Parallel Alpine Differentiation in Arabidopsis arenosa
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33363550
PubMed Central
PMC7753741
DOI
10.3389/fpls.2020.561526
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, adaptation, alpine environments, convergence, parallel evolution, phenotypic parallelism,
- Publikační typ
- časopisecké články MeSH
Parallel evolution provides powerful natural experiments for studying repeatability of evolution and genomic basis of adaptation. Well-documented examples from plants are, however, still rare, as are inquiries of mechanisms driving convergence in some traits while divergence in others. Arabidopsis arenosa, a predominantly foothill species with scattered morphologically distinct alpine occurrences is a promising candidate. Yet, the hypothesis of parallelism remained untested. We sampled foothill and alpine populations in all regions known to harbor the alpine ecotype and used SNP genotyping to test for repeated alpine colonization. Then, we combined field surveys and a common garden experiment to quantify phenotypic parallelism. Genetic clustering by region but not elevation and coalescent simulations demonstrated parallel origin of alpine ecotype in four mountain regions. Alpine populations exhibited parallelism in height and floral traits which persisted after two generations in cultivation. In contrast, leaf traits were distinctive only in certain region(s), reflecting a mixture of plasticity and genetically determined non-parallelism. We demonstrate varying degrees and causes of parallelism and non-parallelism across populations and traits within a plant species. Parallel divergence along a sharp elevation gradient makes A. arenosa a promising candidate for studying genomic basis of adaptation.
Department of Botany Charles University Prague Czechia
Department of Botany University of Innsbruck Innsbruck Austria
Institute of Botany Slovak Academy of Sciences Bratislava Slovakia
Institute of Botany The Czech Academy of Sciences Průhonice Czechia
Zobrazit více v PubMed
Anderson J. T., Gezon Z. J. (2015). Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Glob. Chang. Biol. 21 1689–1703. 10.1111/gcb.12770 PubMed DOI
Arnold B., Bomblies K., Wakeley J. (2012). Extending coalescent theory to autotetraploids. Genetics 192 195–204. 10.1534/genetics.112.140582 PubMed DOI PMC
Arnold B., Kim S.-T., Bomblies K. (2015). Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Mol. Biol. Evol. 32 1382–1395. 10.1093/molbev/msv089 PubMed DOI
Bartok A., Hurdu B., Szatmari P.-M., Ronikier M., Puşcaş M., Novikov A., et al. (2016). New records for the high-mountain flora of the Făgăraş Mts. (southern Carpathians) with discussion on ecological preferences and distribution of studied taxa in the Carpathians. Contr. Bot. 51 77–153.
Bertel C., Rešetnik I., Frajman B., Erschbamer B., Hülber K., Schönswetter P. (2018). Natural selection drives parallel divergence in the mountain plant Heliosperma pusillum s.l. Oikos 127 1355–1367. 10.1111/oik.05364 DOI
Bohutínská M., Vlcek J., Yair S., Laenen B., Konecná V., Fracassetti M., et al. (2020). Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. bioRxiv [Preprint]. 10.1101/2020.03.24.005397 PubMed DOI PMC
Bolnick D. I., Barrett R. D. H., Oke K. B., Rennison D. J., Stuart Y. E. (2018). (Non) parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49 303–330. 10.1146/annurev-ecolsys-110617-062240 DOI
Butlin R. K., Saura M., Charrier G., Jackson B., André C., Caballero A., et al. (2014). Parallel evolution of local adaptation and reproductive isolation in the face of gene flow. Evolution 68 935–949. 10.1111/evo.12329 PubMed DOI PMC
Clausen J., Keck D. D., Hiesey W. M. (1940). Experimental Studies on the Nature of Species. I. Effect of Varied Environments on Western North American Plants. Washington, DC: Carnegie Institution for Science.
Ellenberg H. (1992). Zeigerwerte der Pflanzen in Mitteleuropa. 3., Erweit. Aufl. Göttingen: E. Goltze.
Elmer K. R., Fan S., Kusche H., Spreitzer M. L., Kautt A. F., Franchini P., et al. (2014). Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5:5168. 10.1038/ncomms6168 PubMed DOI
Elmer K. R., Meyer A. (2011). Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol. Evol. 26 298–306. 10.1016/j.tree.2011.02.008 PubMed DOI
Excoffier L., Dupanloup I., Huerta-Sánchez E., Sousa V. C., Foll M. (2013). Robust demographic inference from genomic and SNP data. PLoS Genet. 9:e1003905. 10.1371/journal.pgen.1003905 PubMed DOI PMC
Fischer M. A. (2008). Exkursionsflora für Österreich, Liechtenstein und Südtirol. Land Oberösterreich: OÖ. Landesmuseen.
