Entner-Doudoroff pathway in Synechocystis PCC 6803: Proposed regulatory roles and enzyme multifunctionalities
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36051759
PubMed Central
PMC9424857
DOI
10.3389/fmicb.2022.967545
Knihovny.cz E-resources
- Keywords
- Entner-Doudoroff pathway, cyanobacteria, glycolysis, kinetic model, metabolic regulation,
- Publication type
- Journal Article MeSH
The Entner-Doudoroff pathway (ED-P) was established in 2016 as the fourth glycolytic pathway in Synechocystis sp. PCC 6803. ED-P consists of two reactions, the first catalyzed by 6-phosphogluconate dehydratase (EDD), the second by keto3-deoxygluconate-6-phosphate aldolase/4-hydroxy-2-oxoglutarate aldolase (EDA). ED-P was previously concluded to be a widespread (∼92%) pathway among cyanobacteria, but current bioinformatic analysis estimated the occurrence of ED-P to be either scarce (∼1%) or uncommon (∼47%), depending if dihydroxy-acid dehydratase (ilvD) also functions as EDD (currently assumed). Thus, the biochemical characterization of ilvD is a task pending to resolve this uncertainty. Next, we have provided new insights into several single and double glycolytic mutants based on kinetic model of central carbon metabolism of Synechocystis. The model predicted that silencing 6-phosphogluconate dehydrogenase (gnd) could be coupled with ∼90% down-regulation of G6P-dehydrogenase, also limiting the metabolic flux via ED-P. Furthermore, our metabolic flux estimation implied that growth impairment linked to silenced EDA under mixotrophic conditions is not caused by diminished carbon flux via ED-P but rather by a missing mechanism related to the role of EDA in metabolism. We proposed two possible, mutually non-exclusive explanations: (i) Δeda leads to disrupted carbon catabolite repression, regulated by 2-keto3-deoxygluconate-6-phosphate (ED-P intermediate), and (ii) EDA catalyzes the interconversion between glyoxylate and 4-hydroxy-2-oxoglutarate + pyruvate in the proximity of TCA cycle, possibly effecting the levels of 2-oxoglutarate under Δeda. We have also proposed a new pathway from EDA toward proline, which could explain the proline accumulation under Δeda. In addition, the presented in silico method provides an alternative to 13C metabolic flux analysis for marginal metabolic pathways around/below the threshold of ultrasensitive LC-MS. Finally, our in silico analysis provided alternative explanations for the role of ED-P in Synechocystis while identifying some severe uncertainties.
See more in PubMed
Asplund-Samuelsson J., Hudson E. P. (2021). Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes. PLoS Comput. Biol. 17:e1008742. 10.1371/journal.pcbi.1008742 PubMed DOI PMC
Bachhar A., Jablonsky J. (2020). A new insight into role of phosphoketolase pathway in Synechocystis sp. PCC 6803. Sci. Rep. 10:22018. 10.1038/s41598-020-78475-z PubMed DOI PMC
Bren A., Park J. O., Towbin B. D., Dekel E., Rabinowitz J. D., Alon U. (2016). Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP. Sci. Rep. 6:24834. 10.1038/srep24834 PubMed DOI PMC
Campilongo R., Fung R., Little R., Grenga L., Trampari E., Pepe S., et al. (2017). One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas. PLoS Genet. 13:e1006839. 10.1371/journal.pgen.1006839 PubMed DOI PMC
Chen X., Schreiber K., Appel J., Makowka A., Fähnrich B., Roettger M., et al. (2016). The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. Proc. Natl. Acad. Sci. U.S.A. 113 5441–5446. 10.1073/pnas.1521916113 PubMed DOI PMC
Daddaoua A., Krell T., Ramos J.-L. (2009). Regulation of glucose metabolism in Pseudomonas: The phosphorylative branch and Entner-Doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain*. J. Biol. Chem. 284 21360–21368. 10.1074/jbc.M109.014555 PubMed DOI PMC
Dang L., White D. W., Gross S., Bennett B. D., Bittinger M. A., Driggers E. M., et al. (2009). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462 739–744. 10.1038/nature08617 PubMed DOI PMC
Daniel J., Danchin A. (1986). 2-Ketoglutarate as a possible regulatory metabolite involved in cyclic AMP-dependent catabolite repression in Escherichia coli K12. Biochimie 68 303–310. 10.1016/s0300-9084(86)80027-x PubMed DOI
Deutscher J. (2008). The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 11 87–93. 10.1016/j.mib.2008.02.007 PubMed DOI
Doello S., Klotz A., Makowka A., Gutekunst K., Forchhammer K. (2018). A specific glycogen mobilization strategy enables rapid awakening of dormant cyanobacteria from chlorosis. Plant Physiol. 177 594–603. 10.1104/pp.18.00297 PubMed DOI PMC
Doucette C. D., Schwab D. J., Wingreen N. S., Rabinowitz J. D. (2011). α-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat. Chem. Biol. 7 894–901. 10.1038/nchembio.685 PubMed DOI PMC
Engene N., Rottacker E. C., Kaštovský J., Byrum T., Choi H., Ellisman M. H., et al. (2012). Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 62 1171–1178. 10.1099/ijs.0.033761-0 PubMed DOI PMC
Figueiredo A. S., Kouril T., Esser D., Haferkamp P., Wieloch P., Schomburg D., et al. (2017). Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus. PLoS One 12:e0180331. 10.1371/journal.pone.0180331 PubMed DOI PMC
Flamholz A., Noor E., Bar-Even A., Liebermeister W., Milo R. (2013). Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl. Acad. Sci. U.S.A. 110 10039–10044. 10.1073/pnas.1215283110 PubMed DOI PMC
Fuhrman L. K., Wanken A., Nickerson K. W., Conway T. (1998). Rapid accumulation of intracellular 2-keto-3-deoxy-6-phosphogluconate in an Entner-Doudoroff aldolase mutant results in bacteriostasis. FEMS Microbiol. Lett. 159 261–266. 10.1111/j.1574-6968.1998.tb12870.x PubMed DOI
Hing N. Y. K., Liang F., Lindblad P., Morgan J. A. (2019). Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin-Benson-Bassham cycle in Synechocystis sp. PCC 6803. Metab. Eng. 56 77–84. 10.1016/j.ymben.2019.08.014 PubMed DOI
Jablonsky J., Papacek S., Hagemann M. (2016). Different strategies of metabolic regulation in cyanobacteria: From transcriptional to biochemical control. Sci. Rep. 6:33024. 10.1038/srep33024 PubMed DOI PMC
Kim J., Yeom J., Jeon C. O., Park W. (2009). Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440. Microbiology 155 2420–2428. 10.1099/mic.0.027060-0 PubMed DOI
Kim S., Lee S. B. (2006). Catalytic promiscuity in dihydroxy-acid dehydratase from the thermoacidophilic archaeon Sulfolobus solfataricus. J. Biochem. 139 591–596. 10.1093/jb/mvj057 PubMed DOI
Kopp D., Bergquist P. L., Sunna A. (2020). Enzymology of alternative carbohydrate catabolic pathways. Catalysts 10:1231. 10.3390/catal10111231 DOI
Leyval D., Uy D., Delaunay S., Goergen J. L., Engasser J. M. (2003). Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J. Biotechnol. 104 241–252. 10.1016/S0168-1656(03)00162-7 PubMed DOI
Linington R. G., Edwards D. J., Shuman C. F., McPhail K. L., Matainaho T., Gerwick W. H. (2008). Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. J. Nat. Prod. 71 22–27. 10.1021/np070280x PubMed DOI PMC
Lucius S., Makowka A., Michl K., Gutekunst K., Hagemann M. (2021). The Entner-Doudoroff pathway contributes to glycogen breakdown during high to low CO2 Shifts in the cyanobacterium Synechocystis sp. PCC 6803. Front. Plant Sci. 12:787943. 10.3389/fpls.2021.787943 PubMed DOI PMC
Makowka A., Nichelmann L., Schulze D., Spengler K., Wittmann C., Forchhammer K., et al. (2020). Glycolytic shunts replenish the Calvin–Benson–Bassham cycle as anaplerotic reactions in cyanobacteria. Mol. Plant 13 471–482. 10.1016/j.molp.2020.02.002 PubMed DOI
Nakajima T., Kajihata S., Yoshikawa K., Matsuda F., Furusawa C., Hirasawa T., et al. (2014). Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant Cell Physiol. 55 1605–1612. 10.1093/pcp/pcu091 PubMed DOI
Orthwein T., Scholl J., Spaet P., Lucius S., Koch M., Macek B., et al. (2021). The novel P-II-interactor PirC identifies phosphoglycerate mutase as key control point of carbon storage metabolism in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 118:e2019988118. 10.1073/pnas.2019988118 PubMed DOI PMC
Pimentel J. S. M., Giani A. (2014). Microcystin production and regulation under nutrient stress conditions in toxic microcystis strains. Appl. Environ. Microbiol. 80 5836–5843. 10.1128/AEM.01009-14 PubMed DOI PMC
Richhardt J., Bringer S., Bott M. (2012). Mutational analysis of the pentose phosphate and Entner-Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol. Appl. Environ. Microbiol. 78 6975–6986. 10.1128/AEM.01166-12 PubMed DOI PMC
Schulze D., Kohlstedt M., Becker J., Cahoreau E., Peyriga L., Makowka A., et al. (2022). GC/MS-based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner-Doudoroff and phosphoketolase pathways. Microb. Cell Fact. 21:69. 10.1186/s12934-022-01790-9 PubMed DOI PMC
Will S. E., Henke P., Boedeker C., Huang S., Brinkmann H., Rohde M., et al. (2019). Day and night: Metabolic profiles and evolutionary relationships of six axenic non-marine cyanobacteria. Genome Biol. Evol. 11 270–294. 10.1093/gbe/evy275 PubMed DOI PMC
Xiong W., Cano M., Wang B., Douchi D., Yu J. (2017). The plasticity of cyanobacterial carbon metabolism. Curr. Opin. Chem. Biol. 41 12–19. 10.1016/j.cbpa.2017.09.004 PubMed DOI
Xiong W., Lee T.-C., Rommelfanger S., Gjersing E., Cano M., Maness P.-C., et al. (2015). Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria. Nat. Plants 2:15187. 10.1038/nplants.2015.187 PubMed DOI
Yoshikawa K., Hirasawa T., Ogawa K., Hidaka Y., Nakajima T., Furusawa C., et al. (2013). Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol. J. 8 571–580. 10.1002/biot.201200235 PubMed DOI
Zhang P., MacTavish B. S., Yang G., Chen M., Roh J., Newsome K. R., et al. (2020). Cyanobacterial dihydroxy-acid dehydratases are a promising growth inhibition target. ACS Chem. Biol. 15 2281–2288. 10.1021/acschembio.0c00507 PubMed DOI PMC
A quantitative description of light-limited cyanobacterial growth using flux balance analysis