Potential of therapeutic bile acids in the treatment of neonatal Hyperbilirubinemia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P42 ES010337
NIEHS NIH HHS - United States
GM126074
U.S. Department of Health and Human Services (U.S. Department of Health & Human Services)
GM086713
U.S. Department of Health and Human Services (U.S. Department of Health & Human Services)
ES010337
U.S. Department of Health and Human Services (U.S. Department of Health & Human Services)
R01 GM086713
NIGMS NIH HHS - United States
R01 GM126074
NIGMS NIH HHS - United States
PubMed
34045606
PubMed Central
PMC8160219
DOI
10.1038/s41598-021-90687-5
PII: 10.1038/s41598-021-90687-5
Knihovny.cz E-zdroje
- MeSH
- bilirubin krev MeSH
- ileum účinky léků metabolismus MeSH
- isoxazoly farmakologie MeSH
- játra účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- kyselina chenodeoxycholová analogy a deriváty terapeutické užití MeSH
- kyselina ursodeoxycholová terapeutické užití MeSH
- myši MeSH
- novorozenecká hyperbilirubinemie krev farmakoterapie MeSH
- potkani Gunn MeSH
- receptory cytoplazmatické a nukleární agonisté metabolismus MeSH
- výsledek terapie MeSH
- žlučové kyseliny a soli terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin MeSH
- farnesoid X-activated receptor MeSH Prohlížeč
- GW 4064 MeSH Prohlížeč
- isoxazoly MeSH
- kyselina chenodeoxycholová MeSH
- kyselina ursodeoxycholová MeSH
- obeticholic acid MeSH Prohlížeč
- receptory cytoplazmatické a nukleární MeSH
- žlučové kyseliny a soli MeSH
Neonatal hyperbilirubinemia or jaundice is associated with kernicterus, resulting in permanent neurological damage or even death. Conventional phototherapy does not prevent hyperbilirubinemia or eliminate the need for exchange transfusion. Here we investigated the potential of therapeutic bile acids ursodeoxycholic acid (UDCA) and obeticholic acid (OCA, 6-α-ethyl-CDCA), a farnesoid-X-receptor (FXR) agonist, as preventive treatment options for neonatal hyperbilirubinemia using the hUGT1*1 humanized mice and Ugt1a-deficient Gunn rats. Treatment of hUGT1*1 mice with UDCA or OCA at postnatal days 10-14 effectively decreased bilirubin in plasma (by 82% and 62%) and brain (by 72% and 69%), respectively. Mechanistically, our findings indicate that these effects are mediated through induction of protein levels of hUGT1A1 in the intestine, but not in liver. We further demonstrate that in Ugt1a-deficient Gunn rats, UDCA but not OCA significantly decreases plasma bilirubin, indicating that at least some of the hypobilirubinemic effects of UDCA are independent of UGT1A1. Finally, using the synthetic, non-bile acid, FXR-agonist GW4064, we show that some of these effects are mediated through direct or indirect activation of FXR. Together, our study shows that therapeutic bile acids UDCA and OCA effectively reduce both plasma and brain bilirubin, highlighting their potential in the treatment of neonatal hyperbilirubinemia.
Zobrazit více v PubMed
Watchko JF, Tiribelli C. Bilirubin-induced neurologic damage: Mechanisms and management approaches. N. Engl. J. Med. 2013;369:2021–2030. doi: 10.1056/NEJMra1308124. PubMed DOI
Dennery PA, Seidman DS, Stevenson DK. Neonatal hyperbilirubinemia. N. Engl. J. Med. 2001;344:581–590. doi: 10.1056/NEJM200102223440807. PubMed DOI
Poland RL, Odell GB. Physiologic jaundice: The enterohepatic circulation of bilirubin. N. Engl. J. Med. 1971;284:1–6. doi: 10.1056/NEJM197101072840101. PubMed DOI
Watchko JF, Maisels MJ. Jaundice in low birthweight infants: Pathobiology and outcome. Arch. Dis. Child. Fetal Neonatal Ed. 2003;88:F455–F458. doi: 10.1136/fn.88.6.F455. PubMed DOI PMC
Cremer RJ, Perryman P, Richards D. Influence of light on the hyperbilirubinaemia of infants. The Lancet. 1958;271:1094–1097. doi: 10.1016/S0140-6736(58)91849-X. PubMed DOI
Brown AK, Kim MH, Wu PY, Bryla DA. Efficacy of phototherapy in prevention and management of neonatal hyperbilirubinemia. Pediatrics. 1985;75:393–400. PubMed
