Unravelling some factors affecting sexual reproduction in rock-specialist shrub: Insight from an endemic Daphne arbuscula (Thymelaeaceae)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38722920
PubMed Central
PMC11081377
DOI
10.1371/journal.pone.0300819
PII: PONE-D-23-32886
Knihovny.cz E-zdroje
- MeSH
- Daphne * genetika fyziologie MeSH
- ekosystém MeSH
- genetická variace MeSH
- květy * fyziologie genetika MeSH
- opylení * MeSH
- ovoce genetika MeSH
- roční období MeSH
- rozmnožování * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The role of endemic species in global biodiversity is pivotal, and understanding their biology and ecology is imperative for their fitness and long-term survival, particularly in the face of ongoing climatic oscillations. Our primary goal was to investigate the sexual reproduction level of the endangered Western Carpathian endemic Daphne arbuscula (Thymelaeaceae), which inhabits extreme rocky habitats, and to comprehend the influence of specific factors on its reproductive success. We conducted the research across four populations, varying in size and environmental conditions. Over two years, we monitored flower and fruit production, analyzed genetic variability within and among populations, and studied pollination mechanisms. Daphne arbuscula proved to be strictly self-incompatible, with significant variations in flower and fruit production among populations and seasons. The average fruit production percentage consistently remained below 50% across populations, indicating challenges in sexual reproduction. Cold and harsh weather during the reproductive phase had a substantial negative impact on sexual reproduction efficacy, leading to decreased fruit production. Nevertheless, several individuals in sheltered microhabitats displayed significantly higher fruit production, ranging from 60% to 83%, emphasizing the critical role of microhabitat heterogeneity in sustaining sexual reproduction in this species. We found no pronounced differences in genetic diversity within or among populations, suggesting that genetic factors may not critically influence the reproductive success of this endemic species. The implications of our findings might be of paramount importance for the long-term survival of D. arbuscula and offer valuable insights for the development of effective conservation strategies for this species.
Department of Biology and General Ecology Technical University in Zvolen Zvolen Slovak Republic
Department of Botany Charles University Praha Czech Republic
Department of Forest Ecology Czech University of Life Sciences Prague Suchdol Praha Czech Republic
Institute of Botany Slovak Academy of Sciences Bratislava Slovak Republic
Muránska planina National Park Administration Muráň Slovak Republic
Zobrazit více v PubMed
Morrone JJ. Endemism. In: Fath B, editor. Encyclopedia of ecology. Oxford: Elsevier; 2008. 3:81–86.
Harrison S, Noss R. Endemism hotspots are linked to stable climatic refugia. Ann Bot. 2017; 119:207–214. doi: 10.1093/aob/mcw248 PubMed DOI PMC
Major J. Endemism: a botanical perspective. In: Myers AA, Giller P, editors. Analytical biogeography: an integrated approach to the study of animal and plant distributions. Dordrecht: Springer Science+Business Media; 1988. pp. 117–146.
Lavergne S, Thompson JD, Garnier E, Debussche M. The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos. 2004; 107:505–518. doi: 10.1111/j.0030-1299.2004.13423.x DOI
Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, et al.. A global assessment of endemism and species richness across island and mainland regions. PNAS. 2009; 106:9322–9327. doi: 10.1073/pnas.0810306106 PubMed DOI PMC
Bruchmann I, Hobohm C. Factors that create and increase endemism. In: Hobohm C, editor. Endemism in vascular plants. Plant and vegetation 9. Dordrecht: Springer Science+Business Media; 2014. pp. 51–68.
Breman E, Hurdu BI, Kliment J, Kobiv Y, Kučera J, Mráz P, et al.. Conserving the endemic flora of the Carpathian Region: an international project to increase and share knowledge of the distribution, evolution and taxonomy of Carpathian endemics and to conserve endangered species. Plant Syst Evol. 2020; 306:59. doi: 10.1007/s00606-020-01685-5 DOI
Kunin WE, Gaston KJ. The biology of rarity: patterns, causes and consequences. Trends Ecol Evol. 1993; 8:298–301. doi: 10.1016/0169-5347(93)90259-R PubMed DOI
Murray BR, Thrall PH, Gill AM, Nicotra AB. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 2002; 27:291–310. doi: 10.1046/j.1442-9993.2002.01181.x DOI
Espeland EK, Emam TM. The value of structuring rarity: the seven types and links to reproductive ecology. Biodivers Conserv. 2011; 20:963–985. doi: 10.1007/s10531-011-0007-2 DOI
Miller-Struttmann NE. Rarity and reproductive biology: habitat specialists reveal a complex relationship. Botany. 2013; 91:349–359. doi: 10.1139/cjb-2012-0274 DOI
Chen Y, Chen G, Yang J, Sun W. Reproductive biology of Magnolia sinica (Magnoliaecea), a threatened species with extremely small populations in Yunnan, China. Plant Divers. 2016; 38:253–258. doi: 10.1016/j.pld.2016.09.003 PubMed DOI PMC
Combs JK, Lambert AM, Reichard SH. Predispersal seed predation is higher in a rare species than in its widespread sympatric congeners (Astragalus, Fabaceae). Am J Bot. 2013; 100:2149–2157. doi: 10.3732/ajb.1300238 PubMed DOI
Weller SG. The relationship of rarity to plant reproductive biology. In: Bowles ML, Whelan CJ, editors. Restoration of endangered species: conceptual issues, planning, and implementation. New York: Cambridge University Press; 1994. pp. 90–117.
Leimu R, Mutikainen P, Koricheva J, Fischer M. How general are positive relationships between plant population size, fitness and genetic variation? J Ecol. 2006; 94:942–952. doi: 10.1111/j.1365-2745.2006.01150.x DOI
Kruckeberg AR, Rabinowitz D. Biological aspects of endemism in higher plants. Ann Rev Ecol Syst. 1985; 16:447–79. doi: 10.1146/annurev.es.16.110185.002311 DOI
Vallejo-Marín M, Dorken ME, Barrett SCH. The ecological and evolutionary consequences of clonality for plant mating. Annu Rev Ecol Evol Syst. 2010; 41:193–213. doi: 10.1146/annurev.ecolsys.110308.120258 DOI
Krippel E. Thymelaeaceae Juss.–Vrabcovníkovité. In: Bertová L, editor. Flóra Slovenska IV/4: Angiospermophytina, Dicotyledonopsida, Fabales-Convolvulales. Bratislava: Veda; 1988. pp. 508–519.
Erdelská O, Turis P. Biology of Daphne arbuscula Čelak. (Thymelaeaceae). Biologia, Bratislava. 1995; 50:333–348.
Kochjarová J, Turis P, Feráková V. Daphne arbuscula Čelak. In: Čeřovský J, Feráková V, Holub J, Maglocký Š, Procházka F, Zezula A, et al.., editors. Červená kniha ohrozených a vzácnych druhov rastlín a živočíchov SR a ČR 5 –Vyššie rastliny. Bratislava: Príroda; 1999. p. 456.
Erdelská O, Petušík J, Pelikán V. Vývin semien lykovca muránskeho. Biologia, Bratislava. 1989; 44:13–19.
Turis P, Smetana V. Príspevok k poznaniu interakcií medzi hmyzom a lykovcom muránskym. In: Uhrin M, editor. Výskum a ochrana prírody Muránskej planiny. Revúca: Správa CHKO Muránska planina; 1997. pp. 71–74.
Gajdošová Z. Reproduction, genetic and caryologic variability of Daphne arbuscula Čelak. (Thymelaeaceae). M.Sc. Thesis, Matej Bel University in Banská Bystrica. 2020. https://opac.crzp.sk/?fn=detailBiblioForm&sid=EAE7EF6B68A1C5264CC51446D593
Baskin JM, Baskin CC. Endemism in rock outcrop plant communities of unglaciated Eastern United States: An evaluation of the roles of the edaphic, genetic and light factors. J Biogeogr. 1988; 15:829–840. doi: 10.2307/2845343 DOI
Médail F, Verlaque R. Ecological characteristics and rarity of endemic plants from Southeast France and Corsica: implications for biodiversity conservation. Biol Conserv. 1997; 80:369–381. doi: 10.1016/S0006-3207(96)00055-9 DOI
Lavergne S, Garnier E, Debussche M. Do rock endemic and widespread plant species differ under the leaf–height–seed plant ecology strategy scheme? Ecol Lett. 2003; 6:398–404. doi: 10.1046/j.1461-0248.2003.00456.x DOI
Matthes U, Larson DW. Microsite and climatic controls of tree population dynamics: an 18-year study on cliffs. J Ecol. 2006; 94:402–414. doi: 10.1111/j.1365-2745.2005.01083.x DOI
Hedhly A, Hormaza JI, Herrero M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009; 14:30–36. doi: 10.1016/j.tplants.2008.11.001 PubMed DOI
Zinn KE, Tunc-Ozdemir M, Harper JF. Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Biol. 2010; 61:1959–1968. doi: 10.1093/jxb/erq053 PubMed DOI PMC
Vitasse Y, Schneider LA, Rixen C, Christen D, Rebetez M. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric For Meteorol. 2018; 248:60–69. doi: 10.1016/j.agrformet.2017.09.005 DOI
Goszka AR, Snell RS. Seed quality and seed quantity in red maple depends on weather and individual tree characteristics. Ecol Evol. 2020; 10:13109–13121. doi: 10.1002/ece3.6900 PubMed DOI PMC
Park IW, Ramirez-Parada T, Mazer SJ. Advancing frost dates have reduced frost risk among most North American angiosperms since 1980. Glob Change Biol. 2020; 27:165–176. doi: 10.1111/gcb.15380 PubMed DOI
Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou PO, et al.. Plant mating systems in a changing world. Trends Ecol Evol. 2010; 25:35–43. doi: 10.1016/j.tree.2009.06.013 PubMed DOI
Pellegrino G, Bellusci F, Palermo AM. Effects of population structure on pollen flow, clonality rates and reproductive success in fragmented Serapias lingua populations. BMC Plant Biol. 2015; 15:222. doi: 10.1186/s12870-015-0600-8 PubMed DOI PMC
Murín A. Karyology of an endemic species Daphne arbuscula Čelak. Botanica. 1990; 37:35–40.
Erdelská O. The development and degeneration of ovules of Daphne arbuscula. In Benčaťová B, Hrivnák R, editors. Rastliny a človek. Zvolen: Technická univerzita; 1998. pp. 37–40.
Erdelská O. Successive tissue degeneration in unfertilized ovules of Daphne arbuscula. Acta Biol Crac. 1999; 41:163–167.
Di Sacco A, Gajdošová Z, Slovák M, Turisová I, Turis P, Kučera J, et al.. Seed germination behaviour of the narrow endemic Daphne arbuscula (Thymelaeaceae), compared to the more widespread Daphne cneorum. Fol Geobot. 2021; 56:13–25. doi: 10.1007/s12224-021-09389-5 DOI
Gajdošová Z, Svitok M, Cetlová V, Mártonfiová L, Kučera J, Kolarčik V, et al.. Incidence and evolutionary relevance of autotriploid cytotypes in a relict member of the genus Daphne (Thymelaeaceae). AoB Plants. 2023; 15:plad056. doi: 10.1093/aobpla/plad056 PubMed DOI PMC
Halda JJ. The genus Daphne. Hronov: SEN Dobré; 2001.
Murín A. Daphne arbuscula. In: Májovský J, editor. Index of chromosome numbers of Slovakian flora (Part 6). Acta Fac Rerum Nat Univ Comen Bot; 1978. 26:1–42.
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, et al.. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009; 24:127–135. doi: 10.1016/j.tree.2008.10.008 PubMed DOI
Harris T, Yang Z, Hardin JW. Modeling underdispersed count data with generalized Poisson regression. Stata J. 2012; 12:736–747. doi: 10.1177/1536867X1201200412 DOI
Huang A. Mean-parametrized Conway–Maxwell–Poisson regression models for dispersed counts. Stat Model. 2017; 17:1–22. doi: 10.1177/1471082X17697749 DOI
Harrison XA. A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ. 2015; 3:e1114. doi: 10.7717/peerj.1114 PubMed DOI PMC
Bolker BM. Ecological models and data in R. Princeton: Princeton University Press; 2008. doi: 10.1515/9781400840908 DOI
Lenth RV. Least-squares means: the R package lsmeans. J Stat Softw. 2016; 69:1–33. doi: 10.18637/jss.v069.i01 DOI
Nakagawa S, Johnson PC, Schielzeth H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface. 2017; 14:20170213. doi: 10.1098/rsif.2017.0213 PubMed DOI PMC
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2022. [cited 2023 Sep 28]. https://www.R-project.org/
Hartig F. DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.4.6 [software]. 2022. [cited 2023 Sep 28]. https://cran.r-project.org/web/packages/DHARMa/.
Lenth RV. emmeans: estimated marginal means, aka least-squares means. R package version 1.8.4–1 [software]. 2023. [cited 2023 Sep 28]. https://cran.r-project.org/web/packages/emmeans/.
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al.. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modelling. R J. 2017; 9:378–400. doi: 10.32614/RJ-2017-066 DOI
Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D. performance: An R package for assessment, comparison and testing of statistical models. J Open Source Softw. 2021; 6:3139. doi: 10.21105/joss.03139 DOI
Arnold B, Kim ST, Bomblies K. Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Mol Biol Evol. 2015; 32:1382–1395. doi: 10.1093/molbev/msv089 PubMed DOI
Knotek A, Konečná V, Wos G, Požárová D, Šrámková G, Bohutínská M, et al.. Parallel alpine differentiation in Arabidopsis arenosa. Front Plant Sci. 2020; 11:561526. doi: 10.3389/fpls.2020.561526 PubMed DOI PMC
Hannon GJ. 2010. FASTX-Toolkit. Version 0.0.14 [software]. 2010. [cited 2023 Sep 28]. http://hannonlab.cshl.edu/fastx_toolkit.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bushnell, B. BBTools. Version 38.42 [software]. 2014. [cited 2023 Sep 28]. https://jgi.doe.gov/data-and-tools/bbtools.
Catchen J, Amores A, Hohenlohe P, Cresko W, Postlethwait J. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genet. 2011; 1:171–182. doi: 10.1534/g3.111.000240 PubMed DOI PMC
Catchen J, Hohenlohe P, Bassham S, Amores A, Cresko W. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013; 22:3124–3140. doi: 10.1111/mec.12354 PubMed DOI PMC
Paris JR, Stevens JR, Catchen JM. Lost in parameter space: a road map for Stacks. Methods in Ecol Evol. 2017; 8:1360–1373. doi: 10.1111/2041-210X.12775 DOI
Rivera-Colón AG, Catchen J. Population genomics analysis with RAD, reprised: Stacks 2. Methods Mol Biol. 2022; 2498:99–149. doi: 10.1007/978-1-0716-2313-8_7 PubMed DOI
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26:2460–2461. doi: 10.1093/bioinformatics/btq461 PubMed DOI
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009; 25:1754–1760. doi: 10.1093/bioinformatics/btp324 PubMed DOI PMC
Picard Tools. Version 2.22.1 [software]. [cited 2023 Sep 28]. https://broadinstitute.github.io/picard/
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20:1297–1303. doi: 10.1101/gr.107524.110 PubMed DOI PMC
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008; 24:1403–1405. doi: 10.1093/bioinformatics/btn129 PubMed DOI
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009; 19:1655–1664. doi: 10.1101/gr.094052.109 PubMed DOI PMC
Linck E, Battey CJ. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol Ecol Resour. 2019; 19:639–647. doi: 10.1111/1755-0998.12995 PubMed DOI
Mussmann SM, Douglas MR, Chafin TK, Douglas ME. AdmixPipe: population analyses in Admixture for non-model organisms. BMC Bioinform. 2020; 21:1–9. doi: 10.1186/s12859-020-03701-4 PubMed DOI PMC
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015; 15:1179–1191. doi: 10.1111/1755-0998.12387 PubMed DOI PMC
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006; 23:254–267. doi: 10.1093/molbev/msj030 PubMed DOI
Pembleton LW, Cogan NOI, Forster JW. StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour 2013; 13:946–952. doi: 10.1111/1755-0998.12129 PubMed DOI
Ortega-Baes P, Gorostiague P. Extremely reduced sexual reproduction in the clonal cactus Echinopsis thelegona. Pl Syst Evol. 2013; 299:785–791. doi: 10.1007/s00606-013-0761-6 DOI
Grzyl A, Kiedrzyński M, Zielińska KM, Rewicz A. The relationship between climatic conditions and generative reproduction of a lowland population of Pulsatilla vernalis: the last breath of a relict plant or a fluctuating cycle of regeneration? Plant Ecol. 2014; 215:457–466. doi: 10.1007/s11258-014-0316-0 DOI
Bogdziewicz M, Szymkowiak J, Fernández-Martínez M, Penuelas J, Espelta J. The effects of local climate on the correlation between weather and seed production differ in two species with contrasting masting habit. Agric For Meteorol. 2019; 268:109–115 doi: 10.1016/j.agrformet.2019.01.016 DOI
Ladinig U, Wagner J. Sexual reproduction of the high mountain plant Saxifraga moschata Wulfen at varying lengths of the growing season. Flora: Morphol Distrib Funct Ecol. 2005; 200:502–515. doi: 10.1016/j.flora.2005.06.002 DOI
Ladinig U, Wagner J. Timing of sexual reproduction and reproductive success in the high-mountain plant Saxifraga bryoides L. Pl Biol (Stuttgart). 2007; 9:683–693. doi: 10.1055/s-2007-965081 PubMed DOI
Atasagun B, Aksoy A, Güllü IB, Albayrak S. Reproductive biology of Astragalus argaeus (Fabaceae), a critically endangered endemic species. An Acad Bras Cienc. 2021; 93:e20201613. doi: 10.1590/0001-3765202120201613 PubMed DOI
Wypych A, Ustrnul Z, Sulikowska A, Chmielewski F-M, Bochenek B. Spatial and temporal variability of the frost-free season in Central Europe and its circulation background. Int J Climatol. 2017; 37:3340–3352. doi: 10.1002/joc.4920 DOI
Ladinig U, Hacker J, Neuner G, Wagner J. How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment. Oecologia. 2013; 171:743–760. doi: 10.1007/s00442-012-2581-8 PubMed DOI PMC
Lawson DA, Rands SA. The effects of rainfall on plant–pollinator interactions. Arthropod Plant Interact. 2019; 13:561–569. doi: 10.1007/s11829-019-09686-z DOI
Gérard M, Maryse Vanderplanck T, Wood D, Michez D. Global warming and plant–pollinator mismatches. Emerg Top Life Sci. 2020; 4:77–86. doi: 10.1042/ETLS20190139 PubMed DOI PMC
Alonso C. Early blooming’s challenges: extended flowering season, diverse pollinator assemblage and the reproductive success of gynodioecious Daphne laureola. Ann Bot. 2004; 93:61–66. doi: 10.1093/aob/mch004 PubMed DOI PMC
Rodríguez-Pérez J, Travaset A. Influence of reproductive traits on pollination success in two Daphne species (Thymelaeaceae). J Plant Res. 2011; 124:277–287. doi: 10.1007/s10265-010-0373-y PubMed DOI
Liu S, Yang A, Zhou H, Yu F. Reproductive characteristics of Daphne aurantiaca. Guihaia. 2018; 38:626–634. doi: 10.11931/guihaia.gxzw201705037 DOI
Larson DW, Matthes U, Kelly PE. Cliff ecology: pattern and process in cliff ecosystems. New York: Cambridge University Press; 2000.
Scherrer D, Körner C. Topographically controlled thermal habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr. 2011; 38:406–416. doi: 10.1111/j.1365-2699.2010.02407.x DOI
Carvallo GO, Vergara-Meriño B, Díaz A, Villagra CA. Rocky outcrops conserve genetic diversity and promote regeneration of a threatened relict tree in a critically endangered ecosystem. Biodivers Conserv. 2019; 28:2805–2824. doi: 10.1007/s10531-019-01797-6 DOI
Albert MJ, Escudero A, Iriondo JM. Female reproductive success of narrow endemic Erodium paularense in contrasting microhabitats. Ecology. 2001; 82:1734–1747. doi: 10.1890/0012-9658(2001)082[1734:FRSONE]2.0.CO;2 DOI
Kikuzawa K. Floral biology and evolution of gynodioecism in Daphne kamtchatica var. jezoensis. Oikos. 1989; 56:196–202. doi: 10.2307/3565336 DOI
Alonso C, Herrera CM. Neither vegetative nor reproductive advantages account for high frequency of male-steriles in southern Spanish gynodioecious Daphne laureola (Thymelaeaceae). Am J Bot. 2001; 88:1016–1024. doi: 10.2307/2657083 PubMed DOI
Barbi S. Studi di biologia riproduttiva per la conservazione di alcune specie vegetali dell’ambiente mediterraneo e per la valorizzazione di produzioni eco-compatibili. Ph.D. Thesis, University of Naples Federico II. 2008. http://www.fedoa.unina.it/3462/1/Tesi_Dottorato_Barbi_Sara.pdf.
Roccotiello E, Casazza G, Galli L, Cornara L, Moncalvo A, Minuto L. The flower biology of Daphne gnidium L. (Thymelaeaceae). Plant Ecol Evol Syst. 2009; 279:41–49. doi: 10.1007/s00606-009-0144-1 DOI
Roccotiello E, Casazza G, Cornara L, Moncalvo A, Minuto L. Reproducitve success in Daphne gnidium (Thymelaeaceae). Boll Mus Ist Biol Univ. 2012; 74:22–37.
Sinclair J P, Kameyama Y, Shibata A, Kudo G. Male-biased hermaphrodites in a gynodioecious shrub, Daphne jezoensis. Plant Biol (Stuttg). 2016; 18:859–867. doi: 10.1111/plb.12463 PubMed DOI
Shibata A, Kameyama Y, Kudo G. Restricted female function of hermaphrodites in a gynodioecious shrub, Daphne jezoensis (Thymelaeaceae). J Plant Res. 2018; 131:245–254. doi: 10.1007/s10265-017-0978-5 PubMed DOI
Arietii N, Crescini A. Gli endemismi della flora insubrica: la Daphne petraea Leybold. Storia, areale, affinità e caratteri bio-ecologici. Nat Bresciana, Ann Mus Civ St Nat Brescia. 1973; 10:3–24.
Klimko M. Obserwacje fenologiczne organów generatywnych Daphne mezereum L. w rezerwacie „Wydymacz” kolo Antonina. Rocz Ak Rol Poz. 1999; 2:51–66.
Oostermeijer JGB, Luijten SH, Petanidou T, Kos M, Ellis-Adam AC, Den Nijs JCM. Pollination in rare plants: is population size important? Det Norske Videnskaps-akademi. I.Matematisk Naturvidenskapelige Klasse, Skrifter, Ny Serie. 2000; 39:201–213.
Charlesworth D, Charlesworth B. Quantitative genetics in plants: the effect of the breeding system on genetic variability. Evolution. 1995; 49:911–920. doi: 10.1111/j.1558-5646.1995.tb02326.x PubMed DOI
Šedivá J, Žlebčík J. Vegetative and generative propagation of the endangered species Daphne cneorum L. Acta Pruhoniciana. 2010; 96:15–18.
Clark-Tapia R, Mandujano MC, Valverde T, Mendoza A. How important is clonal recruitment for population maintenance in rare plant species?: the case of the narrow endemic cactus, Stenocereus eruca, in Baja California, México. Biol Conserv. 2003; 124:123–132. doi: 10.1016/j.biocon.2005.01.019 DOI
Abrahamson WG, Kloet SPV. The reproduction and ecology of Hypericum edisonianum: an endangered Florida endemic. Castanea. 2014; 79:168–181. doi: 10.2179/14-016 DOI
Herben T, Šerá B, Klimešová J. Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos. 2015; 124:469–476. doi: 10.1111/oik.01692 DOI
Rusterholz HP, Aydin D, Baur B. Population structure and genetic diversity of relict populations of Alyssum montanum on limestone cliffs in the Northern Swiss Jura mountains. Alp Botany. 2012; 122:109–117. doi: 10.1007/s00035-012-0105-0 DOI
Gitzendanner MA, Weekley CW, Germain-Aubrey CC, Soltis DE, Soltis PS. Microsatellite evidence for high clonality and limited genetic diversity in Ziziphus celata (Rhamnaceae), an endangered, self-incompatible shrub endemic to the Lake Wales Ridge, Florida, USA. Conserv Genet. 2012; 13:223–234. doi: 10.1007/s10592-011-0287-9 DOI
Silva CA, Vieira MF, Carvalho-Okano RM, Oliveira LO. Reproductive success and genetic diversity of Psychotria hastisepala (Rubiaceae), in fragmented Atlantic forest, Southeastearn Brazil. Rev Biol Trop. 2014; 62:309–319. doi: 10.15517/rbt.v62i1.5854 PubMed DOI
Petrova G, Petrov S, Möller M. Low genetic diversity in small leading edge populations of the European paleoendemic Ramonda serbica (Gesneriaceae) in Bulgaria. Nord J Bot. 2018; 36:njb-01655. doi: 10.1111/njb.01655 DOI
Stojanova B, Šurinová M, Zeisek V, Münzbergová Z, Pánková H. Low genetic differentiation despite high fragmentation in the endemic serpentinophyte Minuartia smejkalii (M. verna agg., Caryophyllaceae) revealed by RADSeq SNP markers. Conserv Genet. 2020; 21:187–198. doi: 10.1007/s10592-019-01239-4 DOI
Zhao Y, Yin G, Gong X. RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: implications for conservation. Plant Divers. 2022; 45:513–522. doi: 10.1016/j.pld.2022.07.002 PubMed DOI PMC
Dang Z, Li J, Liu Y, Song M, Lockhart PJ, Tian Y, et al.. RADseq-based population genomic analysis and environmental adaptation of rare and endangered recretohalophyte Reaumuria trigyna. Plant Genome. 2023; e20303: 1–18. doi: 10.1002/tpg2.20303 PubMed DOI
Brys R, Jacquemyn H, Endels P, Van Rossum F, Hermy M, Triest L, et al.. Reduced reproductive success in small populations of the self-incompatible Primula vulgaris. J Ecol. 2004; 92:5–14. doi: 10.1046/j.0022-0477.2004.00840.x DOI
Navascués M, Stoeckel S, Mariette S. Genetic diversity and fitness in small populations of partially asexual, self-incompatible plants. Heredity. 2010; 104:482–492. doi: 10.1038/hdy.2009.159 PubMed DOI PMC
Calviño-Cancela M, Escudero M, Rodrígeuz-Pérez J, Cano E, Vargas P, Velo-Antón G, et al.. The role of seed dispersal, pollination and historical effects on genetic patterns of an insular plant that has lost its only seed disperser. J Biogeogr. 2012; 39:1996–2006. doi: 10.1111/j.1365-2699.2012.02732.x DOI
Vermeersch S, Triest L. Distylic Hottonia palustris shows high reproductive success in small populations despite low genetic variability. Aquat Bot. 2006; 84:354–358. doi: 10.1016/j.aquabot.2006.01.004 DOI
Plenk K, Bardy K, Höhn M, Kropf M. Long-term survival and successful conservation? Low genetic diversity but no evidence for reduced reproductive success at the north-westernmost range edge of Poa badensis (Poaceae) in Central Europe. Biodivers Conserv. 2019; 28:1245–1265. doi: 10.1007/s10531-019-01722-x PubMed DOI PMC