Fischer M. C., Rellstab C., Tedder A., Zoller S., Gugerli F., Shimizu K. K., et al. (2013). Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps. Mol. Ecol. 22 5594–5607. 10.1111/mec.12521 PubMed DOI PMC
Fustier M.-A., Brandenburg J.-T., Boitard S., Lapeyronnie J., Eguiarte L. E., Vigouroux Y., et al. (2017). Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples. Mol. Ecol. 26 2738–2756. 10.1111/mec.14082 PubMed DOI
Galen C. (1989). Measuring pollinator-mediated selection on morphometric floral traits: bumblebees and the alpine sky pilot, Polemonium Viscosum. Evolution 43 882–890. 10.1111/j.1558-5646.1989.tb05185.x PubMed DOI
Günther T., Lampei C., Barilar I., Schmid K. J. (2016). Genomic and phenotypic differentiation of Arabidopsis thaliana along altitudinal gradients in the North Italian Alps. Mol. Ecol. 25 3574–3592. 10.1111/mec.13705 PubMed DOI
Halbritter A. H., Fior S., Keller I., Billeter R., Edwards P. J., Holderegger R., et al. (2018). Trait differentiation and adaptation of plants along elevation gradients. J. Evol. Biol. 31 784–800. 10.1111/jeb.13262 PubMed DOI
Hämälä T., Mattila T. M., Savolainen O. (2018). Local adaptation and ecological differentiation under selection, migration, and drift in Arabidopsis lyrata. Evolution 72 1373–1386. 10.1111/evo.13502 PubMed DOI
Hedberg I., Hedberg O. (1979). Tropical-alpine life-forms of vascular plants. Oikos 33 297–307. 10.2307/3544006 DOI
Johannesson K., Panova M., Kemppainen P., André C., Rolán-Alvarez E., Butlin R. K. (2010). Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365 1735–1747. 10.1098/rstb.2009.0256 PubMed DOI PMC
Jombart T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24 1403–1405. 10.1093/bioinformatics/btn129 PubMed DOI
Jones F. C., Grabherr M. G., Chan Y. F., Russell P., Mauceli E., Johnson J., et al. (2012). The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484 55–61. 10.1038/nature10944 PubMed DOI PMC
Knotek A., Wos G., Požárová D., Konečná V., Šrámková G., Bohutínská M., et al. (2020). Parallel alpine differentiation in Arabidopsis arenosa. bioRxiv [Preprint]. 10.1101/2020.02.13.948158 PubMed DOI PMC
Kolář F., Fuxová G., Záveská E., Nagano A. J., Hyklová L., Lučanová M., et al. (2016a). Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Mol. Ecol. 25 3929–3949. 10.1111/mec.13721 PubMed DOI
Kolář F., Lučanová M., Záveská E., Fuxová G., Mandáková T., Španiel S., et al. (2016b). Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae). Biol. J. Linn. Soc. Lond. 119 673–688. 10.1111/bij.12479 DOI
Konečná V., Nowak M. D., Kolář F. (2019). Parallel colonization of subalpine habitats in the central European mountains by Primula elatior. Sci. Rep. 9:3294. 10.1038/s41598-019-39669-2 PubMed DOI PMC
Körner C. (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Heidelberg: Springer.
Koutecký P. (2014). MorphoTools: a set of R functions for morphometric analysis. Plant Syst. Evol. 301 1115–1121. 10.1007/s00606-014-1153-2 DOI
Kubota S., Iwasaki T., Hanada K., Nagano A. J., Fujiyama A., Toyoda A., et al. (2015). A genome scan for genes underlying microgeographic-scale local adaptation in a wild Arabidopsis species. PLoS Genet. 11:e1005361. 10.1371/journal.pgen.1005361 PubMed DOI PMC
Langerhans R. B. (2018). Predictability and parallelism of multitrait adaptation. J. Hered. 109 59–70. 10.1093/jhered/esx043 PubMed DOI
Levin D. A. (2001). The recurrent origin of plant races and species. Syst. Bot. 26 197–204. 10.1043/0363-6445-26.2.197 DOI
Losos J. B. (2011). Convergence, adaptation, and constraint. Evolution 65 1827–1840. 10.1111/j.1558-5646.2011.01289.x PubMed DOI
Melzer H. (1960). Neues und kritisches zur flora der Steiermark und des angrenzenden Burgenlandes. Mitt. Naturwiss. Ver. Steiermark 90 85–102. 10.1007/bf01633859 DOI
Měsíček J., Goliašová K. (2002). “Cardaminopsis (C. A. Mey.) Hayek,” in Flóra Slovenska, eds Goliašová K., Šípošová H. (Bratislava: Veda; ), 388–415.
