Different strategies of metabolic regulation in cyanobacteria: from transcriptional to biochemical control

. 2016 Sep 09 ; 6 () : 33024. [epub] 20160909

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27611502

Cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 show similar changes in the metabolic response to changed CO2 conditions but exhibit significant differences at the transcriptomic level. This study employs a systems biology approach to investigate the difference in metabolic regulation of Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803. Presented multi-level kinetic model for Synechocystis sp. PCC 6803 is a new approach integrating and analysing metabolomic, transcriptomic and fluxomics data obtained under high and ambient CO2 levels. Modelling analysis revealed that higher number of different isozymes in Synechocystis 6803 improves homeostatic stability of several metabolites, especially 3PGA by 275%, against changes in gene expression, compared to Synechococcus sp. PCC 7942. Furthermore, both cyanobacteria have the same amount of phosphoglycerate mutases but Synechocystis 6803 exhibits only ~20% differences in their mRNA levels after shifts from high to ambient CO2 level, in comparison to ~500% differences in the case of Synechococcus sp. PCC 7942. These and other data imply that the biochemical control dominates over transcriptional regulation in Synechocystis 6803 to acclimate central carbon metabolism in the environment of variable inorganic carbon availability without extra cost carried by large changes in the proteome.

Zobrazit více v PubMed

Deng M. D. & Coleman J. R. Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65, 523–528 (1999). PubMed PMC

Kusakabe T. et al.. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab. Eng. 20, 101–108 (2013). PubMed

Ducat D. C., Avelar-Rivas J. A., Way J. C. & Silver P. A. Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 78, 2660–2668 (2012). PubMed PMC

Bauwe H., Hagemann M., Kern R. & Timm S. Photorespiration has a dual origin and manifold links to central metabolism. Curr. Opin. Plant Biol. 15, 269–275 (2012). PubMed

Knoop H., Zilliges Y., Lockau W. & Steuer R. The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol. 154, 410–422 (2010). PubMed PMC

Schwarz D., Orf I., Kopka J. & Hagemann M. Recent applications of metabolomics toward cyanobacteria. Metabolites 3, 72–100 (2013). PubMed PMC

Eisenhut M. et al.. Metabolome Phenotyping of Inorganic Carbon Limitation in Cells of the Wild Type and Photorespiratory Mutants of the Cyanobacterium Synechocystis sp Strain PCC 6803. Plant Physiol. 148, 2109–2120 (2008). PubMed PMC

Schwarz D., Orf I., Kopka J. & Hagemann M. Effects of Inorganic Carbon Limitation on the Metabolome of the Synechocystis sp. PCC 6803 Mutant Defective in glnB Encoding the Central Regulator PII of Cyanobacterial C/N Acclimation. Metabolites 4, 232–247 (2014). PubMed PMC

Schwarz D. et al.. Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the Cyanobacterium Synechococcus elongatus PCC 7942. Plant Physiol. 155, 1640–1655 (2011). PubMed PMC

Klähn S. et al.. Integrated transcriptomic and metabolomic characterization of the low-carbon response using an ndhR mutant of Synechocystis sp. PCC 6803. Plant Physiol., 10.1104/pp.114.254045 (2015). PubMed DOI PMC

Young J. D., Shastri A. A., Stephanopoulos G. & Morgan J. A. Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab. Eng. 13, 656–665 (2011). PubMed PMC

Huege J. et al.. Modulation of the major paths of carbon in photorespiratory mutants of synechocystis. PloS One 6, e16278 (2011). PubMed PMC

Jamshidi N. & Palsson B. O. Mass Action Stoichiometric Simulation Models: Incorporating Kinetics and Regulation into Stoichiometric Models. Biophys. J. 98, 175–185 (2010). PubMed PMC

Jablonsky J., Hagemann M., Schwarz D. & Wolkenhauer O. Phosphoglycerate mutases function as reverse regulated isoenzymes in Synechococcus elongatus PCC 7942. PloS One 8, e58281 (2013). PubMed PMC

Maarleveld T. R., Boele J., Bruggeman F. J. & Teusink B. A Data Integration and Visualization Resource for the Metabolic Network of Synechocystis sp PCC 6803. Plant Physiol. 164, 1111–1121 (2014). PubMed PMC

Klamt S. & Stelling J. In System Modeling in Cellular Biology (eds. Szallasi Z., Stelling J. & Periwal V.) 73–96 (The MIT Press, 2006).

