Parallel Differentiation and Plastic Adjustment of Leaf Anatomy in Alpine Arabidopsis arenosa Ecotypes

. 2022 Oct 06 ; 11 (19) : . [epub] 20221006

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36235492

Grantová podpora
P 31027 FWF Austrian Science Fund
project 20-22783S Czech Science Foundation

Functional and structural adjustments of plants in response to environmental factors, including those occurring in alpine habitats, can result in transient acclimation, plastic phenotypic adjustments and/or heritable adaptation. To unravel repeatedly selected traits with potential adaptive advantage, we studied parallel (ecotypic) and non-parallel (regional) differentiation in leaf traits in alpine and foothill ecotypes of Arabidopsis arenosa. Leaves of plants from eight alpine and eight foothill populations, representing three independent alpine colonization events in different mountain ranges, were investigated by microscopy techniques after reciprocal transplantation. Most traits clearly differed between the foothill and the alpine ecotype, with plastic adjustments to the local environment. In alpine populations, leaves were thicker, with altered proportions of palisade and spongy parenchyma, and had fewer trichomes, and chloroplasts contained large starch grains with less stacked grana thylakoids compared to foothill populations. Geographical origin had no impact on most traits except for trichome and stomatal density on abaxial leaf surfaces. The strong parallel, heritable ecotypic differentiation in various leaf traits and the absence of regional effects suggests that most of the observed leaf traits are adaptive. These trait shifts may reflect general trends in the adaptation of leaf anatomy associated with the colonization of alpine habitats.

Zobrazit více v PubMed

Körner C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd ed. Springer; Heidelberg/Berlin, Germany: 2003.

Larcher W. Ökophysiologie der Pflanzen. Leben, Leistung und Streßbewältigung der Pflanzen in ihrer Umwelt. Volume 6. Ulmer; Stuttgart, Germany: 2001.

Sakai A., Larcher W. Frost Survival of Plants. Volume 62. Springer; Heidelberg/Berlin, Germany: 1987. Low temperature and frost as environmental factors; pp. 1–20. Ecological Studies.

Valladares F., Niinemets Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 2008;39:237–257. doi: 10.1146/annurev.ecolsys.39.110707.173506. DOI

Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H., Diemer M., et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. doi: 10.1038/nature02403. PubMed DOI

Ackerly D.D., Reich P.B. Convergence and correlations among leaf size and function in seed plants: A comparative test using independent contrasts. Am. J. Bot. 1999;86:1272–1281. doi: 10.2307/2656775. PubMed DOI

Cai Y.-F., Li S.-F., Li S.-F., Xie W.-J., Song J. How do leaf anatomies and photosynthesis of three Rhododendron species relate to their natural environments? Bot. Stud. 2014;55:36. doi: 10.1186/1999-3110-55-36. PubMed DOI PMC

Rôças G., Barros C.F., Scarano F.R. Leaf anatomy plasticity of Alchornea triplinervia (Euphorbiaceae) under distinct light regimes in a Brazilian montane Atlantic rain forest. Trees Struct. Funct. 1997;11:469–473. doi: 10.1007/PL00009688. DOI

Körner C. The nutritional status of plants from high altitudes: A worldwide comparison. Oecologia. 1989;81:379–391. doi: 10.1007/BF00377088. PubMed DOI

Morecroft M.D., Woodward F.I. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina. New Phytol. 1996;134:471–479. doi: 10.1111/j.1469-8137.1996.tb04364.x. DOI

Kammer P.M., Steiner J.S., Schöb C. Arabis alpina and Arabidopsis thaliana have different stomatal development strategies in response to high altitude pressure conditions. Alp. Bot. 2015;125:101–112. doi: 10.1007/s00035-015-0152-4. DOI

Schulze E.-D., Beck E., Müller-Hohenstein K. Pflanzenökologie. Spektrum Akademischer Verlag; Heidelberg, Germany: 2002.

Lösch R. Wasserhaushalt der Pflanzen. 1st ed. Quelle & Meyer; Wiebelsheim, Germany: 2001.

Chartzoulakis K., Patakas A., Kofidis G., Bosabalidis A., Nastou A. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci. Hortic. 2002;95:39–50. doi: 10.1016/S0304-4238(02)00016-X. DOI

Rury P.M., Dickison W.C. Structural correlations among wood, leaves and plant habit. In: White R.A., Dickison W.C., editors. Contemporary Problems in Plant Anatomy. Academic Press; San Diego, CA, USA: 1984. pp. 495–540.

Scoffoni C., Chatelet D.S., Pasquet-Kok J., Rawls M., Donoghue M.J., Edwards E.J., Sack L. Hydraulic basis for the evolution of photosynthetic productivity. Nat. Plants. 2016;2:16072. doi: 10.1038/nplants.2016.72. PubMed DOI

Bohutínská M., Vlček J., Yair S., Laenen B., Konečná V., Fracassetti M., Slotte T., Kolář F. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proc. Natl. Acad. Sci. USA. 2021;118:e2022713118. doi: 10.1073/pnas.2022713118. PubMed DOI PMC

Pfennig D.W., Wund M.A., Snell-Rood E.C., Cruickshank T., Schlichting C.D., Moczek A.P. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 2010;25:459–467. doi: 10.1016/j.tree.2010.05.006. PubMed DOI

Bonduriansky R., Crean A.J., Day T. The implications of nongenetic inheritance for evolution in changing environments. Evol. Appl. 2012;5:192–201. doi: 10.1111/j.1752-4571.2011.00213.x. PubMed DOI PMC

Hufford K.M., Mazer S.J. Plant ecotypes: Genetic differentiation in the age of ecological restoration. Trends Ecol. Evol. 2003;18:147–155. doi: 10.1016/S0169-5347(03)00002-8. DOI

Lowry D.B. Ecotypes and the controversy over stages in the formation of new species. Biol. J. Linn. Soc. 2012;106:241–257. doi: 10.1111/j.1095-8312.2012.01867.x. DOI

Elmer K.R., Meyer A. Adaptation in the age of ecological genomics: Insights from parallelism and convergence. Trends Ecol. Evol. 2011;26:298–306. doi: 10.1016/j.tree.2011.02.008. PubMed DOI

Barrett R.D., Schluter D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008;23:38–44. doi: 10.1016/j.tree.2007.09.008. PubMed DOI

Preite V., Sailer C., Syllwasschy L., Bray S., Ahmadi H., Kramer U., Yant L. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos. Trans. R. Soc. B Biol. Sci. 2019;374:20180243. doi: 10.1098/rstb.2018.0243. PubMed DOI PMC

Trucchi E., Frajman B., Haverkamp T.H.A., Schönswetter P., Paun O. Genomic analyses suggest parallel ecological divergence in Heliosperma pusillum (Caryophyllaceae) New Phytol. 2017;216:267–278. doi: 10.1111/nph.14722. PubMed DOI PMC

Knotek A., Konečná V., Wos G., Požárová D., Šrámková G., Bohutínská M., Zeisek V., Marhold K., Kolář F. Parallel alpine differentiation in Arabidopsis arenosa. Front. Plant Sci. 2020;11:561526. doi: 10.3389/fpls.2020.561526. PubMed DOI PMC

Antonovics J. The nature of limits to natural selection. Ann. Mo. Bot. Gard. 1976;63:224–247. doi: 10.2307/2395303. DOI

Kawecki T.J., Ebert D. Conceptual issues in local adaptation. Ecol. Lett. 2004;7:1225–1241. doi: 10.1111/j.1461-0248.2004.00684.x. DOI

Szukala A., Lovegrove-Walsh J., Luqman H., Fior S., Wolfe T.M., Frajman B., Schönswetter P., Paun O. Polygenic routes lead to parallel altitudinal adaptation in Heliosperma pusillum (Caryophyllaceae) Mol. Ecol. 2022:1–16. doi: 10.1111/mec.16393. PubMed DOI PMC

van Kleunen M., Fischer M. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 2005;166:49–60. doi: 10.1111/j.1469-8137.2004.01296.x. PubMed DOI

Brochmann C., Borgen L., Stabbetorp O.E. Multiple diploid hybrid speciation of the Canary Island endemic Argyranthemum sundingii (Asteraceae) Plant Syst. Evol. 2000;220:77–92. doi: 10.1007/Bf00985372. DOI

Berglund A.B.N., Dahlgren S., Westerbergh A. Evidence for parallel evolution and site-specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia. New Phytol. 2004;161:199–209. doi: 10.1046/j.1469-8137.2003.00934.x. DOI

Foster S.A., McKinnon G.E., Steane D.A., Potts B.M., Vaillancourt R.E. Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytol. 2007;175:370–380. doi: 10.1111/j.1469-8137.2007.02077.x. PubMed DOI

Roda F., Ambrose L., Walter G.M., Liu H.L., Schaul A., Lowe A., Pelser P.B., Prentis P., Rieseberg L.H., Ortiz-Barrientos D. Genomic evidence for the parallel evolution of coastal forms in the Senecio lautus complex. Mol. Ecol. 2013;22:2941–2952. doi: 10.1111/mec.12311. PubMed DOI

Schat H., Vooijs R., Kuiper E. Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution. 1996;50:1888–1895. doi: 10.1111/j.1558-5646.1996.tb03576.x. PubMed DOI

Kolář F., Fuxová G., Záveská E., Nagano A.J., Hyklová L., Lučanová M., Kudoh H., Marhold K. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Mol. Ecol. 2016;25:3929–3949. doi: 10.1111/mec.13721. PubMed DOI

Kolář F., Lučanová M., Záveská E., Fuxová G., Mandáková T., Španiel S., Senko D., Svitok M., Kolník M., Gudžinskas Z., et al. Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae) Biol. J. Linn. Soc. 2016;119:673–688. doi: 10.1111/bij.12479. DOI

Wos G., Arc E., Hülber K., Konečná V., Knotek A., Požárová D., Bertel C., Kaplenig D., Mandáková T., Neuner G., et al. Parallel local adaptation to an alpine environment in Arabidopsis arenosa. J. Ecol. 2022 doi: 10.1111/1365-2745.13961. DOI

Geng Y.P., Pan X.Y., Xu C.Y., Zhang W.J., Li B., Chen J.K., Lu B.R., Song Z.P. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol. Invasions. 2007;9:245–256. doi: 10.1007/s10530-006-9029-1. DOI

Mešícĕk J., Goliašová K. Cardaminopsis (C. A. Mey.) Hayek. In: Goliašová K., Šípošová H., editors. Flóra Slovenska. Veda; Bratislava, Slovakia: 2002. pp. 388–415.

Körner C., Larcher W. Plant life in cold climates. Symp. Soc. Exp. Biol. 1988;42:25–57. PubMed

Scherrer D., Schmid S., Körner C. Elevational species shifts in a warmer climate are overestimated when based on weather station data. Int. J. Biometeorol. 2011;55:645–654. doi: 10.1007/s00484-010-0364-7. PubMed DOI

Levis N.A., Pfennig D.W. Evaluating ‘plasticity-first’ evolution in nature: Key criteria and empirical approaches. Trends Ecol. Evol. 2016;31:563–574. doi: 10.1016/j.tree.2016.03.012. PubMed DOI

Dewitt T.J., Sih A., Wilson D.S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 1998;13:77–81. doi: 10.1016/S0169-5347(97)01274-3. PubMed DOI

Pál C., Miklós I. Epigenetic inheritance, genetic assimilation and speciation. J. Theor. Biol. 1999;200:19–37. doi: 10.1006/jtbi.1999.0974. PubMed DOI

Schmitt J., Dudley S.A. Testing the adaptive plasticity hypothesis for plant responses to neighbors. Plant Species Biol. 1996;11:59–67. doi: 10.1111/j.1442-1984.1996.tb00109.x. DOI

Dudley S.A., Schmitt J. Testing the adaptive plasticity hypothesis: Density-dependent selection on manipulated stem length in Impatiens capensis. Am. Nat. 1996;147:445–465. doi: 10.1086/285860. DOI

Nicotra A.B., Segal D.L., Hoyle G.L., Schrey A.W., Verhoeven K.J., Richards C.L. Adaptive plasticity and epigenetic variation in response to warming in an Alpine plant. Ecol. Evol. 2015;5:634–647. doi: 10.1002/ece3.1329. PubMed DOI PMC

Solé-Medina A., Robledo-Arnuncio J.J., Ramírez-Valiente J.A. Multi-trait genetic variation in resource-use strategies and phenotypic plasticity correlates with local climate across the range of a Mediterranean oak (Quercus faginea) New Phytol. 2022;234:462–478. doi: 10.1111/nph.17968. PubMed DOI

Stotz G.C., Salgado-Luarte C., Escobedo V.M., Valladares F., Gianoli E. Global trends in phenotypic plasticity of plants. Ecol. Lett. 2021;24:2267–2281. doi: 10.1111/ele.13827. PubMed DOI

Charlesworth B., Lande R., Slatkin M. A neo-Darwinian commentary on macroevolution. Evolution. 1982;36:474–498. doi: 10.1111/j.1558-5646.1982.tb05068.x. PubMed DOI

Björkman O. Responses to different quantum flux densities. In: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H., editors. Physiological Plant Ecology I: Responses to the Physical Environment. Springer; Berlin/Heidelberg, Germany: 1981. pp. 57–107.

Boardman N.K. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 1977;28:355–377. doi: 10.1146/annurev.pp.28.060177.002035. DOI

Terashima I., Hanba Y.T., Tholen D., Niinemets U. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 2011;155:108–116. doi: 10.1104/pp.110.165472. PubMed DOI PMC

Vogelmann T.C., Nishio J.N., Smith W.K. Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1996;1:65–70. doi: 10.1016/S1360-1385(96)80031-8. DOI

Gratani L., Crescente M.F., D’Amato V., Ricotta C., Frattaroli A.R., Puglielli G. Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines. Photosynthetica. 2014;52:386–396. doi: 10.1007/s11099-014-0042-9. DOI

Bréhélin C., Kessler F., van Wijk K.J. Plastoglobules: Versatile lipoprotein particles in plastids. Trends Plant Sci. 2007;12:260–266. doi: 10.1016/j.tplants.2007.04.003. PubMed DOI

Anderson J.M., Chow W.S., De Las Rivas J. Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: The grana enigma. Photosynth. Res. 2008;98:575–587. doi: 10.1007/s11120-008-9381-3. PubMed DOI

Karabourniotis G., Liakopoulos G., Nikolopoulos D., Bresta P. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure-function coordination. J. For. Res. 2020;31:1–12. doi: 10.1007/s11676-019-01034-4. DOI

Press M.C. The functional significance of leaf structure: A search for generalizations. New Phytol. 1999;143:213–219. doi: 10.1046/j.1469-8137.1999.00432.x. DOI

Pellissier L., Roger A., Bilat J., Rasmann S. High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: Is it just temperature? Ecography. 2014;37:950–959. doi: 10.1111/ecog.00833. DOI

Buckley J., Widmer A., Mescher M.C., De Moraes C.M. Variation in growth and defence traits among plant populations at different elevations: Implications for adaptation to climate change. J. Ecol. 2019;107:2478–2492. doi: 10.1111/1365-2745.13171. DOI

Zhang N.N., Tonsor S.J., Traw M.B. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana. Plant Signal. Behav. 2015;10:e992741. doi: 10.4161/15592324.2014.992741. PubMed DOI PMC

Rasmann S., Buri A., Gallot-Lavallee M., Joaquim J., Purcell J., Pellissier L. Differential allocation and deployment of direct and indirect defences by Vicia sepium along elevation gradients. J. Ecol. 2014;102:930–938. doi: 10.1111/1365-2745.12253. DOI

Løe G., Toräng P., Gaudeul M., Ågren J. Trichome production and spatiotemporal variation in herbivory in the perennial herb Arabidopsis lyrata. Oikos. 2007;116:134–142. doi: 10.1111/j.2006.0030-1299.15022.x. DOI

Pellissier L., Fiedler K., Ndribe C., Dubuis A., Pradervand J.N., Guisan A., Rasmann S. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol. Evol. 2012;2:1818–1825. doi: 10.1002/ece3.296. PubMed DOI PMC

Erelli M.C., Ayres M.P., Eaton G.K. Altitudinal patterns in host suitability for forest insects. Oecologia. 1998;117:133–142. doi: 10.1007/s004420050641. PubMed DOI

Descombes P., Marchon J., Pradervand J.N., Bilat J., Guisan A., Rasmann S., Pellissier L. Community-level plant palatability increases with elevation as insect herbivore abundance declines. J. Ecol. 2017;105:142–151. doi: 10.1111/1365-2745.12664. DOI

Callis-Duehl K., Vittoz P., Defossez E., Rasmann S. Community-level relaxation of plant defenses against herbivores at high elevation. Plant Ecol. 2017;218:291–304. doi: 10.1007/s11258-016-0688-4. DOI

Franks P.J., Drake P.L., Beerling D.J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis using Eucalyptus globulus. Plant Cell Environ. 2009;32:1737–1748. doi: 10.1111/j.1365-3040.2009.002031.x. PubMed DOI

Levin D.A. Polyploidy and novelty in flowering plants. Am. Nat. 1983;122:1–25. doi: 10.1086/284115. DOI

Doyle J.J., Coate J.E. Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. Int. J. Plant Sci. 2019;180:1–52. doi: 10.1086/700636. DOI

Cavalier-Smith T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 1978;34:247–278. doi: 10.1242/jcs.34.1.247. PubMed DOI

Byrne M.C., Nelson C.J., Randall D.D. Ploidy effects on anatomy and gas exchange of tall Fescue Leaves. Plant Physiol. 1981;68:891–893. doi: 10.1104/pp.68.4.891. PubMed DOI PMC

Bomblies K. When everything changes at once: Finding a new normal after genome duplication. Proc. R. Soc. B Biol. Sci. 2020;287:20202154. doi: 10.1098/rspb.2020.2154. PubMed DOI PMC

Hodgson J.G., Sharafi M., Jalili A., Diaz S., Montserrat-Marti G., Palmer C., Cerabolini B., Pierce S., Hamzehee B., Asri Y., et al. Stomatal vs. genome size in angiosperms: The somatic tail wagging the genomic dog? Ann. Bot. 2010;105:573–584. doi: 10.1093/aob/mcq011. PubMed DOI PMC

Ennos R.A., French G.C., Hollingsworth P.M. Conserving taxonomic complexity. Trends Ecol. Evol. 2005;20:164–168. doi: 10.1016/j.tree.2005.01.012. PubMed DOI

Kaplenig D., Bertel C., Arc E., Villscheider R., Ralser M., Kolář F., Wos G., Hülber K., Kranner I., Neuner G. Repeated colonization of alpine habitats by Arabidopsis arenosa viewed through freezing resistance and ice management strategies. Plant Biol. 2022;24:939–949. doi: 10.1111/plb.13454. PubMed DOI PMC

Wos G., Bohutínská M., Nosková J., Mandáková T., Kolář F. Parallelism in gene expression between foothill and alpine ecotypes in Arabidopsis arenosa. Plant J. 2021;105:1211–1224. doi: 10.1111/tpj.15105. PubMed DOI

Kubínová L. Recent stereological methods for measuring leaf anatomical characteristics—Estimation of the number and sizes of stomata and mesophyll-cells. J. Exp. Bot. 1994;45:119–127. doi: 10.1093/jxb/45.1.119. DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Holzinger A., Roleda M.Y., Lütz C. The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009;40:831–838. doi: 10.1016/j.micron.2009.06.008. PubMed DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2022.

Dray S., Dufour A.B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI

Kuznetsova A., Brockhoff P.B., Christensen R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...