Multi-level kinetic model explaining diverse roles of isozymes in prokaryotes

. 2014 ; 9 (8) : e105292. [epub] 20140815

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25127487

Current standard methods for kinetic and genomic modeling cannot provide deep insight into metabolic regulation. Here, we developed and evaluated a multi-scale kinetic modeling approach applicable to any prokaryote. Specifically, we highlight the primary metabolism of the cyanobacterium Synechococcus elongatus PCC 7942. The model bridges metabolic data sets from cells grown at different CO2 conditions by integrating transcriptomic data and isozymes. Identification of the regulatory roles of isozymes allowed the calculation and explanation of the absolute metabolic concentration of 3-phosphoglycerate. To demonstrate that this method can characterize any isozyme, we determined the function of two glycolytic glyceraldehyde-3-phosphate dehydrogenases: one co-regulates high concentrations of the 3-phosphoglycerate, the other shifts the bifurcation point in hexose regulation, and both improve biomass production. Moreover, the regulatory roles of multiple phosphoglycolate phosphatases were defined for varying (non-steady) CO2 conditions, suggesting their protective role against toxic photorespiratory intermediates.

Zobrazit více v PubMed

Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci USA 108: 3941–6. PubMed PMC

Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA 109: 6018–23. PubMed PMC

Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24: 405–13. PubMed

Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The Metabolic Network of Synechocystis sp. PCC 6803: Systemic Properties of Autotrophic Growth. Plant Physiology 154: 410–422. PubMed PMC

Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci USA 109: 2678–83. PubMed PMC

Steuer R, Knoop H, Machne R (2012) Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth. J Exp Bot 63: 2259–2274. PubMed

Knoop H, Gründel M, Zilliges Y, Lehmann R, Hoffmann S, et al. (2013) Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803. PLoS ComputBiol 9: e1003081. PubMed PMC

Jablonsky J, Bauwe H, Wolkenhauer H (2011) Modelling the Calvin-Benson cycle. BMC Systems Biology 5: 185. PubMed PMC

Machado D, Herrgard M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS ComputBiol 10: e1003580. PubMed PMC

Jablonsky J, Hagemann M, Schwarz D, Wolkenhauer O (2013) PhosphoglycerateMutases Function as Reverse RegulatedIsoenzymes in Synechococcus elongatus PCC 7942. PLOS ONE 8: e58281. PubMed PMC

Schwarz D, Nodop A, Hüge J, Purfürst S, Forchhammer K, et al. (2011) Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the cyanobacterium Synechococcus elongatus PCC 7942. Plant Physiology 155: 1640–1655. PubMed PMC

Battchikova N, Vainonen JP, Vorontsova N, Keranen M, Carmel D, et al. (2010) Dynamic changes in the proteome of Synechocystis 6803 in response to CO2 limitation revealed by quantitative proteomics. J Proteome Res. 9: 5896–912. PubMed

Nakashima N, Ohno S, Yoshikawa K, Shimizu H, Tamura T (2014) A Vector Library for Silencing Central Carbon Metabolism Genes with Antisense RNAs in Escherichia coli. Appl. Environ. Microbiol. 80: 564–573. PubMed PMC

Kallas T, Castenholz RW (1982) Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. During exposure to growth inhibiting low pH. Journal of Bacterology 149: 229–236. PubMed PMC

Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, et al. (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA 105: 17199–204. PubMed PMC

Wang HL, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279: 5739–51. PubMed

Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57: 249–65. PubMed

Eisenhut M, Aguirre von Wobeser E, Jonas L, Schubert H, Ibelings BW, et al. (2007) Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 144: 1946–59. PubMed PMC

Koksharova O, Schubert M, Shestakov S, Cerff R (1998) Genetic and biochemical evidence for distinct key functions of two highly divergent GAPDH genes in catabolic and anabolic carbon flow of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 36: 183–194. PubMed

Koksharova O, Liaud MF, Cerff R (2004) The gap3 gene of Synechococcus PCC 7942 is induced during adaptation to low CO2 concentrations. Microbiology 3: 330–333. PubMed

Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nature Biotechnology 22: 1249–1252. PubMed

Ogawa T (1991) Effects of Low CO2 on NAD(P)H Dehydrogenase, a Mediator of Cyclic Electron Transport Around Photosystem I in the Cyanobacterium Synechocystis PCC6803. Plant Physiol. 96: 280–284. PubMed

Deng Y, Ye J, Mi H (2003) Effects of Low CO2 on NAD(P)H Dehydrogenase, a Mediator of Cyclic Electron Transport Around Photosystem I in the Cyanobacterium Synechocystis PCC6803. Plant Cell Physiology 44: 534–540. PubMed

Fillinger S, Boschi-Muller S, Azzar S, Dervyn E, Branlant G, et al. (2000) Two Glyceraldehyde-3-phosphate Dehydrogenases with Opposite Physiological Roles in a Nonphotosynthetic Bacterium. The Journal of Biological Chemistry 12: 14031–14037. PubMed

Edwards GE, Walker DA (1983) C3, C4: Mechanisms, and Cellular and Environmental Regulation of Photosynthesis. (Oxford, UK: Blackwell Scientific). PubMed

Alric J, Lavergne J, Rappaport F (2010) Redox and ATP control of photosynthetic cyclic electronflow in Chlamydomonas reinhardtii (I) aerobic conditions. Biochim Biophys Acta 1797: 44–51. PubMed

Huege J, Goetze J, Schwarz D, Bauwe H, Hagemann M, et al. (2011) Modulation of the major paths of carbon in photorespiratory mutants of Synechocystis. PLoS One 6: e16278. PubMed PMC

Colman B (1989) Photosynthetic carbon assimilation and the suppression of photorespiration in the cyanobacteria. Aquatic Botany 34: 211–231.

Anderson LE (1971) Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases. Biochim Biophys Acta 235: 237–244. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Different strategies of metabolic regulation in cyanobacteria: from transcriptional to biochemical control

. 2016 Sep 09 ; 6 () : 33024. [epub] 20160909

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...