Fell D. A. & Small J. R. Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238, 781–786 (1986). PubMed PMC

Shastri A. A. & Morgan J. A. Flux balance analysis of photoautotrophic metabolism. Biotechnol. Prog. 21, 1617–1626 (2005). PubMed

Montagud A., Navarro E., Fernandez de Cordoba P., Urchueguia J. F. & Patil K. R. Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. Bmc Syst. Biol. 4, 156 (2010). PubMed PMC

Knoop H. et al.. Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803. PLoS Comput Biol 9, e1003081 (2013). PubMed PMC

Knoop H. & Steuer R. A computational analysis of stoichiometric constraints and trade-offs in cyanobacterial biofuel production. Front. Bioeng. Biotechnol. 3, 47 (2015). PubMed PMC

Covert M. W., Schilling C. H. & Palsson B. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88 (2001). PubMed

Poolman M. G., Assmus H. E. & Fell D. A. Applications of metabolic modelling to plant metabolism. J. Exp. Bot. 55, 1177–1186 (2004). PubMed

Laisk A., Eichelmann H. & Oja V. C3 photosynthesis in silico. Photosynth. Res. 90, 45–66 (2006). PubMed

Xin C.-P., Tholen D., Devloo V. & Zhu X.-G. The Benefits of Photorespiratory Bypasses: How Can They Work? Plant Physiol. 167, 574–5785 (2015). PubMed PMC

Jablonsky J., Schwarz D. & Hagemann M. Multi-level kinetic model explaining diverse roles of isozymes in prokaryotes. PloS One 9, e105292 (2014). PubMed PMC

Wang H.-L., Postier B. L. & Burnap R. L. Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J. Biol. Chem. 279, 5739–5751 (2004). PubMed

Eisenhut M. et al.. Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 144, 1946–1959 (2007). PubMed PMC

Hackenberg C. et al.. Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiol. Read. Engl. 158, 398–413 (2012). PubMed

Kaplan A. & Reinhold L. CO2 Concentrating Mechanisms in Photosynthetic Microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 539–570 (1999). PubMed

Price G. D., Sültemeyer D., Klughammer B., Ludwig M. & Badger M. R. The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins, and recent advances. Can. J. Bot. 76, 973–1002 (1998).

Beck C., Knoop H., Axmann I. M. & Steuer R. The diversity of cyanobacterial metabolism: genome analysis of multiple phototrophic microorganisms. BMC Genomics 13, 56 (2012). PubMed PMC

Bartsch O., Hagemann M. & Bauwe H. Only plant-type (GLYK) glycerate kinases produce d-glycerate 3-phosphate. FEBS Lett. 582, 3025–3028 (2008). PubMed

Töpfer N. et al.. Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in Arabidopsis. Plant Cell 25, 1197–1211 (2013). PubMed PMC

Klemke F. et al.. Identification of the light-independent phosphoserine pathway as an additional source of serine in the cyanobacterium Synechocystis sp. PCC 6803. Microbiol. Read. Engl. 161, 1050–1060 (2015). PubMed

Khodayari A., Zomorrodi A. R., Liao J. C. & Maranas C. D. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab. Eng. 25, 50–62 (2014). PubMed

Knowles V. L. & Plaxton W. C. From genome to enzyme: Analysis of key glycolytic and oxidative pentose-phosphate pathway enzymes in the cyanobacterium Synechocystis sp PCC 6803. Plant Cell Physiol. 44, 758–763 (2003). PubMed

Dempo Y., Ohta E., Nakayama Y., Bamba T. & Fukusaki E. Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites 4, 499–516 (2014). PubMed PMC

Kallas T. & Castenholz R. W. Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH. J. Bacteriol. 149, 229–236 (1982). PubMed PMC

Eisenhut M. et al.. The Plant-Like C2 Glycolate Cycle and the Bacterial-Like Glycerate Pathway Cooperate in Phosphoglycolate Metabolism in Cyanobacteria. Plant Physiol. 142, 333–342 (2006). PubMed PMC

Rippka R., Deruelles J., Waterbury J. B., Herdman M. & Stanier R. Y. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).

Zhu X.-G., de Sturler E. & Long S. P. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol. 145, 513–526 (2007). PubMed PMC

Jablonsky J., Bauwe H. & Wolkenhauer O. Modeling the Calvin-Benson cycle. BMC Syst. Biol. 5, 185 (2011). PubMed PMC

Nakashima N., Ohno S., Yoshikawa K., Shimizu H. & Tamura T. A vector library for silencing central carbon metabolism genes with antisense RNAs in Escherichia coli. Appl. Environ. Microbiol. 80, 564–573 (2014). PubMed PMC

Fulda S. et al.. Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6, 2733–2745 (2006). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...