Potential of therapeutic bile acids in the treatment of neonatal Hyperbilirubinemia

. 2021 May 27 ; 11 (1) : 11107. [epub] 20210527

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34045606

Grantová podpora
P42 ES010337 NIEHS NIH HHS - United States
GM126074 U.S. Department of Health and Human Services (U.S. Department of Health & Human Services)
GM086713 U.S. Department of Health and Human Services (U.S. Department of Health & Human Services)
ES010337 U.S. Department of Health and Human Services (U.S. Department of Health & Human Services)
R01 GM086713 NIGMS NIH HHS - United States
R01 GM126074 NIGMS NIH HHS - United States

Odkazy

PubMed 34045606
PubMed Central PMC8160219
DOI 10.1038/s41598-021-90687-5
PII: 10.1038/s41598-021-90687-5
Knihovny.cz E-zdroje

Neonatal hyperbilirubinemia or jaundice is associated with kernicterus, resulting in permanent neurological damage or even death. Conventional phototherapy does not prevent hyperbilirubinemia or eliminate the need for exchange transfusion. Here we investigated the potential of therapeutic bile acids ursodeoxycholic acid (UDCA) and obeticholic acid (OCA, 6-α-ethyl-CDCA), a farnesoid-X-receptor (FXR) agonist, as preventive treatment options for neonatal hyperbilirubinemia using the hUGT1*1 humanized mice and Ugt1a-deficient Gunn rats. Treatment of hUGT1*1 mice with UDCA or OCA at postnatal days 10-14 effectively decreased bilirubin in plasma (by 82% and 62%) and brain (by 72% and 69%), respectively. Mechanistically, our findings indicate that these effects are mediated through induction of protein levels of hUGT1A1 in the intestine, but not in liver. We further demonstrate that in Ugt1a-deficient Gunn rats, UDCA but not OCA significantly decreases plasma bilirubin, indicating that at least some of the hypobilirubinemic effects of UDCA are independent of UGT1A1. Finally, using the synthetic, non-bile acid, FXR-agonist GW4064, we show that some of these effects are mediated through direct or indirect activation of FXR. Together, our study shows that therapeutic bile acids UDCA and OCA effectively reduce both plasma and brain bilirubin, highlighting their potential in the treatment of neonatal hyperbilirubinemia.

Zobrazit více v PubMed

Watchko JF, Tiribelli C. Bilirubin-induced neurologic damage: Mechanisms and management approaches. N. Engl. J. Med. 2013;369:2021–2030. doi: 10.1056/NEJMra1308124. PubMed DOI

Dennery PA, Seidman DS, Stevenson DK. Neonatal hyperbilirubinemia. N. Engl. J. Med. 2001;344:581–590. doi: 10.1056/NEJM200102223440807. PubMed DOI

Poland RL, Odell GB. Physiologic jaundice: The enterohepatic circulation of bilirubin. N. Engl. J. Med. 1971;284:1–6. doi: 10.1056/NEJM197101072840101. PubMed DOI

Watchko JF, Maisels MJ. Jaundice in low birthweight infants: Pathobiology and outcome. Arch. Dis. Child. Fetal Neonatal Ed. 2003;88:F455–F458. doi: 10.1136/fn.88.6.F455. PubMed DOI PMC

Cremer RJ, Perryman P, Richards D. Influence of light on the hyperbilirubinaemia of infants. The Lancet. 1958;271:1094–1097. doi: 10.1016/S0140-6736(58)91849-X. PubMed DOI

Brown AK, Kim MH, Wu PY, Bryla DA. Efficacy of phototherapy in prevention and management of neonatal hyperbilirubinemia. Pediatrics. 1985;75:393–400. PubMed

Morris BH, et al. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N. Engl. J. Med. 2008;359:1885–1896. doi: 10.1056/NEJMoa0803024. PubMed DOI PMC

Tyson JE, et al. Does aggressive phototherapy increase mortality while decreasing profound impairment among the smallest and sickest newborns? J. Perinatol. 2012;32:677–684. doi: 10.1038/jp.2012.64. PubMed DOI PMC

Arnold C, Pedroza C, Tyson JE. Phototherapy in ELBW newborns: Does it work? Is it safe? The evidence from randomized clinical trials. Semin. Perinatol. 2014;38:452–464. doi: 10.1053/j.semperi.2014.08.008. PubMed DOI

Wickremasinghe AC, Kuzniewicz MW, Grimes BA, McCulloch CE, Newman TB. Neonatal phototherapy and infantile cancer. Pediatrics. 2016;137:1353. doi: 10.1542/peds.2015-1353. PubMed DOI PMC

