Different strategies of metabolic regulation in cyanobacteria: from transcriptional to biochemical control
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27611502
PubMed Central
PMC5017163
DOI
10.1038/srep33024
PII: srep33024
Knihovny.cz E-zdroje
- MeSH
- metabolismus MeSH
- metabolomika MeSH
- oxid uhličitý metabolismus MeSH
- regulace genové exprese enzymů * MeSH
- regulace genové exprese u bakterií * MeSH
- stanovení celkové genové exprese MeSH
- Synechococcus genetika metabolismus MeSH
- Synechocystis genetika metabolismus MeSH
- systémová biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oxid uhličitý MeSH
Cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 show similar changes in the metabolic response to changed CO2 conditions but exhibit significant differences at the transcriptomic level. This study employs a systems biology approach to investigate the difference in metabolic regulation of Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803. Presented multi-level kinetic model for Synechocystis sp. PCC 6803 is a new approach integrating and analysing metabolomic, transcriptomic and fluxomics data obtained under high and ambient CO2 levels. Modelling analysis revealed that higher number of different isozymes in Synechocystis 6803 improves homeostatic stability of several metabolites, especially 3PGA by 275%, against changes in gene expression, compared to Synechococcus sp. PCC 7942. Furthermore, both cyanobacteria have the same amount of phosphoglycerate mutases but Synechocystis 6803 exhibits only ~20% differences in their mRNA levels after shifts from high to ambient CO2 level, in comparison to ~500% differences in the case of Synechococcus sp. PCC 7942. These and other data imply that the biochemical control dominates over transcriptional regulation in Synechocystis 6803 to acclimate central carbon metabolism in the environment of variable inorganic carbon availability without extra cost carried by large changes in the proteome.
Department of Plant Physiology University of Rostock Einsteinstr 3 D 18059 Rostock Germany
Institute of Complex Systems FFPW University of South Bohemia Cenakva Czech Republic
Zobrazit více v PubMed
Deng M. D. & Coleman J. R. Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65, 523–528 (1999). PubMed PMC
Kusakabe T. et al.. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab. Eng. 20, 101–108 (2013). PubMed
Ducat D. C., Avelar-Rivas J. A., Way J. C. & Silver P. A. Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 78, 2660–2668 (2012). PubMed PMC
Bauwe H., Hagemann M., Kern R. & Timm S. Photorespiration has a dual origin and manifold links to central metabolism. Curr. Opin. Plant Biol. 15, 269–275 (2012). PubMed
Knoop H., Zilliges Y., Lockau W. & Steuer R. The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol. 154, 410–422 (2010). PubMed PMC
Schwarz D., Orf I., Kopka J. & Hagemann M. Recent applications of metabolomics toward cyanobacteria. Metabolites 3, 72–100 (2013). PubMed PMC
Eisenhut M. et al.. Metabolome Phenotyping of Inorganic Carbon Limitation in Cells of the Wild Type and Photorespiratory Mutants of the Cyanobacterium Synechocystis sp Strain PCC 6803. Plant Physiol. 148, 2109–2120 (2008). PubMed PMC
Schwarz D., Orf I., Kopka J. & Hagemann M. Effects of Inorganic Carbon Limitation on the Metabolome of the Synechocystis sp. PCC 6803 Mutant Defective in glnB Encoding the Central Regulator PII of Cyanobacterial C/N Acclimation. Metabolites 4, 232–247 (2014). PubMed PMC
Schwarz D. et al.. Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the Cyanobacterium Synechococcus elongatus PCC 7942. Plant Physiol. 155, 1640–1655 (2011). PubMed PMC
Klähn S. et al.. Integrated transcriptomic and metabolomic characterization of the low-carbon response using an ndhR mutant of Synechocystis sp. PCC 6803. Plant Physiol., 10.1104/pp.114.254045 (2015). PubMed DOI PMC
Young J. D., Shastri A. A., Stephanopoulos G. & Morgan J. A. Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab. Eng. 13, 656–665 (2011). PubMed PMC
Huege J. et al.. Modulation of the major paths of carbon in photorespiratory mutants of synechocystis. PloS One 6, e16278 (2011). PubMed PMC
Jamshidi N. & Palsson B. O. Mass Action Stoichiometric Simulation Models: Incorporating Kinetics and Regulation into Stoichiometric Models. Biophys. J. 98, 175–185 (2010). PubMed PMC
Jablonsky J., Hagemann M., Schwarz D. & Wolkenhauer O. Phosphoglycerate mutases function as reverse regulated isoenzymes in Synechococcus elongatus PCC 7942. PloS One 8, e58281 (2013). PubMed PMC
Maarleveld T. R., Boele J., Bruggeman F. J. & Teusink B. A Data Integration and Visualization Resource for the Metabolic Network of Synechocystis sp PCC 6803. Plant Physiol. 164, 1111–1121 (2014). PubMed PMC
Klamt S. & Stelling J. In System Modeling in Cellular Biology (eds. Szallasi Z., Stelling J. & Periwal V.) 73–96 (The MIT Press, 2006).
Fell D. A. & Small J. R. Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238, 781–786 (1986). PubMed PMC
Shastri A. A. & Morgan J. A. Flux balance analysis of photoautotrophic metabolism. Biotechnol. Prog. 21, 1617–1626 (2005). PubMed
Montagud A., Navarro E., Fernandez de Cordoba P., Urchueguia J. F. & Patil K. R. Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. Bmc Syst. Biol. 4, 156 (2010). PubMed PMC
Knoop H. et al.. Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803. PLoS Comput Biol 9, e1003081 (2013). PubMed PMC
Knoop H. & Steuer R. A computational analysis of stoichiometric constraints and trade-offs in cyanobacterial biofuel production. Front. Bioeng. Biotechnol. 3, 47 (2015). PubMed PMC
Covert M. W., Schilling C. H. & Palsson B. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88 (2001). PubMed
Poolman M. G., Assmus H. E. & Fell D. A. Applications of metabolic modelling to plant metabolism. J. Exp. Bot. 55, 1177–1186 (2004). PubMed
Laisk A., Eichelmann H. & Oja V. C3 photosynthesis in silico. Photosynth. Res. 90, 45–66 (2006). PubMed
Xin C.-P., Tholen D., Devloo V. & Zhu X.-G. The Benefits of Photorespiratory Bypasses: How Can They Work? Plant Physiol. 167, 574–5785 (2015). PubMed PMC
Jablonsky J., Schwarz D. & Hagemann M. Multi-level kinetic model explaining diverse roles of isozymes in prokaryotes. PloS One 9, e105292 (2014). PubMed PMC
Wang H.-L., Postier B. L. & Burnap R. L. Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J. Biol. Chem. 279, 5739–5751 (2004). PubMed
Eisenhut M. et al.. Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 144, 1946–1959 (2007). PubMed PMC
Hackenberg C. et al.. Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiol. Read. Engl. 158, 398–413 (2012). PubMed
Kaplan A. & Reinhold L. CO2 Concentrating Mechanisms in Photosynthetic Microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 539–570 (1999). PubMed
Price G. D., Sültemeyer D., Klughammer B., Ludwig M. & Badger M. R. The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins, and recent advances. Can. J. Bot. 76, 973–1002 (1998).
Beck C., Knoop H., Axmann I. M. & Steuer R. The diversity of cyanobacterial metabolism: genome analysis of multiple phototrophic microorganisms. BMC Genomics 13, 56 (2012). PubMed PMC
Bartsch O., Hagemann M. & Bauwe H. Only plant-type (GLYK) glycerate kinases produce d-glycerate 3-phosphate. FEBS Lett. 582, 3025–3028 (2008). PubMed
Töpfer N. et al.. Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in Arabidopsis. Plant Cell 25, 1197–1211 (2013). PubMed PMC
Klemke F. et al.. Identification of the light-independent phosphoserine pathway as an additional source of serine in the cyanobacterium Synechocystis sp. PCC 6803. Microbiol. Read. Engl. 161, 1050–1060 (2015). PubMed
Khodayari A., Zomorrodi A. R., Liao J. C. & Maranas C. D. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab. Eng. 25, 50–62 (2014). PubMed
Knowles V. L. & Plaxton W. C. From genome to enzyme: Analysis of key glycolytic and oxidative pentose-phosphate pathway enzymes in the cyanobacterium Synechocystis sp PCC 6803. Plant Cell Physiol. 44, 758–763 (2003). PubMed
Dempo Y., Ohta E., Nakayama Y., Bamba T. & Fukusaki E. Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites 4, 499–516 (2014). PubMed PMC
Kallas T. & Castenholz R. W. Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH. J. Bacteriol. 149, 229–236 (1982). PubMed PMC
Eisenhut M. et al.. The Plant-Like C2 Glycolate Cycle and the Bacterial-Like Glycerate Pathway Cooperate in Phosphoglycolate Metabolism in Cyanobacteria. Plant Physiol. 142, 333–342 (2006). PubMed PMC
Rippka R., Deruelles J., Waterbury J. B., Herdman M. & Stanier R. Y. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).
Zhu X.-G., de Sturler E. & Long S. P. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol. 145, 513–526 (2007). PubMed PMC
Jablonsky J., Bauwe H. & Wolkenhauer O. Modeling the Calvin-Benson cycle. BMC Syst. Biol. 5, 185 (2011). PubMed PMC
Nakashima N., Ohno S., Yoshikawa K., Shimizu H. & Tamura T. A vector library for silencing central carbon metabolism genes with antisense RNAs in Escherichia coli. Appl. Environ. Microbiol. 80, 564–573 (2014). PubMed PMC
Fulda S. et al.. Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6, 2733–2745 (2006). PubMed
A new insight into role of phosphoketolase pathway in Synechocystis sp. PCC 6803