Synthesis, Structure, Reactivity, and Intramolecular Donor-Acceptor Interactions in a Phosphinoferrocene Stibine and Its Corresponding Phosphine Chalcogenides and Stiboranes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37566394
PubMed Central
PMC10466383
DOI
10.1021/acs.inorgchem.3c02075
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Ferrocene-based phosphines equipped with additional functional groups are versatile ligands for coordination chemistry and catalysis. This contribution describes a new compound of this type, combining phosphine and stibine groups at the ferrocene backbone, viz. 1-(diphenylphosphino)-1'-(diphenylstibino)ferrocene (1). Phosphinostibine 1 and the corresponding P-chalcogenide derivatives Ph2P(E)fcSbPh2 (1E, fc = ferrocene-1,1'-diyl, E = O, S, Se) were synthesized and further converted to the corresponding stiboranes Ph2P(E)fcSb(O2C6Cl4)Ph2 (6 and 6E) by oxidation with o-chloranil. All compounds were characterized by spectroscopic methods, X-ray diffraction analysis, cyclic voltammetry, and theoretical methods. Both NMR spectroscopy and DFT calculations confirmed the presence of P → Sb and P═O → Sb donor-acceptor interactions in 6 and 6O, triggered by the oxidation of the stibine moiety into Lewis acidic stiborane. The corresponding interactions in 6S and 6Se were of the same type but significantly weaker. A coordination study with AuCl as the model metal fragment revealed that the phosphine group acts as the "primary" coordination site, in line with its higher basicity. The obtained Au(I) complexes were applied as catalysts in the Au-catalyzed cyclization of N-propargylbenzamide and in the oxidative [2 + 2 + 1] cyclization of ethynylbenzene with acetonitrile and pyridine N-oxides. The catalytic results showed that the stibine complexes had worse catalytic performance than their phosphine counterparts, most likely due to the formation of weaker coordination bonds and hence poorer stabilization of the active metal species. Nevertheless, the stibine moiety could be used to fine-tune the properties of the ligated metal center by changing the oxidation state or substituents at the "remote" Sb atom.
Zobrazit více v PubMed
Jeffrey J. C.; Rauchfuss T. B. Metal Complexes of Hemilabile Ligands. Reactivity and Structure of Dichlorobis(o-(diphenylphosphino)anisole)ruthenium(II). Inorg. Chem. 1979, 18, 2658–2666. 10.1021/ic50200a004. DOI
Braunstein P.; Naud F. Hemilability of Hybrid Ligands and the Coordination Chemistry of Oxazoline-Based Systems. Angew. Chem., Int. Ed. 2001, 40, 680–699. 10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0. PubMed DOI
Slone C. S.; Weinberger D. A.; Mirkin C. A.; Karlin K. D. The Transition Metal Coordination Chemistry of Hemilabile Ligands. Prog. Inorg. Chem. 2007, 233–350. 10.1002/9780470166499.ch3. DOI
Dwadnia N.; Roger J.; Pirio N.; Cattey H.; Hierso J.-C. Input of P, N-(phosphanyl, amino)-ferrocene hybrid derivatives in late transition metals catalysis. Coord. Chem. Rev. 2018, 355, 74–100. 10.1016/j.ccr.2017.07.015. DOI
Kutzelnigg W. Chemical Bonding in Higher Main Group Elements. Angew. Chem., Int. Ed. 1984, 23, 272–295. 10.1002/anie.198402721. DOI
Champness N. R.; Levason W. Coordination chemistry of stibine and bismuthine ligands. Coord. Chem. Rev. 1994, 133, 115–217. 10.1016/0010-8545(94)80058-8. DOI
Werner H. The Way into the Bridge: A New Bonding Mode of Tertiary Phosphanes, Arsanes and Stibanes. Angew. Chem., Int. Ed. 2004, 43, 938–954. 10.1002/anie.200300627. PubMed DOI
Levason W.; Reid G. Developments in the coordination chemistry of stibine ligands. Coord. Chem. Rev. 2006, 250, 2565–2594. 10.1016/j.ccr.2006.03.024. DOI
Greenacre V. K.; Levason W.; Reid G. Developments in the chemistry of stibine and bismuthine complexes. Coord. Chem. Rev. 2021, 432, 213698.10.1016/j.ccr.2020.213698. DOI
Lipshultz J. M.; Li G.; Radosevich A. T. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Table Trends and Emerging Opportunities in Group 15. J. Am. Chem. Soc. 2021, 143, 1699–1721. 10.1021/jacs.0c12816. PubMed DOI PMC
Hollingsworth W. M.; Hill E. A. Exploring the potential role of heavy pnictogen elements in ligand design for new metal-ligand cooperative chemistry. J. Coord. Chem. 2022, 75, 1436–1466. 10.1080/00958972.2022.2124863. DOI
Benjamin S. L.; Reid G. Neutral organoantimony(III) and organobismuth(III) ligands as acceptors in transition metal complexes – Role of substituents and co-ligands. Coord. Chem. Rev. 2015, 297–298, 168–180. 10.1016/j.ccr.2015.02.003. DOI
Benjamin S. L.; Krämer T.; Levason W.; Light M. E.; Macgregor S. A.; Reid G. [Pd4(μ3-SbMe3)4(SbMe3)4]: A Pd(0) Tetrahedron with μ3-Bridging Trimethylantimony Ligands. J. Am. Chem. Soc. 2016, 138, 6964–6967. 10.1021/jacs.6b04060. PubMed DOI
Jolleys A.; Lake B. R. M.; Krämer T.; Benjamin S. L. A Five-Membered PdSbn Coordination Series. Organometallics 2018, 37, 3854–3862. 10.1021/acs.organomet.8b00556. DOI
Benjamin S. L.; Levason W.; Reid G.; Warr R. P. Halostibines SbMeX2 and SbMe2X: Lewis Acids or Lewis Bases?. Organometallics 2012, 31, 1025–1034. 10.1021/om2010996. DOI
Wade C. R.; Ke I.-S.; Gabbaï F. P. Sensing of Aqueous Fluoride Anions by Cationic Stibine-Palladium Complexes. Angew. Chem., Int. Ed. 2012, 51, 478–481. 10.1002/anie.201106242. PubMed DOI
Hirai M.; Gabbaï F. P. Lewis acidic stiborafluorenes for the fluorescence turn-on sensing of fluoride in drinking water at ppm concentrations. Chem. Sci. 2014, 5, 1886–1893. 10.1039/C4SC00343H. DOI
Christianson A. M.; Gabbaï F. P. A Lewis Acidic, π-Conjugated Stibaindole with a Colorimetric Response to Anion Binding at Sb(III). Organometallics 2017, 36, 3013–3015. 10.1021/acs.organomet.7b00419. DOI
Rat C. I.; Silvestru C.; Breunig H. J. Hypervalent organoantimony and -bismuth compounds with pendant arm ligands. Coord. Chem. Rev. 2013, 257, 818–879. 10.1016/j.ccr.2012.07.026. DOI
Benjamin S. L.; Levason W.; Reid G.; Rogers M. C. Hybrid dibismuthines and distibines as ligands towards transition metal carbonyls. Dalton Trans. 2011, 40, 6565–6574. 10.1039/c1dt10447k. PubMed DOI
Benjamin S. L.; Karagiannidis L.; Levason W.; Reid G.; Rogers M. C. Hybrid Dibismuthines and Distibines: Preparation and Properties of Antimony and Bismuth Oxygen, Sulfur, and Nitrogen Donor Ligands. Organometallics 2011, 30, 895–904. 10.1021/om1010148. DOI
Kauffmann T.; Joußen R.; Klas N.; Vahrenhorst A. Neue Reagenzien, XXV. [(Diphenylstibino)methyl]lithium und -kupfer(I); Synthese und präparative Anwendungen. Chem. Ber. 1983, 116, 473–478. 10.1002/cber.19831160207. DOI
Manger M.; Wolf J.; Laubender M.; Teichert M.; Stalke D.; Werner H. The First Peralkylated Phosphino(stibino)methanes and Their Organometallic Rhodium Complexes. Chem. Eur. J. 1997, 3, 1442–1450. 10.1002/chem.19970030910. DOI
Manger M.; Gevert O.; Werner H. Unusual Dinuclear Hydridorhodium(III) Complexes Containing Bulky Phosphinyl(stibanyl)methanes as Chelating Ligands. Chem. Ber. 1997, 130, 1529–1531. 10.1002/cber.19971301028. DOI
Karsch H. H.; Witt E. Phosphinomethanides and Group 15 element halides: Redox reactions, rearrangements and novel heterocycles. J. Organomet. Chem. 1997, 529, 151–169. 10.1016/S0022-328X(96)06578-3. DOI
Levason W.; McAuliffe C. A. Bidentate ligands containing very soft donor atoms. Nickel(II) complexes of arylarsines and arylstibines. Inorg. Chim. Acta 1974, 11, 33–40. 10.1016/S0020-1693(00)93689-2. DOI
Levason W.; McAuliffe C. A. Bidentate Group VB ligands. Part XVII. Palladium(II), platinum(II), and rhodium(III) complexes of o-phenylenebis(diphenylphosphine), (o-diphenylphosphinophenyl)diphenylstibine, and (o-diphenylarsinophenyl)diphenylstibine. Inorg. Chim. Acta 1976, 16, 167–172. 10.1016/S0020-1693(00)91707-9. DOI
Levason W.; Smith K. G.; McAuliffe C. A.; McCullough F. P.; Sedgwick R. D.; Murray S. G. Synthesis and properties of group 5B ligand analogues of o-phenylenebis(dimethylarsine), o-C6H4(EMe2)(E′Me2) where E, E′ = P, N, As, or Sb. J. Chem. Soc., Dalton Trans. 1979, 1718–1724. 10.1039/DT9790001718. DOI
Talay R.; Rehder D. Carbonylvanadium, -manganese and -molybdenum complexes of the ligands o-C6H4EPh2(E′Ph2) (E,E′ = P, As, Sb, Bi) and cis-Ph2PCH = CHPPh2. Z. Naturforsch. 1981, 36b, 451–462. 10.1515/znb-1981-0411. DOI
Gray L. R.; Hale A. L.; Levason W.; McCullough F. P.; Webster M. Diphosphine and diarsine complexes of chromium(III). Crystal and molecular structure of tetra-n-propylammonium [cis-1,2-bis(diphenylphosphino)ethene]tetrachlorochromate(III). J. Chem. Soc., Dalton Trans. 1983, 2573–2580. 10.1039/dt9830002573. DOI
Black J. R.; Levason W.; Spicer M. D.; Webster M. Synthesis and solution multinuclear magnetic resonance studies of homoleptic copper(I) complexes of Group 15 donor ligands. J. Chem. Soc.; Dalton Trans. 1993, 3129–3136. 10.1039/dt9930003129. DOI
Jewiss H. C.; Levason W.; Spicer M. D.; Webster M. Coordination chemistry of higher oxidation states. 25. Synthesis and properties (including 59Co NMR Spectra) of cobalt(III) complexes of ligands containing two tertiary stibine groups. Crystal structure of trans-[Co{o-C6H4(SbMe2)2}2Cl2]2[CoCl4]. Inorg. Chem. 1987, 26, 2102–2016. 10.1021/ic00260a018. DOI
Chalmers B. A.; Bühl M.; Arachige K. S. A.; Slawin A. M. Z.; Kilian P. Structural, Spectroscopic and Computational Examination of the Dative Interaction in Constrained Phosphine-Stibines and Phosphine-Stiboranes. Chem. Eur. J. 2015, 21, 7520–7531. 10.1002/chem.201500281. PubMed DOI
Chalmers B. A.; Meigh C. B. E.; Nejman P. S.; Bühl M.; Lébl T.; Woollins J. D.; Slawin A. M. Z.; Kilian P. Geminally Substituted Tris(acenaphthyl) and Bis(acenaphthyl) Arsines, Stibines, and Bismuthine: A Structural and Nuclear Magnetic Resonance Investigation. Inorg. Chem. 2016, 55, 7117–7125. 10.1021/acs.inorgchem.6b01079. PubMed DOI
Jones J. S.; Gabbaï F. P. Activation of an Au–Cl Bond by a Pendent SbIII Lewis Acid: Impact on Structure and Catalytic Activity. Chem. Eur. J. 2017, 23, 1136–1144. 10.1002/chem.201604521. PubMed DOI
Yasuike S.; Kawara S.; Okajima S.; Seki H.; Yamaguchi K.; Kurita J. Non-C2-symmetrical antimony–phosphorus ligand, (R/S)-2-diphenylphosphano-2′-di(p-tolyl)stibano-1,1′-binaphthyl (BINAPSb): preparation and its use for asymmetric reactions as a chiral auxiliary. Tetrahedron Lett. 2004, 45, 9135–9138. 10.1016/j.tetlet.2004.10.020. DOI
Dawson J. W.; Venanzi L. M. Phosphorus-31 nuclear magnetic resonance studies of coordination compounds. I. Stereochemistry of some complexes with multidentate ligands. J. Am. Chem. Soc. 1968, 90, 7229–7233. 10.1021/ja01028a010. DOI
Higginson B. R.; McAuliffe C. A.; Venanzi L. M. Anomalous ligand field effects in complexes of quadridentate ligands containing Group V donors. Inorg. Chim. Acta 1971, 5, 37–40. 10.1016/S0020-1693(00)95876-6. DOI
Wade C. R.; Gabbaï F. P. Two-Electron Redox Chemistry and Reversible Umpolung of a Gold–Antimony Bond,. Angew. Chem., Int. Ed. 2011, 50, 7369–7372. 10.1002/anie.201103109. PubMed DOI
Ke I.-S.; Gabbaï F. P. σ-Donor/Acceptor-Confused Ligands: The Case of a Chlorostibine. Inorg. Chem. 2013, 52, 7145–7151. 10.1021/ic400736b. PubMed DOI
Ke I.-S.; Gabbaï F. P. Cu3(μ2-Cl)3 and Ag3(μ2-Cl)3 Complexes Supported by Tetradentate Trisphosphino-stibine and -bismuthine Ligands: Structural Evidence for Triply Bridging Heavy Pnictines. Aust. J. Chem. 2013, 66, 1281–1287. 10.1071/CH13260. DOI
Jones J. S.; Wade C. R.; Gabbaï F. P. Redox and Anion Exchange Chemistry of a Stibine-Nickel Complex: Writing L, X, Z Ligand Alphabet with a Single Element. Angew. Chem., Int. Ed. 2014, 53, 8876–8879. 10.1002/anie.201404156. PubMed DOI
Ke I.-S.; Jones J. S.; Gabbaï F. P. Anion-Controlled Switching of an X Ligand into a Z Ligand: Coordination Non-innocence of a Stiboranyl Ligand. Angew. Chem., Int. Ed. 2014, 53, 2633–2637. 10.1002/anie.201309132. PubMed DOI
Yang H.; Gabbaï F. P. Activation of an Hydroamination Gold Catalyst by Oxidation of a Redox-Noninnocent Chlorostibine Z-Ligand. J. Am. Chem. Soc. 2015, 137, 13425–13432. 10.1021/jacs.5b07998. PubMed DOI
You D.; Gabbaï F. P. Unmasking the Catalytic Activity of a Platinum Complex with a Lewis Acidic, Non-innocent Antimony Ligand. J. Am. Chem. Soc. 2017, 139, 6843–6846. 10.1021/jacs.7b03287. PubMed DOI
Jones J. S.; Wade C. R.; Yang M.; Gabbaï F. P. On the coordination non-innocence of antimony in nickel(II) complexes of the tetradentate (o-(Ph2PC6H4)3Sb ligand. Dalton Trans. 2017, 46, 5598–5604. 10.1039/C6DT04817J. PubMed DOI
Sen S.; Ke I.-S.; Gabbaï F. P. T-Shaped Gold→Stiborane Complexes as Carbophilic Catalysts: Influence of the Peripheral Substituents. Organometallics 2017, 36, 4224–4230. 10.1021/acs.organomet.7b00654. DOI
Piesch M.; Gabbaï F. P.; Scheer M. Phosphino-Stibine Ligands for the Synthesis of Heterometallic Comlexes. Z. Anorg. Allg. Chem. 2021, 647, 266–278. 10.1002/zaac.202000249. DOI
Furan S.; Hupf E.; Boidol J.; Brünig J.; Lork E.; Mebs S.; Beckmann J. Transition metal complexes of antimony centered ligands based upon acenaphthyl scaffolds. Coordination non-innocent or not?. Dalton Trans. 2019, 48, 4504–4513. 10.1039/C9DT00088G. PubMed DOI
Garcia-Romero A.; Waters J. E.; Jethwa R. B.; Bond A. D.; Colebatch A. L.; Garcia-Rodriguez R.; Wright D. S. Highly Adaptive Nature of Group 15 Tris(quinolinyl) Ligands–Studies with Coinage Metals. Inorg. Chem. 2023, 62, 4625–4636. 10.1021/acs.inorgchem.3c00057. PubMed DOI
Ferrocenes. Homogeneous Catalysis. Organic Synthesis. Materials Science; Togni A., Hayashi T.; Eds.; VCH: 1995.
Atkinson R. C. J.; Gibson V. C.; Long N. J. The syntheses and catalytic applications of unsymmetrical ferrocene ligands. Chem. Soc. Rev. 2004, 33, 313–328. 10.1039/b316819k. PubMed DOI
Gomez Arrayas R.; Adrio J.; Carretero J. C. Recent Applications of Chiral Ferrocene Ligands in Asymmetric Catalysis. Angew. Chem., Int. Ed. 2006, 45, 7674–7715. 10.1002/anie.200602482. PubMed DOI
Ferrocenes: Ligands, Materials and Biomolecules, Štěpnička P.; Ed.; Wiley: 2008.
