A new insight into role of phosphoketolase pathway in Synechocystis sp. PCC 6803
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33328526
PubMed Central
PMC7744508
DOI
10.1038/s41598-020-78475-z
PII: 10.1038/s41598-020-78475-z
Knihovny.cz E-zdroje
- MeSH
- aldehydlyasy metabolismus MeSH
- analýza metabolického toku MeSH
- cukerné fosfáty metabolismus MeSH
- fylogeneze MeSH
- metabolické sítě a dráhy * MeSH
- počítačová simulace MeSH
- regulace genové exprese enzymů MeSH
- substrátová specifita MeSH
- Synechocystis enzymologie genetika MeSH
- uhlík metabolismus MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aldehydlyasy MeSH
- cukerné fosfáty MeSH
- phosphoketolase MeSH Prohlížeč
- sedoheptulose 7-phosphate MeSH Prohlížeč
- uhlík MeSH
Phosphoketolase (PKET) pathway is predominant in cyanobacteria (around 98%) but current opinion is that it is virtually inactive under autotrophic ambient CO2 condition (AC-auto). This creates an evolutionary paradox due to the existence of PKET pathway in obligatory photoautotrophs. We aim to answer the paradox with the aid of bioinformatic analysis along with metabolic, transcriptomic, fluxomic and mutant data integrated into a multi-level kinetic model. We discussed the problems linked to neglected isozyme, pket2 (sll0529) and inconsistencies towards the explanation of residual flux via PKET pathway in the case of silenced pket1 (slr0453) in Synechocystis sp. PCC 6803. Our in silico analysis showed: (1) 17% flux reduction via RuBisCO for Δpket1 under AC-auto, (2) 11.2-14.3% growth decrease for Δpket2 in turbulent AC-auto, and (3) flux via PKET pathway reaching up to 252% of the flux via phosphoglycerate mutase under AC-auto. All results imply that PKET pathway plays a crucial role under AC-auto by mitigating the decarboxylation occurring in OPP pathway and conversion of pyruvate to acetyl CoA linked to EMP glycolysis under the carbon scarce environment. Finally, our model predicted that PKETs have low affinity to S7P as a substrate.
Zobrazit více v PubMed
Chwa J-W, Kim WJ, Sim SJ, Um Y, Woo HM. Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition. Plant Biotechnol. J. 2016;14:1768–1776. doi: 10.1111/pbi.12536. PubMed DOI PMC
Liu X, Miao R, Lindberg P, Lindblad P. Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria. Energy Environ. Sci. 2019;12:2765–2777. doi: 10.1039/C9EE01214A. DOI
Xiong W, Cano M, Wang B, Douchi D, Yu J. The plasticity of cyanobacterial carbon metabolism. Curr. Opin. Chem. Biol. 2017;41:12–19. doi: 10.1016/j.cbpa.2017.09.004. PubMed DOI
Xiong W, et al. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria. Nat. Plants. 2015;2:1–8. PubMed
Liu L, et al. Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis. J. Bacteriol. 2012;194:5413–5422. doi: 10.1128/JB.00713-12. PubMed DOI PMC
Kim J, et al. Flux balance analysis of primary metabolism in the diatom Phaeodactylumtricornutum. Plant J. Cell Mol. Biol. 2016;85:161–176. doi: 10.1111/tpj.13081. PubMed DOI
Yu King Hing N, Liang F, Lindblad P, Morgan JA. Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin–Benson–Bassham cycle in Synechocystis sp. PCC 6803. Metab. Eng. 2019;56:77–84. doi: 10.1016/j.ymben.2019.08.014. PubMed DOI
Knoop H, et al. Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. Plos Comput. Biol. 2013;9:e1003081. doi: 10.1371/journal.pcbi.1003081. PubMed DOI PMC
Jablonsky J, Papacek S, Hagemann M. Different strategies of metabolic regulation in cyanobacteria: from transcriptional to biochemical control. Sci. Rep. 2016;6:33024. doi: 10.1038/srep33024. PubMed DOI PMC
Moriyama T, Tajima N, Sekine K, Sato N. Characterization of three putative xylulose 5-phosphate/fructose 6-phosphate phosphoketolases in the cyanobacterium Anabaena sp. PCC 7120. Biosci. Biotechnol. Biochem. 2015;79:767–774. doi: 10.1080/09168451.2014.993357. PubMed DOI
Sánchez B, Zúñiga M, González-Candelas F, de los Reyes-Gavilán CG, Margolles A. Bacterial and eukaryotic phosphoketolases: phylogeny, distribution and evolution. J. Mol. Microbiol. Biotechnol. 2010;18:37–51. doi: 10.1159/000274310. PubMed DOI
Glenn K, Smith KS. Allosteric regulation of Lactobacillusplantarum xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) J. Bacteriol. 2015;197:1157–1163. doi: 10.1128/JB.02380-14. PubMed DOI PMC
Nakahara K, Yamamoto H, Miyake C, Yokota A. Purification and characterization of class-I and class-II fructose-1,6-bisphosphate aldolases from the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 2003;44:326–333. doi: 10.1093/pcp/pcg044. PubMed DOI
Young JD, Shastri AA, Stephanopoulos G, Morgan JA. Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab. Eng. 2011;13:656–665. doi: 10.1016/j.ymben.2011.08.002. PubMed DOI PMC
Krüsemann JL, et al. Artificial pathway emergence in central metabolism from three recursive phosphoketolase reactions. FEBS J. 2018;285:4367–4377. doi: 10.1111/febs.14682. PubMed DOI
Hackenberg C, et al. Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiol. Read. Engl. 2012;158:398–413. doi: 10.1099/mic.0.054544-0. PubMed DOI
Yoshikawa K, et al. Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol. J. 2013;8:571–580. doi: 10.1002/biot.201200235. PubMed DOI
Nakajima T, et al. Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant Cell Physiol. 2014;55:1605–1612. doi: 10.1093/pcp/pcu091. PubMed DOI
Eisenhut M, et al. Metabolome phenotyping of inorganic carbon limitation in cells of the wild type and photorespiratory mutants of the CyanobacteriumSynechocystis sp. strain PCC 6803. Plant Physiol. 2008;148:2109–2120. doi: 10.1104/pp.108.129403. PubMed DOI PMC
Schwarz D, Orf I, Kopka J, Hagemann M. Effects of inorganic carbon limitation on the metabolome of the Synechocystis sp. PCC 6803 mutant defective in glnB encoding the central regulator PII of cyanobacterial C/N acclimation. Metabolites. 2014;4:232–247. doi: 10.3390/metabo4020232. PubMed DOI PMC
Dempo Y, Ohta E, Nakayama Y, Bamba T, Fukusaki E. Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites. 2014;4:499–516. doi: 10.3390/metabo4020499. PubMed DOI PMC
Jablonsky J, Hagemann M, Schwarz D, Wolkenhauer O. Phosphoglycerate mutases function as reverse regulated isoenzymes in Synechococcuselongatus PCC 7942. PLoS ONE. 2013;8:e58281. doi: 10.1371/journal.pone.0058281. PubMed DOI PMC