Auger N, Laverdière C, Ayoub A, Lo E, Luu TM. Neonatal phototherapy and future risk of childhood cancer. Int. J. Cancer. 2019 doi: 10.1002/ijc.32158. PubMed DOI

Honar N, et al. Effect of ursodeoxycholic acid on indirect hyperbilirubinemia in neonates treated with phototherapy. J. Pediatr. Gastroenterol. Nutr. 2016;62:97–100. doi: 10.1097/MPG.0000000000000874. PubMed DOI

Cuperus FJ, et al. Effective treatment of unconjugated hyperbilirubinemia with oral bile salts in Gunn rats. Gastroenterology. 2009;136:673–682. doi: 10.1053/j.gastro.2008.10.082. PubMed DOI

Markham A, Keam SJ. Obeticholic acid: First global approval. Drugs. 2016;76:1221–1226. doi: 10.1007/s40265-016-0616-x. PubMed DOI

Gitto S, Guarneri V, Sartini A, Andreone P. The use of obeticholic acid for the management of non-viral liver disease: Current clinical practice and future perspectives. Exp. Rev. Gastroenterol. Hepatol. 2018;12:165–171. doi: 10.1080/17474124.2018.1399060. PubMed DOI

Chiang JY. Bile acid regulation of gene expression: Roles of nuclear hormone receptors. Endocr. Rev. 2002;23:443–463. doi: 10.1210/er.2000-0035. PubMed DOI

Fujiwara R, Nguyen N, Chen S, Tukey RH. Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the UDP glucuronosyltransferase 1 (UGT1) locus. Proc. Natl. Acad. Sci. USA. 2010;107:5024–5029. doi: 10.1073/pnas.0913290107. PubMed DOI PMC

Kawade N, Onishi S. The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem. J. 1981;196:257–260. doi: 10.1042/bj1960257. PubMed DOI PMC

Coughtrie MW, Burchell B, Leakey JE, Hume R. The inadequacy of perinatal glucuronidation: Immunoblot analysis of the developmental expression of individual UDP-glucuronosyltransferase isoenzymes in rat and human liver microsomes. Mol. Pharmacol. 1988;34:729–735. PubMed

Bortolussi G, et al. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer. FASEB J. 2012;26:1052–1063. doi: 10.1096/fj.11-195461. PubMed DOI PMC

Chen S, Tukey RH. Humanized UGT1 mice, regulation of UGT1A1, and the role of the intestinal tract in neonatal hyperbilirubinemia and breast milk-induced jaundice. Drug Metab. Dispos. 2018;46:1745–1755. doi: 10.1124/dmd.118.083212. PubMed DOI PMC

Chen S, Yueh M, Evans RM, Tukey RH. Pregnane-x-receptor controls hepatic glucuronidation during pregnancy and neonatal development in humanized UGT1 mice. Hepatology. 2012;56:658–667. doi: 10.1002/hep.25671. PubMed DOI PMC

Aoshima N, Fujie Y, Itoh T, Tukey RH, Fujiwara R. Glucose induces intestinal human UDP-glucuronosyltransferase (UGT) 1A1 to prevent neonatal hyperbilirubinemia. Sci. Rep. 2014;4:643. PubMed PMC

Gartner LM, Lee K, Vaisman S, Lane D, Zarafu I. Development of bilirubin transport and metabolismin the newborn rhesus monkey. J. Pediatr. 1977;90:513–531. doi: 10.1016/S0022-3476(77)80360-0. PubMed DOI

Vodret S, et al. Albumin administration prevents neurological damage and death in a mouse model of severe neonatal hyperbilirubinemia. Sci. Rep. 2015;5:16203. doi: 10.1038/srep16203. PubMed DOI PMC

McDonnell WM, Hitomi E, Askari FK. Identification of bilirubin UDP-GTs in the human alimentary tract in accordance with the gut as a putative metabolic organ. Biochem. Pharmacol. 1996;51:483–488. doi: 10.1016/0006-2952(95)02224-4. PubMed DOI

Fisher MB, et al. Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity: Relationship between UGT1A1 promoter genotype and variability in a liver bank. Pharmacogen. Genom. 2000;10:727–739. doi: 10.1097/00008571-200011000-00007. PubMed DOI

Hruz T, et al. Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC

Akazawa T, et al. High expression of UGT1A1/1A6 in monkey small intestine: Comparison of protein expression levels of cytochromes P450, UDP-glucuronosyltransferases, and transporters in small intestine of cynomolgus monkey and human. Mol. Pharm. 2017;15:127–140. doi: 10.1021/acs.molpharmaceut.7b00772. PubMed DOI

Sugatani J, Sueyoshi T, Negishi M, Miwa M. Regulation of the human UGT1A1 gene by nuclear receptors constitutive active/androstane receptor, pregnane X receptor, and glucocorticoid receptor. Methods Enzymol. 2005;400:92–104. doi: 10.1016/S0076-6879(05)00006-6. PubMed DOI

Jonker JW, Liddle C, Downes M. FXR and PXR: Potential therapeutic targets in cholestasis. J. Steroid Biochem. Mol. Biol. 2012;130:147–158. doi: 10.1016/j.jsbmb.2011.06.012. PubMed DOI PMC

Vítek L, Zelenka J, Zadinová M, Malina J. The impact of intestinal microflora on serum bilirubin levels. J. Hepatol. 2005;42:238–243. doi: 10.1016/j.jhep.2004.10.012. PubMed DOI

Vítek L, et al. Identification of bilirubin reduction products formed by Clostridium perfringens isolated from human neonatal fecal flora. J. Chromatogr. B. 2006;833:149–157. doi: 10.1016/j.jchromb.2006.01.032. PubMed DOI

Midtvedt AC, Carlstedt-Duke B, Norin KE, Saxerholt H, Midtvedt T. Development of five metabolic activities associated with the intestinal microflora of healthy infants. J. Pediatr. Gastroenterol. Nutr. 1988;7:559–567. doi: 10.1097/00005176-198807000-00014. PubMed DOI

Vítek L, et al. Intestinal colonization leading to fecal urobilinoid excretion may play a role in the pathogenesis of neonatal jaundice. J. Pediatr. Gastroenterol. Nutr. 2000;30:294–298. doi: 10.1097/00005176-200003000-00015. PubMed DOI

Ostrow JD, Pascolo L, Shapiro SM, Tiribelli C. New concepts in bilirubin encephalopathy. Eur. J. Clin. Invest. 2003;33:988–997. doi: 10.1046/j.1365-2362.2003.01261.x. PubMed DOI

Chen S, et al. Tissue-specific, inducible, and hormonal control of the human UDP-glucuronosyltransferase-1 (UGT1) locus. J. Biol. Chem. 2005;280:37547–37557. doi: 10.1074/jbc.M506683200. PubMed DOI

Senekeo-Effenberger K, et al. Expression of the human UGT1 locus in transgenic mice by 4-chloro-6-(2, 3-xylidino)-2-pyrimidinylthioacetic acid (WY-14643) and implications on drug metabolism through peroxisome proliferator-activated receptor alpha activation. Drug Metab. Dispos. 2007;35:419–427. doi: 10.1124/dmd.106.013243. PubMed DOI

Zeidenberg P, Orrenius S, Ernster L. Increase in levels of glucuronylating enzymes and associated rise in activities of mitochondrial oxidative enzymes upon phenobarbital administration in the rat. J. Cell Biol. 1967;32:528–531. doi: 10.1083/jcb.32.2.528. PubMed DOI PMC

Catz C, Yaffe S. Barbiturate enhancement of bilirubin conjugation and excretion in young and adult animals. Pediatr. Res. 1968;2:361. doi: 10.1203/00006450-196809000-00005. PubMed DOI

Ito T, et al. Phenobarbital following phototherapy for Crigler-Najjar syndrome Type II with good fetal outcome: A case report. J. Obstet. Gynaecol. Res. 2001;27:33–35. doi: 10.1111/j.1447-0756.2001.tb01212.x. PubMed DOI

Lee C, Stonestreet BS, Oh W, Outerbridge EW, Cashore WJ. Postnatal maturation of the blood-brain barrier for unbound bilirubin in newborn piglets. Brain Res. 1995;689:233–238. doi: 10.1016/0006-8993(95)00572-8. PubMed DOI

Kutsuno Y, et al. Expression of UDP-glucuronosyltransferase 1 (UGT1) and glucuronidation activity toward endogenous substances in humanized UGT1 mouse brain. Drug Metab. Dispos. 2015;43:1071–1076. doi: 10.1124/dmd.115.063719. PubMed DOI PMC

Suzuyama N, et al. Species differences of inhibitory effects on P-glycoprotein mediated drug transport. J. Pharm. Sci. 2007;96:1609–1618. doi: 10.1002/jps.20787. PubMed DOI

Zelenka J, et al. Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J. Chromatogr. B. 2008;867:37–42. doi: 10.1016/j.jchromb.2008.03.005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...