Unravelling some factors affecting sexual reproduction in rock-specialist shrub: Insight from an endemic Daphne arbuscula (Thymelaeaceae)

. 2024 ; 19 (5) : e0300819. [epub] 20240509

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38722920

The role of endemic species in global biodiversity is pivotal, and understanding their biology and ecology is imperative for their fitness and long-term survival, particularly in the face of ongoing climatic oscillations. Our primary goal was to investigate the sexual reproduction level of the endangered Western Carpathian endemic Daphne arbuscula (Thymelaeaceae), which inhabits extreme rocky habitats, and to comprehend the influence of specific factors on its reproductive success. We conducted the research across four populations, varying in size and environmental conditions. Over two years, we monitored flower and fruit production, analyzed genetic variability within and among populations, and studied pollination mechanisms. Daphne arbuscula proved to be strictly self-incompatible, with significant variations in flower and fruit production among populations and seasons. The average fruit production percentage consistently remained below 50% across populations, indicating challenges in sexual reproduction. Cold and harsh weather during the reproductive phase had a substantial negative impact on sexual reproduction efficacy, leading to decreased fruit production. Nevertheless, several individuals in sheltered microhabitats displayed significantly higher fruit production, ranging from 60% to 83%, emphasizing the critical role of microhabitat heterogeneity in sustaining sexual reproduction in this species. We found no pronounced differences in genetic diversity within or among populations, suggesting that genetic factors may not critically influence the reproductive success of this endemic species. The implications of our findings might be of paramount importance for the long-term survival of D. arbuscula and offer valuable insights for the development of effective conservation strategies for this species.

Zobrazit více v PubMed

Morrone JJ. Endemism. In: Fath B, editor. Encyclopedia of ecology. Oxford: Elsevier; 2008. 3:81–86.

Harrison S, Noss R. Endemism hotspots are linked to stable climatic refugia. Ann Bot. 2017; 119:207–214. doi: 10.1093/aob/mcw248 PubMed DOI PMC

Major J. Endemism: a botanical perspective. In: Myers AA, Giller P, editors. Analytical biogeography: an integrated approach to the study of animal and plant distributions. Dordrecht: Springer Science+Business Media; 1988. pp. 117–146.

Lavergne S, Thompson JD, Garnier E, Debussche M. The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos. 2004; 107:505–518. doi: 10.1111/j.0030-1299.2004.13423.x DOI

Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, et al.. A global assessment of endemism and species richness across island and mainland regions. PNAS. 2009; 106:9322–9327. doi: 10.1073/pnas.0810306106 PubMed DOI PMC

Bruchmann I, Hobohm C. Factors that create and increase endemism. In: Hobohm C, editor. Endemism in vascular plants. Plant and vegetation 9. Dordrecht: Springer Science+Business Media; 2014. pp. 51–68.

Breman E, Hurdu BI, Kliment J, Kobiv Y, Kučera J, Mráz P, et al.. Conserving the endemic flora of the Carpathian Region: an international project to increase and share knowledge of the distribution, evolution and taxonomy of Carpathian endemics and to conserve endangered species. Plant Syst Evol. 2020; 306:59. doi: 10.1007/s00606-020-01685-5 DOI

Kunin WE, Gaston KJ. The biology of rarity: patterns, causes and consequences. Trends Ecol Evol. 1993; 8:298–301. doi: 10.1016/0169-5347(93)90259-R PubMed DOI

Murray BR, Thrall PH, Gill AM, Nicotra AB. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 2002; 27:291–310. doi: 10.1046/j.1442-9993.2002.01181.x DOI

Espeland EK, Emam TM. The value of structuring rarity: the seven types and links to reproductive ecology. Biodivers Conserv. 2011; 20:963–985. doi: 10.1007/s10531-011-0007-2 DOI

Miller-Struttmann NE. Rarity and reproductive biology: habitat specialists reveal a complex relationship. Botany. 2013; 91:349–359. doi: 10.1139/cjb-2012-0274 DOI

Chen Y, Chen G, Yang J, Sun W. Reproductive biology of Magnolia sinica (Magnoliaecea), a threatened species with extremely small populations in Yunnan, China. Plant Divers. 2016; 38:253–258. doi: 10.1016/j.pld.2016.09.003 PubMed DOI PMC

Combs JK, Lambert AM, Reichard SH. Predispersal seed predation is higher in a rare species than in its widespread sympatric congeners (Astragalus, Fabaceae). Am J Bot. 2013; 100:2149–2157. doi: 10.3732/ajb.1300238 PubMed DOI

Weller SG. The relationship of rarity to plant reproductive biology. In: Bowles ML, Whelan CJ, editors. Restoration of endangered species: conceptual issues, planning, and implementation. New York: Cambridge University Press; 1994. pp. 90–117.

Leimu R, Mutikainen P, Koricheva J, Fischer M. How general are positive relationships between plant population size, fitness and genetic variation? J Ecol. 2006; 94:942–952. doi: 10.1111/j.1365-2745.2006.01150.x DOI

Kruckeberg AR, Rabinowitz D. Biological aspects of endemism in higher plants. Ann Rev Ecol Syst. 1985; 16:447–79. doi: 10.1146/annurev.es.16.110185.002311 DOI

Vallejo-Marín M, Dorken ME, Barrett SCH. The ecological and evolutionary consequences of clonality for plant mating. Annu Rev Ecol Evol Syst. 2010; 41:193–213. doi: 10.1146/annurev.ecolsys.110308.120258 DOI

Krippel E. Thymelaeaceae Juss.–Vrabcovníkovité. In: Bertová L, editor. Flóra Slovenska IV/4: Angiospermophytina, Dicotyledonopsida, Fabales-Convolvulales. Bratislava: Veda; 1988. pp. 508–519.

Erdelská O, Turis P. Biology of Daphne arbuscula Čelak. (Thymelaeaceae). Biologia, Bratislava. 1995; 50:333–348.

Kochjarová J, Turis P, Feráková V. Daphne arbuscula Čelak. In: Čeřovský J, Feráková V, Holub J, Maglocký Š, Procházka F, Zezula A, et al.., editors. Červená kniha ohrozených a vzácnych druhov rastlín a živočíchov SR a ČR 5 –Vyššie rastliny. Bratislava: Príroda; 1999. p. 456.

Erdelská O, Petušík J, Pelikán V. Vývin semien lykovca muránskeho. Biologia, Bratislava. 1989; 44:13–19.

Turis P, Smetana V. Príspevok k poznaniu interakcií medzi hmyzom a lykovcom muránskym. In: Uhrin M, editor. Výskum a ochrana prírody Muránskej planiny. Revúca: Správa CHKO Muránska planina; 1997. pp. 71–74.

Gajdošová Z. Reproduction, genetic and caryologic variability of Daphne arbuscula Čelak. (Thymelaeaceae). M.Sc. Thesis, Matej Bel University in Banská Bystrica. 2020. https://opac.crzp.sk/?fn=detailBiblioForm&sid=EAE7EF6B68A1C5264CC51446D593

Baskin JM, Baskin CC. Endemism in rock outcrop plant communities of unglaciated Eastern United States: An evaluation of the roles of the edaphic, genetic and light factors. J Biogeogr. 1988; 15:829–840. doi: 10.2307/2845343 DOI

Médail F, Verlaque R. Ecological characteristics and rarity of endemic plants from Southeast France and Corsica: implications for biodiversity conservation. Biol Conserv. 1997; 80:369–381. doi: 10.1016/S0006-3207(96)00055-9 DOI

Lavergne S, Garnier E, Debussche M. Do rock endemic and widespread plant species differ under the leaf–height–seed plant ecology strategy scheme? Ecol Lett. 2003; 6:398–404. doi: 10.1046/j.1461-0248.2003.00456.x DOI

Matthes U, Larson DW. Microsite and climatic controls of tree population dynamics: an 18-year study on cliffs. J Ecol. 2006; 94:402–414. doi: 10.1111/j.1365-2745.2005.01083.x DOI

Hedhly A, Hormaza JI, Herrero M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009; 14:30–36. doi: 10.1016/j.tplants.2008.11.001 PubMed DOI

Zinn KE, Tunc-Ozdemir M, Harper JF. Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Biol. 2010; 61:1959–1968. doi: 10.1093/jxb/erq053 PubMed DOI PMC

Vitasse Y, Schneider LA, Rixen C, Christen D, Rebetez M. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric For Meteorol. 2018; 248:60–69. doi: 10.1016/j.agrformet.2017.09.005 DOI

Goszka AR, Snell RS. Seed quality and seed quantity in red maple depends on weather and individual tree characteristics. Ecol Evol. 2020; 10:13109–13121. doi: 10.1002/ece3.6900 PubMed DOI PMC

Park IW, Ramirez-Parada T, Mazer SJ. Advancing frost dates have reduced frost risk among most North American angiosperms since 1980. Glob Change Biol. 2020; 27:165–176. doi: 10.1111/gcb.15380 PubMed DOI

Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou PO, et al.. Plant mating systems in a changing world. Trends Ecol Evol. 2010; 25:35–43. doi: 10.1016/j.tree.2009.06.013 PubMed DOI

Pellegrino G, Bellusci F, Palermo AM. Effects of population structure on pollen flow, clonality rates and reproductive success in fragmented Serapias lingua populations. BMC Plant Biol. 2015; 15:222. doi: 10.1186/s12870-015-0600-8 PubMed DOI PMC

Murín A. Karyology of an endemic species Daphne arbuscula Čelak. Botanica. 1990; 37:35–40.

Erdelská O. The development and degeneration of ovules of Daphne arbuscula. In Benčaťová B, Hrivnák R, editors. Rastliny a človek. Zvolen: Technická univerzita; 1998. pp. 37–40.

Erdelská O. Successive tissue degeneration in unfertilized ovules of Daphne arbuscula. Acta Biol Crac. 1999; 41:163–167.

Di Sacco A, Gajdošová Z, Slovák M, Turisová I, Turis P, Kučera J, et al.. Seed germination behaviour of the narrow endemic Daphne arbuscula (Thymelaeaceae), compared to the more widespread Daphne cneorum. Fol Geobot. 2021; 56:13–25. doi: 10.1007/s12224-021-09389-5 DOI

Gajdošová Z, Svitok M, Cetlová V, Mártonfiová L, Kučera J, Kolarčik V, et al.. Incidence and evolutionary relevance of autotriploid cytotypes in a relict member of the genus Daphne (Thymelaeaceae). AoB Plants. 2023; 15:plad056. doi: 10.1093/aobpla/plad056 PubMed DOI PMC

Halda JJ. The genus Daphne. Hronov: SEN Dobré; 2001.

Murín A. Daphne arbuscula. In: Májovský J, editor. Index of chromosome numbers of Slovakian flora (Part 6). Acta Fac Rerum Nat Univ Comen Bot; 1978. 26:1–42.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, et al.. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009; 24:127–135. doi: 10.1016/j.tree.2008.10.008 PubMed DOI

Harris T, Yang Z, Hardin JW. Modeling underdispersed count data with generalized Poisson regression. Stata J. 2012; 12:736–747. doi: 10.1177/1536867X1201200412 DOI

Huang A. Mean-parametrized Conway–Maxwell–Poisson regression models for dispersed counts. Stat Model. 2017; 17:1–22. doi: 10.1177/1471082X17697749 DOI

Harrison XA. A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ. 2015; 3:e1114. doi: 10.7717/peerj.1114 PubMed DOI PMC

Bolker BM. Ecological models and data in R. Princeton: Princeton University Press; 2008. doi: 10.1515/9781400840908 DOI

Lenth RV. Least-squares means: the R package lsmeans. J Stat Softw. 2016; 69:1–33. doi: 10.18637/jss.v069.i01 DOI

Nakagawa S, Johnson PC, Schielzeth H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface. 2017; 14:20170213. doi: 10.1098/rsif.2017.0213 PubMed DOI PMC

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2022. [cited 2023 Sep 28]. https://www.R-project.org/

Hartig F. DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.4.6 [software]. 2022. [cited 2023 Sep 28]. https://cran.r-project.org/web/packages/DHARMa/.

Lenth RV. emmeans: estimated marginal means, aka least-squares means. R package version 1.8.4–1 [software]. 2023. [cited 2023 Sep 28]. https://cran.r-project.org/web/packages/emmeans/.

Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.

Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al.. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modelling. R J. 2017; 9:378–400. doi: 10.32614/RJ-2017-066 DOI

Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D. performance: An R package for assessment, comparison and testing of statistical models. J Open Source Softw. 2021; 6:3139. doi: 10.21105/joss.03139 DOI

Arnold B, Kim ST, Bomblies K. Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Mol Biol Evol. 2015; 32:1382–1395. doi: 10.1093/molbev/msv089 PubMed DOI

Knotek A, Konečná V, Wos G, Požárová D, Šrámková G, Bohutínská M, et al.. Parallel alpine differentiation in Arabidopsis arenosa. Front Plant Sci. 2020; 11:561526. doi: 10.3389/fpls.2020.561526 PubMed DOI PMC

Hannon GJ. 2010. FASTX-Toolkit. Version 0.0.14 [software]. 2010. [cited 2023 Sep 28]. http://hannonlab.cshl.edu/fastx_toolkit.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC

Bushnell, B. BBTools. Version 38.42 [software]. 2014. [cited 2023 Sep 28]. https://jgi.doe.gov/data-and-tools/bbtools.

Catchen J, Amores A, Hohenlohe P, Cresko W, Postlethwait J. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genet. 2011; 1:171–182. doi: 10.1534/g3.111.000240 PubMed DOI PMC

Catchen J, Hohenlohe P, Bassham S, Amores A, Cresko W. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013; 22:3124–3140. doi: 10.1111/mec.12354 PubMed DOI PMC

Paris JR, Stevens JR, Catchen JM. Lost in parameter space: a road map for Stacks. Methods in Ecol Evol. 2017; 8:1360–1373. doi: 10.1111/2041-210X.12775 DOI

Rivera-Colón AG, Catchen J. Population genomics analysis with RAD, reprised: Stacks 2. Methods Mol Biol. 2022; 2498:99–149. doi: 10.1007/978-1-0716-2313-8_7 PubMed DOI

Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26:2460–2461. doi: 10.1093/bioinformatics/btq461 PubMed DOI

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009; 25:1754–1760. doi: 10.1093/bioinformatics/btp324 PubMed DOI PMC

Picard Tools. Version 2.22.1 [software]. [cited 2023 Sep 28]. https://broadinstitute.github.io/picard/

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20:1297–1303. doi: 10.1101/gr.107524.110 PubMed DOI PMC

Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008; 24:1403–1405. doi: 10.1093/bioinformatics/btn129 PubMed DOI

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009; 19:1655–1664. doi: 10.1101/gr.094052.109 PubMed DOI PMC

Linck E, Battey CJ. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol Ecol Resour. 2019; 19:639–647. doi: 10.1111/1755-0998.12995 PubMed DOI

Mussmann SM, Douglas MR, Chafin TK, Douglas ME. AdmixPipe: population analyses in Admixture for non-model organisms. BMC Bioinform. 2020; 21:1–9. doi: 10.1186/s12859-020-03701-4 PubMed DOI PMC

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015; 15:1179–1191. doi: 10.1111/1755-0998.12387 PubMed DOI PMC

Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006; 23:254–267. doi: 10.1093/molbev/msj030 PubMed DOI

Pembleton LW, Cogan NOI, Forster JW. StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour 2013; 13:946–952. doi: 10.1111/1755-0998.12129 PubMed DOI

Ortega-Baes P, Gorostiague P. Extremely reduced sexual reproduction in the clonal cactus Echinopsis thelegona. Pl Syst Evol. 2013; 299:785–791. doi: 10.1007/s00606-013-0761-6 DOI

Grzyl A, Kiedrzyński M, Zielińska KM, Rewicz A. The relationship between climatic conditions and generative reproduction of a lowland population of Pulsatilla vernalis: the last breath of a relict plant or a fluctuating cycle of regeneration? Plant Ecol. 2014; 215:457–466. doi: 10.1007/s11258-014-0316-0 DOI

Bogdziewicz M, Szymkowiak J, Fernández-Martínez M, Penuelas J, Espelta J. The effects of local climate on the correlation between weather and seed production differ in two species with contrasting masting habit. Agric For Meteorol. 2019; 268:109–115 doi: 10.1016/j.agrformet.2019.01.016 DOI

Ladinig U, Wagner J. Sexual reproduction of the high mountain plant Saxifraga moschata Wulfen at varying lengths of the growing season. Flora: Morphol Distrib Funct Ecol. 2005; 200:502–515. doi: 10.1016/j.flora.2005.06.002 DOI

Ladinig U, Wagner J. Timing of sexual reproduction and reproductive success in the high-mountain plant Saxifraga bryoides L. Pl Biol (Stuttgart). 2007; 9:683–693. doi: 10.1055/s-2007-965081 PubMed DOI

Atasagun B, Aksoy A, Güllü IB, Albayrak S. Reproductive biology of Astragalus argaeus (Fabaceae), a critically endangered endemic species. An Acad Bras Cienc. 2021; 93:e20201613. doi: 10.1590/0001-3765202120201613 PubMed DOI

Wypych A, Ustrnul Z, Sulikowska A, Chmielewski F-M, Bochenek B. Spatial and temporal variability of the frost-free season in Central Europe and its circulation background. Int J Climatol. 2017; 37:3340–3352. doi: 10.1002/joc.4920 DOI

Ladinig U, Hacker J, Neuner G, Wagner J. How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment. Oecologia. 2013; 171:743–760. doi: 10.1007/s00442-012-2581-8 PubMed DOI PMC

Lawson DA, Rands SA. The effects of rainfall on plant–pollinator interactions. Arthropod Plant Interact. 2019; 13:561–569. doi: 10.1007/s11829-019-09686-z DOI

Gérard M, Maryse Vanderplanck T, Wood D, Michez D. Global warming and plant–pollinator mismatches. Emerg Top Life Sci. 2020; 4:77–86. doi: 10.1042/ETLS20190139 PubMed DOI PMC

Alonso C. Early blooming’s challenges: extended flowering season, diverse pollinator assemblage and the reproductive success of gynodioecious Daphne laureola. Ann Bot. 2004; 93:61–66. doi: 10.1093/aob/mch004 PubMed DOI PMC

Rodríguez-Pérez J, Travaset A. Influence of reproductive traits on pollination success in two Daphne species (Thymelaeaceae). J Plant Res. 2011; 124:277–287. doi: 10.1007/s10265-010-0373-y PubMed DOI

Liu S, Yang A, Zhou H, Yu F. Reproductive characteristics of Daphne aurantiaca. Guihaia. 2018; 38:626–634. doi: 10.11931/guihaia.gxzw201705037 DOI

Larson DW, Matthes U, Kelly PE. Cliff ecology: pattern and process in cliff ecosystems. New York: Cambridge University Press; 2000.

Scherrer D, Körner C. Topographically controlled thermal habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr. 2011; 38:406–416. doi: 10.1111/j.1365-2699.2010.02407.x DOI

Carvallo GO, Vergara-Meriño B, Díaz A, Villagra CA. Rocky outcrops conserve genetic diversity and promote regeneration of a threatened relict tree in a critically endangered ecosystem. Biodivers Conserv. 2019; 28:2805–2824. doi: 10.1007/s10531-019-01797-6 DOI

Albert MJ, Escudero A, Iriondo JM. Female reproductive success of narrow endemic Erodium paularense in contrasting microhabitats. Ecology. 2001; 82:1734–1747. doi: 10.1890/0012-9658(2001)082[1734:FRSONE]2.0.CO;2 DOI

Kikuzawa K. Floral biology and evolution of gynodioecism in Daphne kamtchatica var. jezoensis. Oikos. 1989; 56:196–202. doi: 10.2307/3565336 DOI

Alonso C, Herrera CM. Neither vegetative nor reproductive advantages account for high frequency of male-steriles in southern Spanish gynodioecious Daphne laureola (Thymelaeaceae). Am J Bot. 2001; 88:1016–1024. doi: 10.2307/2657083 PubMed DOI

Barbi S. Studi di biologia riproduttiva per la conservazione di alcune specie vegetali dell’ambiente mediterraneo e per la valorizzazione di produzioni eco-compatibili. Ph.D. Thesis, University of Naples Federico II. 2008. http://www.fedoa.unina.it/3462/1/Tesi_Dottorato_Barbi_Sara.pdf.

Roccotiello E, Casazza G, Galli L, Cornara L, Moncalvo A, Minuto L. The flower biology of Daphne gnidium L. (Thymelaeaceae). Plant Ecol Evol Syst. 2009; 279:41–49. doi: 10.1007/s00606-009-0144-1 DOI

Roccotiello E, Casazza G, Cornara L, Moncalvo A, Minuto L. Reproducitve success in Daphne gnidium (Thymelaeaceae). Boll Mus Ist Biol Univ. 2012; 74:22–37.

Sinclair J P, Kameyama Y, Shibata A, Kudo G. Male-biased hermaphrodites in a gynodioecious shrub, Daphne jezoensis. Plant Biol (Stuttg). 2016; 18:859–867. doi: 10.1111/plb.12463 PubMed DOI

Shibata A, Kameyama Y, Kudo G. Restricted female function of hermaphrodites in a gynodioecious shrub, Daphne jezoensis (Thymelaeaceae). J Plant Res. 2018; 131:245–254. doi: 10.1007/s10265-017-0978-5 PubMed DOI

Arietii N, Crescini A. Gli endemismi della flora insubrica: la Daphne petraea Leybold. Storia, areale, affinità e caratteri bio-ecologici. Nat Bresciana, Ann Mus Civ St Nat Brescia. 1973; 10:3–24.

Klimko M. Obserwacje fenologiczne organów generatywnych Daphne mezereum L. w rezerwacie „Wydymacz” kolo Antonina. Rocz Ak Rol Poz. 1999; 2:51–66.

Oostermeijer JGB, Luijten SH, Petanidou T, Kos M, Ellis-Adam AC, Den Nijs JCM. Pollination in rare plants: is population size important? Det Norske Videnskaps-akademi. I.Matematisk Naturvidenskapelige Klasse, Skrifter, Ny Serie. 2000; 39:201–213.

Charlesworth D, Charlesworth B. Quantitative genetics in plants: the effect of the breeding system on genetic variability. Evolution. 1995; 49:911–920. doi: 10.1111/j.1558-5646.1995.tb02326.x PubMed DOI

Šedivá J, Žlebčík J. Vegetative and generative propagation of the endangered species Daphne cneorum L. Acta Pruhoniciana. 2010; 96:15–18.

Clark-Tapia R, Mandujano MC, Valverde T, Mendoza A. How important is clonal recruitment for population maintenance in rare plant species?: the case of the narrow endemic cactus, Stenocereus eruca, in Baja California, México. Biol Conserv. 2003; 124:123–132. doi: 10.1016/j.biocon.2005.01.019 DOI

Abrahamson WG, Kloet SPV. The reproduction and ecology of Hypericum edisonianum: an endangered Florida endemic. Castanea. 2014; 79:168–181. doi: 10.2179/14-016 DOI

Herben T, Šerá B, Klimešová J. Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos. 2015; 124:469–476. doi: 10.1111/oik.01692 DOI

Rusterholz HP, Aydin D, Baur B. Population structure and genetic diversity of relict populations of Alyssum montanum on limestone cliffs in the Northern Swiss Jura mountains. Alp Botany. 2012; 122:109–117. doi: 10.1007/s00035-012-0105-0 DOI

Gitzendanner MA, Weekley CW, Germain-Aubrey CC, Soltis DE, Soltis PS. Microsatellite evidence for high clonality and limited genetic diversity in Ziziphus celata (Rhamnaceae), an endangered, self-incompatible shrub endemic to the Lake Wales Ridge, Florida, USA. Conserv Genet. 2012; 13:223–234. doi: 10.1007/s10592-011-0287-9 DOI

Silva CA, Vieira MF, Carvalho-Okano RM, Oliveira LO. Reproductive success and genetic diversity of Psychotria hastisepala (Rubiaceae), in fragmented Atlantic forest, Southeastearn Brazil. Rev Biol Trop. 2014; 62:309–319. doi: 10.15517/rbt.v62i1.5854 PubMed DOI

Petrova G, Petrov S, Möller M. Low genetic diversity in small leading edge populations of the European paleoendemic Ramonda serbica (Gesneriaceae) in Bulgaria. Nord J Bot. 2018; 36:njb-01655. doi: 10.1111/njb.01655 DOI

Stojanova B, Šurinová M, Zeisek V, Münzbergová Z, Pánková H. Low genetic differentiation despite high fragmentation in the endemic serpentinophyte Minuartia smejkalii (M. verna agg., Caryophyllaceae) revealed by RADSeq SNP markers. Conserv Genet. 2020; 21:187–198. doi: 10.1007/s10592-019-01239-4 DOI

Zhao Y, Yin G, Gong X. RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: implications for conservation. Plant Divers. 2022; 45:513–522. doi: 10.1016/j.pld.2022.07.002 PubMed DOI PMC

Dang Z, Li J, Liu Y, Song M, Lockhart PJ, Tian Y, et al.. RADseq-based population genomic analysis and environmental adaptation of rare and endangered recretohalophyte Reaumuria trigyna. Plant Genome. 2023; e20303: 1–18. doi: 10.1002/tpg2.20303 PubMed DOI

Brys R, Jacquemyn H, Endels P, Van Rossum F, Hermy M, Triest L, et al.. Reduced reproductive success in small populations of the self-incompatible Primula vulgaris. J Ecol. 2004; 92:5–14. doi: 10.1046/j.0022-0477.2004.00840.x DOI

Navascués M, Stoeckel S, Mariette S. Genetic diversity and fitness in small populations of partially asexual, self-incompatible plants. Heredity. 2010; 104:482–492. doi: 10.1038/hdy.2009.159 PubMed DOI PMC

Calviño-Cancela M, Escudero M, Rodrígeuz-Pérez J, Cano E, Vargas P, Velo-Antón G, et al.. The role of seed dispersal, pollination and historical effects on genetic patterns of an insular plant that has lost its only seed disperser. J Biogeogr. 2012; 39:1996–2006. doi: 10.1111/j.1365-2699.2012.02732.x DOI

Vermeersch S, Triest L. Distylic Hottonia palustris shows high reproductive success in small populations despite low genetic variability. Aquat Bot. 2006; 84:354–358. doi: 10.1016/j.aquabot.2006.01.004 DOI

Plenk K, Bardy K, Höhn M, Kropf M. Long-term survival and successful conservation? Low genetic diversity but no evidence for reduced reproductive success at the north-westernmost range edge of Poa badensis (Poaceae) in Central Europe. Biodivers Conserv. 2019; 28:1245–1265. doi: 10.1007/s10531-019-01722-x PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...