Morris BH, et al. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N. Engl. J. Med. 2008;359:1885–1896. doi: 10.1056/NEJMoa0803024. PubMed DOI PMC
Tyson JE, et al. Does aggressive phototherapy increase mortality while decreasing profound impairment among the smallest and sickest newborns? J. Perinatol. 2012;32:677–684. doi: 10.1038/jp.2012.64. PubMed DOI PMC
Arnold C, Pedroza C, Tyson JE. Phototherapy in ELBW newborns: Does it work? Is it safe? The evidence from randomized clinical trials. Semin. Perinatol. 2014;38:452–464. doi: 10.1053/j.semperi.2014.08.008. PubMed DOI
Wickremasinghe AC, Kuzniewicz MW, Grimes BA, McCulloch CE, Newman TB. Neonatal phototherapy and infantile cancer. Pediatrics. 2016;137:1353. doi: 10.1542/peds.2015-1353. PubMed DOI PMC
Auger N, Laverdière C, Ayoub A, Lo E, Luu TM. Neonatal phototherapy and future risk of childhood cancer. Int. J. Cancer. 2019 doi: 10.1002/ijc.32158. PubMed DOI
Honar N, et al. Effect of ursodeoxycholic acid on indirect hyperbilirubinemia in neonates treated with phototherapy. J. Pediatr. Gastroenterol. Nutr. 2016;62:97–100. doi: 10.1097/MPG.0000000000000874. PubMed DOI
Cuperus FJ, et al. Effective treatment of unconjugated hyperbilirubinemia with oral bile salts in Gunn rats. Gastroenterology. 2009;136:673–682. doi: 10.1053/j.gastro.2008.10.082. PubMed DOI
Markham A, Keam SJ. Obeticholic acid: First global approval. Drugs. 2016;76:1221–1226. doi: 10.1007/s40265-016-0616-x. PubMed DOI
Gitto S, Guarneri V, Sartini A, Andreone P. The use of obeticholic acid for the management of non-viral liver disease: Current clinical practice and future perspectives. Exp. Rev. Gastroenterol. Hepatol. 2018;12:165–171. doi: 10.1080/17474124.2018.1399060. PubMed DOI
Chiang JY. Bile acid regulation of gene expression: Roles of nuclear hormone receptors. Endocr. Rev. 2002;23:443–463. doi: 10.1210/er.2000-0035. PubMed DOI
Fujiwara R, Nguyen N, Chen S, Tukey RH. Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the UDP glucuronosyltransferase 1 (UGT1) locus. Proc. Natl. Acad. Sci. USA. 2010;107:5024–5029. doi: 10.1073/pnas.0913290107. PubMed DOI PMC
Kawade N, Onishi S. The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem. J. 1981;196:257–260. doi: 10.1042/bj1960257. PubMed DOI PMC
Coughtrie MW, Burchell B, Leakey JE, Hume R. The inadequacy of perinatal glucuronidation: Immunoblot analysis of the developmental expression of individual UDP-glucuronosyltransferase isoenzymes in rat and human liver microsomes. Mol. Pharmacol. 1988;34:729–735. PubMed
Bortolussi G, et al. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer. FASEB J. 2012;26:1052–1063. doi: 10.1096/fj.11-195461. PubMed DOI PMC
Chen S, Tukey RH. Humanized UGT1 mice, regulation of UGT1A1, and the role of the intestinal tract in neonatal hyperbilirubinemia and breast milk-induced jaundice. Drug Metab. Dispos. 2018;46:1745–1755. doi: 10.1124/dmd.118.083212. PubMed DOI PMC
Chen S, Yueh M, Evans RM, Tukey RH. Pregnane-x-receptor controls hepatic glucuronidation during pregnancy and neonatal development in humanized UGT1 mice. Hepatology. 2012;56:658–667. doi: 10.1002/hep.25671. PubMed DOI PMC
Aoshima N, Fujie Y, Itoh T, Tukey RH, Fujiwara R. Glucose induces intestinal human UDP-glucuronosyltransferase (UGT) 1A1 to prevent neonatal hyperbilirubinemia. Sci. Rep. 2014;4:643. PubMed PMC
Gartner LM, Lee K, Vaisman S, Lane D, Zarafu I. Development of bilirubin transport and metabolismin the newborn rhesus monkey. J. Pediatr. 1977;90:513–531. doi: 10.1016/S0022-3476(77)80360-0. PubMed DOI
Vodret S, et al. Albumin administration prevents neurological damage and death in a mouse model of severe neonatal hyperbilirubinemia. Sci. Rep. 2015;5:16203. doi: 10.1038/srep16203. PubMed DOI PMC
McDonnell WM, Hitomi E, Askari FK. Identification of bilirubin UDP-GTs in the human alimentary tract in accordance with the gut as a putative metabolic organ. Biochem. Pharmacol. 1996;51:483–488. doi: 10.1016/0006-2952(95)02224-4. PubMed DOI
Fisher MB, et al. Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity: Relationship between UGT1A1 promoter genotype and variability in a liver bank. Pharmacogen. Genom. 2000;10:727–739. doi: 10.1097/00008571-200011000-00007. PubMed DOI
Hruz T, et al. Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC
Akazawa T, et al. High expression of UGT1A1/1A6 in monkey small intestine: Comparison of protein expression levels of cytochromes P450, UDP-glucuronosyltransferases, and transporters in small intestine of cynomolgus monkey and human. Mol. Pharm. 2017;15:127–140. doi: 10.1021/acs.molpharmaceut.7b00772. PubMed DOI
Sugatani J, Sueyoshi T, Negishi M, Miwa M. Regulation of the human UGT1A1 gene by nuclear receptors constitutive active/androstane receptor, pregnane X receptor, and glucocorticoid receptor. Methods Enzymol. 2005;400:92–104. doi: 10.1016/S0076-6879(05)00006-6. PubMed DOI
Jonker JW, Liddle C, Downes M. FXR and PXR: Potential therapeutic targets in cholestasis. J. Steroid Biochem. Mol. Biol. 2012;130:147–158. doi: 10.1016/j.jsbmb.2011.06.012. PubMed DOI PMC
Vítek L, Zelenka J, Zadinová M, Malina J. The impact of intestinal microflora on serum bilirubin levels. J. Hepatol. 2005;42:238–243. doi: 10.1016/j.jhep.2004.10.012. PubMed DOI
Vítek L, et al. Identification of bilirubin reduction products formed by Clostridium perfringens isolated from human neonatal fecal flora. J. Chromatogr. B. 2006;833:149–157. doi: 10.1016/j.jchromb.2006.01.032. PubMed DOI
Midtvedt AC, Carlstedt-Duke B, Norin KE, Saxerholt H, Midtvedt T. Development of five metabolic activities associated with the intestinal microflora of healthy infants. J. Pediatr. Gastroenterol. Nutr. 1988;7:559–567. doi: 10.1097/00005176-198807000-00014. PubMed DOI
Vítek L, et al. Intestinal colonization leading to fecal urobilinoid excretion may play a role in the pathogenesis of neonatal jaundice. J. Pediatr. Gastroenterol. Nutr. 2000;30:294–298. doi: 10.1097/00005176-200003000-00015. PubMed DOI
Ostrow JD, Pascolo L, Shapiro SM, Tiribelli C. New concepts in bilirubin encephalopathy. Eur. J. Clin. Invest. 2003;33:988–997. doi: 10.1046/j.1365-2362.2003.01261.x. PubMed DOI
Chen S, et al. Tissue-specific, inducible, and hormonal control of the human UDP-glucuronosyltransferase-1 (UGT1) locus. J. Biol. Chem. 2005;280:37547–37557. doi: 10.1074/jbc.M506683200. PubMed DOI
Senekeo-Effenberger K, et al. Expression of the human UGT1 locus in transgenic mice by 4-chloro-6-(2, 3-xylidino)-2-pyrimidinylthioacetic acid (WY-14643) and implications on drug metabolism through peroxisome proliferator-activated receptor alpha activation. Drug Metab. Dispos. 2007;35:419–427. doi: 10.1124/dmd.106.013243. PubMed DOI
Zeidenberg P, Orrenius S, Ernster L. Increase in levels of glucuronylating enzymes and associated rise in activities of mitochondrial oxidative enzymes upon phenobarbital administration in the rat. J. Cell Biol. 1967;32:528–531. doi: 10.1083/jcb.32.2.528. PubMed DOI PMC
Catz C, Yaffe S. Barbiturate enhancement of bilirubin conjugation and excretion in young and adult animals. Pediatr. Res. 1968;2:361. doi: 10.1203/00006450-196809000-00005. PubMed DOI
Ito T, et al. Phenobarbital following phototherapy for Crigler-Najjar syndrome Type II with good fetal outcome: A case report. J. Obstet. Gynaecol. Res. 2001;27:33–35. doi: 10.1111/j.1447-0756.2001.tb01212.x. PubMed DOI
Lee C, Stonestreet BS, Oh W, Outerbridge EW, Cashore WJ. Postnatal maturation of the blood-brain barrier for unbound bilirubin in newborn piglets. Brain Res. 1995;689:233–238. doi: 10.1016/0006-8993(95)00572-8. PubMed DOI
Kutsuno Y, et al. Expression of UDP-glucuronosyltransferase 1 (UGT1) and glucuronidation activity toward endogenous substances in humanized UGT1 mouse brain. Drug Metab. Dispos. 2015;43:1071–1076. doi: 10.1124/dmd.115.063719. PubMed DOI PMC
Suzuyama N, et al. Species differences of inhibitory effects on P-glycoprotein mediated drug transport. J. Pharm. Sci. 2007;96:1609–1618. doi: 10.1002/jps.20787. PubMed DOI
Zelenka J, et al. Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J. Chromatogr. B. 2008;867:37–42. doi: 10.1016/j.jchromb.2008.03.005. PubMed DOI