Monnahan P., Kolář F., Baduel P., Sailer C., Koch J., Horvath R., et al. (2019). Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat. Ecol. Evol. 3 457–468. 10.1038/s41559-019-0807-4 PubMed DOI
Mráz P., Ronikier M. (2016). Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119 528–559. 10.1111/bij.12918 DOI
Nosil P., Crespi B. J., Sandoval C. P. (2002). Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature 417 440–443. 10.1038/417440a PubMed DOI
Nosil P., Egan S. P., Funk D. J. (2008). Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution 62 316–336. 10.1111/j.1558-5646.2007.00299.x PubMed DOI
Pachschwöll C., Pachschwöll T. (2019). A new find of Arabidopsis neglecta (Brassicaceae) in the Svydovets Massif (Ukrainian Carpathians). Ukr. Bot. J. 76 60–66. 10.15407/ukrbotj76.01.060 DOI
Pawłowski B. (1970). Remarques sur l’endémisme dans la flore des Alpes et des Carpates. Vegetatio 21 181–243. 10.1007/bf02269663 DOI
Pfennig D. W., Wund M. A., Snell-Rood E. C., Cruickshank T., Schlichting C. D., Moczek A. P. (2010). Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25 459–467. 10.1016/j.tree.2010.05.006 PubMed DOI
Raj A., Stephens M., Pritchard J. K. (2014). fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197 573–589. 10.1534/genetics.114.164350 PubMed DOI PMC
Ravinet M., Westram A., Johannesson K., Butlin R., André C., Panova M. (2016). Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale. Mol. Ecol. 25 287–305. 10.1111/mec.13332 PubMed DOI
Reid N. M., Proestou D. A., Clark B. W., Warren W. C., Colbourne J. K., Shaw J. R., et al. (2016). The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354 1305–1308. 10.1126/science.aah4993 PubMed DOI PMC
Roda F., Ambrose L., Walter G. M., Liu H. L., Schaul A., Lowe A., et al. (2013a). Genomic evidence for the parallel evolution of coastal forms in the Senecio lautus complex. Mol. Ecol. 22 2941–2952. 10.1111/mec.12311 PubMed DOI
Roda F., Liu H., Wilkinson M. J., Walter G. M., James M. E., Bernal D. M., et al. (2013b). Convergence and divergence during the adaptation to similar environments by an Australian groundsel. Evolution 67 2515–2529. 10.1111/evo.12136 PubMed DOI
Rundle H. D., Nagel L., Boughman J. W., Schluter D. (2000). Natural selection and parallel speciation in sympatric sticklebacks. Science 287 306–308. 10.1126/science.287.5451.306 PubMed DOI
Sackton T. B., Clark N. (2019). Convergent evolution in the genomics era: new insights and directions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374:20190102. 10.1098/rstb.2019.0102 PubMed DOI PMC
Soria-Carrasco V., Gompert Z., Comeault A. A., Farkas T. E., Parchman T. L., Johnston J. S., et al. (2014). Stick insect genomes reveal natural selection’s role in parallel speciation. Science 344 738–742. 10.1126/science.1252136 PubMed DOI
Šrámková-Fuxová G., Záveská E., Kolář F., Lučanová M., Španiel S., Marhold K. (2017). Range-wide genetic structure of Arabidopsis halleri (Brassicaceae): glacial persistence in multiple refugia and origin of the Northern Hemisphere disjunction. Bot. J. Linn. Soc. 185 321–342. 10.1093/botlinnean/box064 DOI
Stift M., Kolář F., Meirmans P. G. (2019). Structure is more robust than other clustering methods in simulated mixed-ploidy populations. Heredity 123 429–441. 10.1038/s41437-019-0247-6 PubMed DOI PMC
Stuart Y. E., Veen T., Weber J. N., Hanson D., Ravinet M., Lohman B. K., et al. (2017). Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat. Ecol. Evol. 1:0158. 10.1038/s41559-017-0158 PubMed DOI
Thompson K. A., Osmond M. M., Schluter D. (2019). Parallel genetic evolution and speciation from standing variation. Evol. Lett. 3 129–141. 10.1002/evl3.106 PubMed DOI PMC
Tichý L. (2002). JUICE, software for vegetation classification. J. Veg. Sci. 13 451–453. 10.1111/j.1654-1103.2002.tb02069.x DOI
Trucchi E., Frajman B., Haverkamp T. H. A., Schönswetter P., Paun O. (2017). Genomic analyses suggest parallel ecological divergence in Heliosperma pusillum (Caryophyllaceae). New Phytol. 216 267–278. 10.1111/nph.14722 PubMed DOI PMC
Turesson G. (1922). The species and the variety as ecological units. Hereditas 3 100–113. 10.1111/j.1601-5223.1922.tb02727.x DOI
Turesson G. (1930). The selective effect of climate upon the plant species. Hereditas 14 99–152. 10.1111/j.1601-5223.1930.tb02531.x DOI
Wos G., Mořkovská J., Bohutínská M., Šrámková G., Knotek A., Lučanová M., et al. (2019). Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa. Ann. Bot. 124 255–268. 10.1093/aob/mcz070 PubMed DOI PMC
Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives
Parallel Alpine Differentiation in Arabidopsis arenosa