The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions.
- MeSH
- biodiverzita MeSH
- DNA bakterií genetika MeSH
- ledový příkrov mikrobiologie MeSH
- mikrobiota genetika MeSH
- polymerázová řetězová reakce MeSH
- RNA ribozomální 16S genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- Sphingobacterium genetika izolace a purifikace MeSH
- Synechococcus genetika izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Grónsko MeSH
Cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 show similar changes in the metabolic response to changed CO2 conditions but exhibit significant differences at the transcriptomic level. This study employs a systems biology approach to investigate the difference in metabolic regulation of Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803. Presented multi-level kinetic model for Synechocystis sp. PCC 6803 is a new approach integrating and analysing metabolomic, transcriptomic and fluxomics data obtained under high and ambient CO2 levels. Modelling analysis revealed that higher number of different isozymes in Synechocystis 6803 improves homeostatic stability of several metabolites, especially 3PGA by 275%, against changes in gene expression, compared to Synechococcus sp. PCC 7942. Furthermore, both cyanobacteria have the same amount of phosphoglycerate mutases but Synechocystis 6803 exhibits only ~20% differences in their mRNA levels after shifts from high to ambient CO2 level, in comparison to ~500% differences in the case of Synechococcus sp. PCC 7942. These and other data imply that the biochemical control dominates over transcriptional regulation in Synechocystis 6803 to acclimate central carbon metabolism in the environment of variable inorganic carbon availability without extra cost carried by large changes in the proteome.
- MeSH
- metabolismus MeSH
- metabolomika MeSH
- oxid uhličitý metabolismus MeSH
- regulace genové exprese enzymů * MeSH
- regulace genové exprese u bakterií * MeSH
- stanovení celkové genové exprese MeSH
- Synechococcus genetika metabolismus MeSH
- Synechocystis genetika metabolismus MeSH
- systémová biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cyanobacteria are among the most important primary producers on the Earth. However, the evolutionary forces driving cyanobacterial species diversity remain largely enigmatic due to both their distinction from macro-organisms and an undersampling of sequenced genomes. Thus, we present a new genome of a Synechococcus-like cyanobacterium from a novel evolutionary lineage. Further, we analyse all existing 16S rRNA sequences and genomes of Synechococcus-like cyanobacteria. Chronograms showed extremely polyphyletic relationships in Synechococcus, which has not been observed in any other cyanobacteria. Moreover, most Synechococcus lineages bifurcated after the Great Oxidation Event, including the most abundant marine picoplankton lineage. Quantification of horizontal gene transfer among 70 cyanobacterial genomes revealed significant differences among studied genomes. Horizontal gene transfer levels were not correlated with ecology, genome size or phenotype, but were correlated with the age of divergence. All findings were synthetized into a novel model of cyanobacterial evolution, characterized by serial convergence of the features, that is multicellularity and ecology.
- MeSH
- biologická evoluce * MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- genom bakteriální * MeSH
- molekulární sekvence - údaje MeSH
- přenos genů horizontální * MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- Synechococcus klasifikace genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH