M., Du Y., Feng B., Lin N., Madabusi L. V. & other authors (2002). The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 10.1186/1471-2105-3-2 PubMed DOI PMC

Casamatta D. A., Johansen J. R., Vis M. L., Broadwater S. T. (2005). Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41, 421–438 10.1111/j.1529-8817.2005.04062.x DOI

Castenholz R. W. (1988). Culturing of cyanobacteria. Methods Enzymol 167, 68–93

Castenholz R. W. (2001). Phylum BX. Cyanobacteria oxygenic photosynthetic bacteria. In Bergey’s Manual of Systematic Bacteriology, pp. 473–599 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer; 10.1007/978-0-387-21609-6_27 DOI

Engene N., Coates R. C., Gerwick W. H. (2010). 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycol 46, 591–601 10.1111/j.1529-8817.2010.00840.x DOI

Engene N., Choi H., Esquenazi E., Rottacker E. C., Ellisman M. H., Dorrestein P. C., Gerwick W. H. (2011). Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ Microbiol 13, 1601–1610 10.1111/j.1462-2920.2011.02472.x PubMed DOI PMC

Golubic S., Abed R. M. M., Palińska K., Pauillac S., Chinain M., Laurent D. (2010). Marine toxic cyanobacteria: diversity, environmental responses and hazards. Toxicon 56, 836–841 10.1016/j.toxicon.2009.07.023 PubMed DOI

Gugger M., Molica R., Le Berre B., Dufour P., Bernard C., Humbert J.-F. (2005). Genetic diversity of Cylindrospermopsis strains (cyanobacteria) isolated from four continents. Appl Environ Microbiol 71, 1097–1100 10.1128/AEM.71.2.1097-1100.2005 PubMed DOI PMC

Hoffmann L., Demoulin V. (1991). Marine cyanophyceae of Papua New Guinea. II. Lyngbya bouillonii sp. nov., a remarkable tropical reef-inhabiting blue-green alga. Belg J Bot 124, 82–88

Jones A. C., Monroe E. A., Podell S., Hess W. R., Klages S., Esquenazi E., Niessen S., Hoover H., Rothmann M. & other authors (2011). Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci U S A 108, 8815–8820 10.1073/pnas.1101137108 PubMed DOI PMC

Katoh K., Toh H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9, 286–298 10.1093/bib/bbn013 PubMed DOI

Liu L., Rein K. S. (2010). New peptides isolated from Lyngbya species: a review. Mar Drugs 8, 1817–1837 10.3390/md8061817 PubMed DOI PMC

Otsuka S., Suda S., Li R., Watanabe M., Oyaizu H., Matsumoto S., Watanabe M. M. (1999). Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172, 15–21 10.1111/j.1574-6968.1999.tb13443.x PubMed DOI

Posada D. (2008). jModelTest: phylogenetic model averaging. Mol Biol Evol 25, 1253–1256 10.1093/molbev/msn083 PubMed DOI

Ronquist F., Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 10.1093/bioinformatics/btg180 PubMed DOI

Sharp K., Arthur K. E., Gu L., Ross C., Harrison G., Gunasekera S. P., Meickle T., Matthew S., Luesch H. & other authors (2009). Phylogenetic and chemical diversity of three chemotypes of bloom-forming Lyngbya species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. Appl Environ Microbiol 75, 2879–2888 10.1128/AEM.02656-08 PubMed DOI PMC

Tandeau de Marsac N., Houmard J. (1988). Complementary chromatic adaption: physiological conditions and action spectra. Methods Enzymol 167, 318–328 10.1016/0076-6879(88)67037-6 DOI

Tidgewell K., Clark B. R., Gerwick W. H. (2010). The natural products chemistry of cyanobacteria. In Comprehensive Natural Products II Chemistry and Biology, vol. 2, pp. 141–188 Edited by Mander L., Lui H.-W. Oxford: Elsevier; 10.1016/B978-008045382-8.00041-1 DOI

Zwickl D. J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis, The University of Texas at Austin.

Zobrazit více v PubMed

GENBANK
EU315909

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...