Parallel Differentiation and Plastic Adjustment of Leaf Anatomy in Alpine Arabidopsis arenosa Ecotypes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 31027
FWF Austrian Science Fund
project 20-22783S
Czech Science Foundation
PubMed
36235492
PubMed Central
PMC9573220
DOI
10.3390/plants11192626
PII: plants11192626
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation, alpine environment, ecotype, leaf anatomy, parallel evolution,
- Publikační typ
- časopisecké články MeSH
Functional and structural adjustments of plants in response to environmental factors, including those occurring in alpine habitats, can result in transient acclimation, plastic phenotypic adjustments and/or heritable adaptation. To unravel repeatedly selected traits with potential adaptive advantage, we studied parallel (ecotypic) and non-parallel (regional) differentiation in leaf traits in alpine and foothill ecotypes of Arabidopsis arenosa. Leaves of plants from eight alpine and eight foothill populations, representing three independent alpine colonization events in different mountain ranges, were investigated by microscopy techniques after reciprocal transplantation. Most traits clearly differed between the foothill and the alpine ecotype, with plastic adjustments to the local environment. In alpine populations, leaves were thicker, with altered proportions of palisade and spongy parenchyma, and had fewer trichomes, and chloroplasts contained large starch grains with less stacked grana thylakoids compared to foothill populations. Geographical origin had no impact on most traits except for trichome and stomatal density on abaxial leaf surfaces. The strong parallel, heritable ecotypic differentiation in various leaf traits and the absence of regional effects suggests that most of the observed leaf traits are adaptive. These trait shifts may reflect general trends in the adaptation of leaf anatomy associated with the colonization of alpine habitats.
Department of Botany and Biodiversity Research University of Vienna 1010 Vienna Austria
Department of Botany Charles University of Prague 110 00 Prague Czech Republic
Department of Botany University of Innsbruck 6020 Innsbruck Austria
Institute of Nature Conservation Polish Academy of Sciences 00 901 Krakow Poland
Zobrazit více v PubMed
Körner C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd ed. Springer; Heidelberg/Berlin, Germany: 2003.
Larcher W. Ökophysiologie der Pflanzen. Leben, Leistung und Streßbewältigung der Pflanzen in ihrer Umwelt. Volume 6. Ulmer; Stuttgart, Germany: 2001.
Sakai A., Larcher W. Frost Survival of Plants. Volume 62. Springer; Heidelberg/Berlin, Germany: 1987. Low temperature and frost as environmental factors; pp. 1–20. Ecological Studies.
Valladares F., Niinemets Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 2008;39:237–257. doi: 10.1146/annurev.ecolsys.39.110707.173506. DOI
Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H., Diemer M., et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. doi: 10.1038/nature02403. PubMed DOI
Ackerly D.D., Reich P.B. Convergence and correlations among leaf size and function in seed plants: A comparative test using independent contrasts. Am. J. Bot. 1999;86:1272–1281. doi: 10.2307/2656775. PubMed DOI
Cai Y.-F., Li S.-F., Li S.-F., Xie W.-J., Song J. How do leaf anatomies and photosynthesis of three Rhododendron species relate to their natural environments? Bot. Stud. 2014;55:36. doi: 10.1186/1999-3110-55-36. PubMed DOI PMC
Rôças G., Barros C.F., Scarano F.R. Leaf anatomy plasticity of Alchornea triplinervia (Euphorbiaceae) under distinct light regimes in a Brazilian montane Atlantic rain forest. Trees Struct. Funct. 1997;11:469–473. doi: 10.1007/PL00009688. DOI
Körner C. The nutritional status of plants from high altitudes: A worldwide comparison. Oecologia. 1989;81:379–391. doi: 10.1007/BF00377088. PubMed DOI
Morecroft M.D., Woodward F.I. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina. New Phytol. 1996;134:471–479. doi: 10.1111/j.1469-8137.1996.tb04364.x. DOI
Kammer P.M., Steiner J.S., Schöb C. Arabis alpina and Arabidopsis thaliana have different stomatal development strategies in response to high altitude pressure conditions. Alp. Bot. 2015;125:101–112. doi: 10.1007/s00035-015-0152-4. DOI
Schulze E.-D., Beck E., Müller-Hohenstein K. Pflanzenökologie. Spektrum Akademischer Verlag; Heidelberg, Germany: 2002.
Lösch R. Wasserhaushalt der Pflanzen. 1st ed. Quelle & Meyer; Wiebelsheim, Germany: 2001.
Chartzoulakis K., Patakas A., Kofidis G., Bosabalidis A., Nastou A. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci. Hortic. 2002;95:39–50. doi: 10.1016/S0304-4238(02)00016-X. DOI
Rury P.M., Dickison W.C. Structural correlations among wood, leaves and plant habit. In: White R.A., Dickison W.C., editors. Contemporary Problems in Plant Anatomy. Academic Press; San Diego, CA, USA: 1984. pp. 495–540.
Scoffoni C., Chatelet D.S., Pasquet-Kok J., Rawls M., Donoghue M.J., Edwards E.J., Sack L. Hydraulic basis for the evolution of photosynthetic productivity. Nat. Plants. 2016;2:16072. doi: 10.1038/nplants.2016.72. PubMed DOI
Bohutínská M., Vlček J., Yair S., Laenen B., Konečná V., Fracassetti M., Slotte T., Kolář F. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proc. Natl. Acad. Sci. USA. 2021;118:e2022713118. doi: 10.1073/pnas.2022713118. PubMed DOI PMC
Pfennig D.W., Wund M.A., Snell-Rood E.C., Cruickshank T., Schlichting C.D., Moczek A.P. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 2010;25:459–467. doi: 10.1016/j.tree.2010.05.006. PubMed DOI
Bonduriansky R., Crean A.J., Day T. The implications of nongenetic inheritance for evolution in changing environments. Evol. Appl. 2012;5:192–201. doi: 10.1111/j.1752-4571.2011.00213.x. PubMed DOI PMC
Hufford K.M., Mazer S.J. Plant ecotypes: Genetic differentiation in the age of ecological restoration. Trends Ecol. Evol. 2003;18:147–155. doi: 10.1016/S0169-5347(03)00002-8. DOI
Lowry D.B. Ecotypes and the controversy over stages in the formation of new species. Biol. J. Linn. Soc. 2012;106:241–257. doi: 10.1111/j.1095-8312.2012.01867.x. DOI
Elmer K.R., Meyer A. Adaptation in the age of ecological genomics: Insights from parallelism and convergence. Trends Ecol. Evol. 2011;26:298–306. doi: 10.1016/j.tree.2011.02.008. PubMed DOI
Barrett R.D., Schluter D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008;23:38–44. doi: 10.1016/j.tree.2007.09.008. PubMed DOI
Preite V., Sailer C., Syllwasschy L., Bray S., Ahmadi H., Kramer U., Yant L. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos. Trans. R. Soc. B Biol. Sci. 2019;374:20180243. doi: 10.1098/rstb.2018.0243. PubMed DOI PMC
Trucchi E., Frajman B., Haverkamp T.H.A., Schönswetter P., Paun O. Genomic analyses suggest parallel ecological divergence in Heliosperma pusillum (Caryophyllaceae) New Phytol. 2017;216:267–278. doi: 10.1111/nph.14722. PubMed DOI PMC
Knotek A., Konečná V., Wos G., Požárová D., Šrámková G., Bohutínská M., Zeisek V., Marhold K., Kolář F. Parallel alpine differentiation in Arabidopsis arenosa. Front. Plant Sci. 2020;11:561526. doi: 10.3389/fpls.2020.561526. PubMed DOI PMC
Antonovics J. The nature of limits to natural selection. Ann. Mo. Bot. Gard. 1976;63:224–247. doi: 10.2307/2395303. DOI
Kawecki T.J., Ebert D. Conceptual issues in local adaptation. Ecol. Lett. 2004;7:1225–1241. doi: 10.1111/j.1461-0248.2004.00684.x. DOI
Szukala A., Lovegrove-Walsh J., Luqman H., Fior S., Wolfe T.M., Frajman B., Schönswetter P., Paun O. Polygenic routes lead to parallel altitudinal adaptation in Heliosperma pusillum (Caryophyllaceae) Mol. Ecol. 2022:1–16. doi: 10.1111/mec.16393. PubMed DOI PMC
van Kleunen M., Fischer M. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 2005;166:49–60. doi: 10.1111/j.1469-8137.2004.01296.x. PubMed DOI
Brochmann C., Borgen L., Stabbetorp O.E. Multiple diploid hybrid speciation of the Canary Island endemic Argyranthemum sundingii (Asteraceae) Plant Syst. Evol. 2000;220:77–92. doi: 10.1007/Bf00985372. DOI
Berglund A.B.N., Dahlgren S., Westerbergh A. Evidence for parallel evolution and site-specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia. New Phytol. 2004;161:199–209. doi: 10.1046/j.1469-8137.2003.00934.x. DOI
Foster S.A., McKinnon G.E., Steane D.A., Potts B.M., Vaillancourt R.E. Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytol. 2007;175:370–380. doi: 10.1111/j.1469-8137.2007.02077.x. PubMed DOI
Roda F., Ambrose L., Walter G.M., Liu H.L., Schaul A., Lowe A., Pelser P.B., Prentis P., Rieseberg L.H., Ortiz-Barrientos D. Genomic evidence for the parallel evolution of coastal forms in the Senecio lautus complex. Mol. Ecol. 2013;22:2941–2952. doi: 10.1111/mec.12311. PubMed DOI
Schat H., Vooijs R., Kuiper E. Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution. 1996;50:1888–1895. doi: 10.1111/j.1558-5646.1996.tb03576.x. PubMed DOI
Kolář F., Fuxová G., Záveská E., Nagano A.J., Hyklová L., Lučanová M., Kudoh H., Marhold K. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Mol. Ecol. 2016;25:3929–3949. doi: 10.1111/mec.13721. PubMed DOI
Kolář F., Lučanová M., Záveská E., Fuxová G., Mandáková T., Španiel S., Senko D., Svitok M., Kolník M., Gudžinskas Z., et al. Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae) Biol. J. Linn. Soc. 2016;119:673–688. doi: 10.1111/bij.12479. DOI
Wos G., Arc E., Hülber K., Konečná V., Knotek A., Požárová D., Bertel C., Kaplenig D., Mandáková T., Neuner G., et al. Parallel local adaptation to an alpine environment in Arabidopsis arenosa. J. Ecol. 2022 doi: 10.1111/1365-2745.13961. DOI
Geng Y.P., Pan X.Y., Xu C.Y., Zhang W.J., Li B., Chen J.K., Lu B.R., Song Z.P. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol. Invasions. 2007;9:245–256. doi: 10.1007/s10530-006-9029-1. DOI
Mešícĕk J., Goliašová K. Cardaminopsis (C. A. Mey.) Hayek. In: Goliašová K., Šípošová H., editors. Flóra Slovenska. Veda; Bratislava, Slovakia: 2002. pp. 388–415.
Körner C., Larcher W. Plant life in cold climates. Symp. Soc. Exp. Biol. 1988;42:25–57. PubMed
Scherrer D., Schmid S., Körner C. Elevational species shifts in a warmer climate are overestimated when based on weather station data. Int. J. Biometeorol. 2011;55:645–654. doi: 10.1007/s00484-010-0364-7. PubMed DOI
Levis N.A., Pfennig D.W. Evaluating ‘plasticity-first’ evolution in nature: Key criteria and empirical approaches. Trends Ecol. Evol. 2016;31:563–574. doi: 10.1016/j.tree.2016.03.012. PubMed DOI
Dewitt T.J., Sih A., Wilson D.S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 1998;13:77–81. doi: 10.1016/S0169-5347(97)01274-3. PubMed DOI
Pál C., Miklós I. Epigenetic inheritance, genetic assimilation and speciation. J. Theor. Biol. 1999;200:19–37. doi: 10.1006/jtbi.1999.0974. PubMed DOI
Schmitt J., Dudley S.A. Testing the adaptive plasticity hypothesis for plant responses to neighbors. Plant Species Biol. 1996;11:59–67. doi: 10.1111/j.1442-1984.1996.tb00109.x. DOI
Dudley S.A., Schmitt J. Testing the adaptive plasticity hypothesis: Density-dependent selection on manipulated stem length in Impatiens capensis. Am. Nat. 1996;147:445–465. doi: 10.1086/285860. DOI
Nicotra A.B., Segal D.L., Hoyle G.L., Schrey A.W., Verhoeven K.J., Richards C.L. Adaptive plasticity and epigenetic variation in response to warming in an Alpine plant. Ecol. Evol. 2015;5:634–647. doi: 10.1002/ece3.1329. PubMed DOI PMC
Solé-Medina A., Robledo-Arnuncio J.J., Ramírez-Valiente J.A. Multi-trait genetic variation in resource-use strategies and phenotypic plasticity correlates with local climate across the range of a Mediterranean oak (Quercus faginea) New Phytol. 2022;234:462–478. doi: 10.1111/nph.17968. PubMed DOI
Stotz G.C., Salgado-Luarte C., Escobedo V.M., Valladares F., Gianoli E. Global trends in phenotypic plasticity of plants. Ecol. Lett. 2021;24:2267–2281. doi: 10.1111/ele.13827. PubMed DOI
Charlesworth B., Lande R., Slatkin M. A neo-Darwinian commentary on macroevolution. Evolution. 1982;36:474–498. doi: 10.1111/j.1558-5646.1982.tb05068.x. PubMed DOI
Björkman O. Responses to different quantum flux densities. In: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H., editors. Physiological Plant Ecology I: Responses to the Physical Environment. Springer; Berlin/Heidelberg, Germany: 1981. pp. 57–107.
Boardman N.K. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 1977;28:355–377. doi: 10.1146/annurev.pp.28.060177.002035. DOI
Terashima I., Hanba Y.T., Tholen D., Niinemets U. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 2011;155:108–116. doi: 10.1104/pp.110.165472. PubMed DOI PMC
Vogelmann T.C., Nishio J.N., Smith W.K. Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1996;1:65–70. doi: 10.1016/S1360-1385(96)80031-8. DOI
Gratani L., Crescente M.F., D’Amato V., Ricotta C., Frattaroli A.R., Puglielli G. Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines. Photosynthetica. 2014;52:386–396. doi: 10.1007/s11099-014-0042-9. DOI
Bréhélin C., Kessler F., van Wijk K.J. Plastoglobules: Versatile lipoprotein particles in plastids. Trends Plant Sci. 2007;12:260–266. doi: 10.1016/j.tplants.2007.04.003. PubMed DOI
Anderson J.M., Chow W.S., De Las Rivas J. Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: The grana enigma. Photosynth. Res. 2008;98:575–587. doi: 10.1007/s11120-008-9381-3. PubMed DOI
Karabourniotis G., Liakopoulos G., Nikolopoulos D., Bresta P. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure-function coordination. J. For. Res. 2020;31:1–12. doi: 10.1007/s11676-019-01034-4. DOI
Press M.C. The functional significance of leaf structure: A search for generalizations. New Phytol. 1999;143:213–219. doi: 10.1046/j.1469-8137.1999.00432.x. DOI
Pellissier L., Roger A., Bilat J., Rasmann S. High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: Is it just temperature? Ecography. 2014;37:950–959. doi: 10.1111/ecog.00833. DOI
Buckley J., Widmer A., Mescher M.C., De Moraes C.M. Variation in growth and defence traits among plant populations at different elevations: Implications for adaptation to climate change. J. Ecol. 2019;107:2478–2492. doi: 10.1111/1365-2745.13171. DOI
Zhang N.N., Tonsor S.J., Traw M.B. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana. Plant Signal. Behav. 2015;10:e992741. doi: 10.4161/15592324.2014.992741. PubMed DOI PMC
Rasmann S., Buri A., Gallot-Lavallee M., Joaquim J., Purcell J., Pellissier L. Differential allocation and deployment of direct and indirect defences by Vicia sepium along elevation gradients. J. Ecol. 2014;102:930–938. doi: 10.1111/1365-2745.12253. DOI
Løe G., Toräng P., Gaudeul M., Ågren J. Trichome production and spatiotemporal variation in herbivory in the perennial herb Arabidopsis lyrata. Oikos. 2007;116:134–142. doi: 10.1111/j.2006.0030-1299.15022.x. DOI
Pellissier L., Fiedler K., Ndribe C., Dubuis A., Pradervand J.N., Guisan A., Rasmann S. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol. Evol. 2012;2:1818–1825. doi: 10.1002/ece3.296. PubMed DOI PMC
Erelli M.C., Ayres M.P., Eaton G.K. Altitudinal patterns in host suitability for forest insects. Oecologia. 1998;117:133–142. doi: 10.1007/s004420050641. PubMed DOI
Descombes P., Marchon J., Pradervand J.N., Bilat J., Guisan A., Rasmann S., Pellissier L. Community-level plant palatability increases with elevation as insect herbivore abundance declines. J. Ecol. 2017;105:142–151. doi: 10.1111/1365-2745.12664. DOI
Callis-Duehl K., Vittoz P., Defossez E., Rasmann S. Community-level relaxation of plant defenses against herbivores at high elevation. Plant Ecol. 2017;218:291–304. doi: 10.1007/s11258-016-0688-4. DOI
Franks P.J., Drake P.L., Beerling D.J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis using Eucalyptus globulus. Plant Cell Environ. 2009;32:1737–1748. doi: 10.1111/j.1365-3040.2009.002031.x. PubMed DOI
Levin D.A. Polyploidy and novelty in flowering plants. Am. Nat. 1983;122:1–25. doi: 10.1086/284115. DOI
Doyle J.J., Coate J.E. Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. Int. J. Plant Sci. 2019;180:1–52. doi: 10.1086/700636. DOI
Cavalier-Smith T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 1978;34:247–278. doi: 10.1242/jcs.34.1.247. PubMed DOI
Byrne M.C., Nelson C.J., Randall D.D. Ploidy effects on anatomy and gas exchange of tall Fescue Leaves. Plant Physiol. 1981;68:891–893. doi: 10.1104/pp.68.4.891. PubMed DOI PMC
Bomblies K. When everything changes at once: Finding a new normal after genome duplication. Proc. R. Soc. B Biol. Sci. 2020;287:20202154. doi: 10.1098/rspb.2020.2154. PubMed DOI PMC
Hodgson J.G., Sharafi M., Jalili A., Diaz S., Montserrat-Marti G., Palmer C., Cerabolini B., Pierce S., Hamzehee B., Asri Y., et al. Stomatal vs. genome size in angiosperms: The somatic tail wagging the genomic dog? Ann. Bot. 2010;105:573–584. doi: 10.1093/aob/mcq011. PubMed DOI PMC
Ennos R.A., French G.C., Hollingsworth P.M. Conserving taxonomic complexity. Trends Ecol. Evol. 2005;20:164–168. doi: 10.1016/j.tree.2005.01.012. PubMed DOI
Kaplenig D., Bertel C., Arc E., Villscheider R., Ralser M., Kolář F., Wos G., Hülber K., Kranner I., Neuner G. Repeated colonization of alpine habitats by Arabidopsis arenosa viewed through freezing resistance and ice management strategies. Plant Biol. 2022;24:939–949. doi: 10.1111/plb.13454. PubMed DOI PMC
Wos G., Bohutínská M., Nosková J., Mandáková T., Kolář F. Parallelism in gene expression between foothill and alpine ecotypes in Arabidopsis arenosa. Plant J. 2021;105:1211–1224. doi: 10.1111/tpj.15105. PubMed DOI
Kubínová L. Recent stereological methods for measuring leaf anatomical characteristics—Estimation of the number and sizes of stomata and mesophyll-cells. J. Exp. Bot. 1994;45:119–127. doi: 10.1093/jxb/45.1.119. DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Holzinger A., Roleda M.Y., Lütz C. The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009;40:831–838. doi: 10.1016/j.micron.2009.06.008. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2022.
Dray S., Dufour A.B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI
Kuznetsova A., Brockhoff P.B., Christensen R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI