Multi-level kinetic model explaining diverse roles of isozymes in prokaryotes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25127487
PubMed Central
PMC4138046
DOI
10.1371/journal.pone.0105292
PII: PONE-D-14-19957
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- bakteriální proteiny chemie fyziologie MeSH
- glyceraldehyd-3-fosfátdehydrogenasy chemie fyziologie MeSH
- homeostáza MeSH
- izoenzymy chemie fyziologie MeSH
- kinetika MeSH
- NADP metabolismus MeSH
- oxid uhličitý MeSH
- oxidace-redukce MeSH
- Synechococcus enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- bakteriální proteiny MeSH
- glyceraldehyd-3-fosfátdehydrogenasy MeSH
- izoenzymy MeSH
- NADP MeSH
- oxid uhličitý MeSH
Current standard methods for kinetic and genomic modeling cannot provide deep insight into metabolic regulation. Here, we developed and evaluated a multi-scale kinetic modeling approach applicable to any prokaryote. Specifically, we highlight the primary metabolism of the cyanobacterium Synechococcus elongatus PCC 7942. The model bridges metabolic data sets from cells grown at different CO2 conditions by integrating transcriptomic data and isozymes. Identification of the regulatory roles of isozymes allowed the calculation and explanation of the absolute metabolic concentration of 3-phosphoglycerate. To demonstrate that this method can characterize any isozyme, we determined the function of two glycolytic glyceraldehyde-3-phosphate dehydrogenases: one co-regulates high concentrations of the 3-phosphoglycerate, the other shifts the bifurcation point in hexose regulation, and both improve biomass production. Moreover, the regulatory roles of multiple phosphoglycolate phosphatases were defined for varying (non-steady) CO2 conditions, suggesting their protective role against toxic photorespiratory intermediates.
Zobrazit více v PubMed
Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci USA 108: 3941–6. PubMed PMC
Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA 109: 6018–23. PubMed PMC
Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24: 405–13. PubMed
Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The Metabolic Network of Synechocystis sp. PCC 6803: Systemic Properties of Autotrophic Growth. Plant Physiology 154: 410–422. PubMed PMC
Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci USA 109: 2678–83. PubMed PMC
Steuer R, Knoop H, Machne R (2012) Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth. J Exp Bot 63: 2259–2274. PubMed
Knoop H, Gründel M, Zilliges Y, Lehmann R, Hoffmann S, et al. (2013) Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803. PLoS ComputBiol 9: e1003081. PubMed PMC
Jablonsky J, Bauwe H, Wolkenhauer H (2011) Modelling the Calvin-Benson cycle. BMC Systems Biology 5: 185. PubMed PMC
Machado D, Herrgard M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS ComputBiol 10: e1003580. PubMed PMC
Jablonsky J, Hagemann M, Schwarz D, Wolkenhauer O (2013) PhosphoglycerateMutases Function as Reverse RegulatedIsoenzymes in Synechococcus elongatus PCC 7942. PLOS ONE 8: e58281. PubMed PMC
Schwarz D, Nodop A, Hüge J, Purfürst S, Forchhammer K, et al. (2011) Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the cyanobacterium Synechococcus elongatus PCC 7942. Plant Physiology 155: 1640–1655. PubMed PMC
Battchikova N, Vainonen JP, Vorontsova N, Keranen M, Carmel D, et al. (2010) Dynamic changes in the proteome of Synechocystis 6803 in response to CO2 limitation revealed by quantitative proteomics. J Proteome Res. 9: 5896–912. PubMed
Nakashima N, Ohno S, Yoshikawa K, Shimizu H, Tamura T (2014) A Vector Library for Silencing Central Carbon Metabolism Genes with Antisense RNAs in Escherichia coli. Appl. Environ. Microbiol. 80: 564–573. PubMed PMC
Kallas T, Castenholz RW (1982) Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. During exposure to growth inhibiting low pH. Journal of Bacterology 149: 229–236. PubMed PMC
Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, et al. (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA 105: 17199–204. PubMed PMC
Wang HL, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279: 5739–51. PubMed
Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57: 249–65. PubMed
Eisenhut M, Aguirre von Wobeser E, Jonas L, Schubert H, Ibelings BW, et al. (2007) Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 144: 1946–59. PubMed PMC
Koksharova O, Schubert M, Shestakov S, Cerff R (1998) Genetic and biochemical evidence for distinct key functions of two highly divergent GAPDH genes in catabolic and anabolic carbon flow of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 36: 183–194. PubMed
Koksharova O, Liaud MF, Cerff R (2004) The gap3 gene of Synechococcus PCC 7942 is induced during adaptation to low CO2 concentrations. Microbiology 3: 330–333. PubMed
Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nature Biotechnology 22: 1249–1252. PubMed
Ogawa T (1991) Effects of Low CO2 on NAD(P)H Dehydrogenase, a Mediator of Cyclic Electron Transport Around Photosystem I in the Cyanobacterium Synechocystis PCC6803. Plant Physiol. 96: 280–284. PubMed
Deng Y, Ye J, Mi H (2003) Effects of Low CO2 on NAD(P)H Dehydrogenase, a Mediator of Cyclic Electron Transport Around Photosystem I in the Cyanobacterium Synechocystis PCC6803. Plant Cell Physiology 44: 534–540. PubMed
Fillinger S, Boschi-Muller S, Azzar S, Dervyn E, Branlant G, et al. (2000) Two Glyceraldehyde-3-phosphate Dehydrogenases with Opposite Physiological Roles in a Nonphotosynthetic Bacterium. The Journal of Biological Chemistry 12: 14031–14037. PubMed
Edwards GE, Walker DA (1983) C3, C4: Mechanisms, and Cellular and Environmental Regulation of Photosynthesis. (Oxford, UK: Blackwell Scientific). PubMed
Alric J, Lavergne J, Rappaport F (2010) Redox and ATP control of photosynthetic cyclic electronflow in Chlamydomonas reinhardtii (I) aerobic conditions. Biochim Biophys Acta 1797: 44–51. PubMed
Huege J, Goetze J, Schwarz D, Bauwe H, Hagemann M, et al. (2011) Modulation of the major paths of carbon in photorespiratory mutants of Synechocystis. PLoS One 6: e16278. PubMed PMC
Colman B (1989) Photosynthetic carbon assimilation and the suppression of photorespiration in the cyanobacteria. Aquatic Botany 34: 211–231.
Anderson LE (1971) Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases. Biochim Biophys Acta 235: 237–244. PubMed