Cunningham L.; Benson A.; Guiry P. J. Recent developments in the synthesis and applications of chiral ferrocene ligands and organocatalysts in asymmetric catalysis. Org. Biomol. Chem. 2020, 18, 9329–9370. 10.1039/D0OB01933J. PubMed DOI
Štěpnička P. Forever young: the first seventy years of ferrocene. Dalton Trans. 2022, 51, 8085–8102. 10.1039/D2DT00903J. PubMed DOI
Sharma P.; Lopez J. G.; Ortega C.; Rosas N.; Cabrera A.; Alvarez C.; Toscano A.; Reyes E. First ferrocenylstibines and their molecular structures. Inorg. Chem. Commun. 2006, 9, 82–85. 10.1016/j.inoche.2005.09.029. DOI
Vázquez J.; Sharma P.; Cabrera A.; Toscano A.; Hernández S.; Pérez J.; Gutiérrez R. Formation of (vinyl-ferrocenyl)stibines involving β-elimination: Hypervalent Sb–N bonding. J. Organomet. Chem. 2007, 692, 3486–3491. 10.1016/j.jorganchem.2007.04.020. DOI
Ortiz A. M.; Sharma P.; Pérez D.; Rosas N.; Velasco L.; Toscano A.; Hernández S. New 1,2-disubstituted ferrocenyl stibines containing N-heterocyclic pendant arm: Sb–N hypervalent compounds. J. Organomet. Chem. 2009, 694, 2037–2042. 10.1016/j.jorganchem.2009.01.051. DOI
Pérez D.; Sharma P.; Cabrera A.; Rosas N.; Arellano I.; Toscano A.; Hernández S. Preparation of new 1,2-disubstituted ferrocenyl stibines containing ether/thioether arm from a quaternarny ferrocenyl ammonium salt. Polyhedron 2009, 28, 3115–3119. 10.1016/j.poly.2009.06.067. DOI
Perez D.; Herrera C.; Sharma M.; Gutierrez R.; Hernández S.; Toscano A.; Sharma P. Synthesis of C3-symmetric tris(1,1′-formylferrocenyl)stibine and bismuthine: Rare examplex of tris 1,1′-asymmetrically ferrocenyl substituted group V compounds. J. Organomet. Chem. 2013, 743, 97–101. 10.1016/j.jorganchem.2013.06.015. DOI
Schulz J.; Antala J.; Císařová I.; Štěpnička P. Beyond phosphorus: synthesis, reactivity, coordination behaviour and catalytic properties of 1,1′-bis(diphenylstibino)ferrocene. Dalton Trans. 2023, 52, 1198–1211. 10.1039/D2DT03770J. PubMed DOI
Gan K.-S.; Hor T. S. A.. 1,1′-Bis(diphenylphosphino)ferrocene. Coordination Chemistry, Organic Syntheses, and Catalysis. In Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science; Togni A., Hayashi T., Eds.; Wiley-VCH: 1995; Chapter 1, pp 3–104.
Chien S. W.; Hor T. S. A.. The Coordination and Homogeneous Catalytic Chemistry of 1,1′-Bis(diphenylphosphino)ferrocene and its Chalcogenide Derivatives. In Ferrocenes: Ligands, Materials and Biomolecules; Štěpnička P., Ed.; Wiley: 2008; Chapter 2, pp 33–116.
Colacot T. J.; Parisel S.. Synthesis, Coordination Chemistry and Catalytic Use of dppf Analogs. In Ferrocenes: Ligands, Materials and Biomolecules; Štěpnička P., Ed.; Wiley: 2008; Chapter 3, pp 117–140.
Bandoli G.; Dolmella A. Ligating ability of 1,1′-bis(diphenylphosphino)ferrocene: a structural survey (1994–1998). Coord. Chem. Rev. 2000, 209, 161–196. 10.1016/S0010-8545(00)00229-0. DOI
Dey S.; Pietschnig R. Chemistry of sterically demanding dppf-analogs. Coord. Chem. Rev. 2021, 437, 213850.10.1016/j.ccr.2021.213850. DOI
Brunel J. M.; Faure B.; Maffei M. Phosphane–boranes: synthesis, characterization and synthetic applications,. Coord. Chem. Rev. 1998, 178–180, 665–698. 10.1016/S0010-8545(98)00072-1. DOI
Brisset H.; Gourdel Y.; Pellon P.; Le Corre M. Phosphine-borane complexes; direct use in asymmetric catalysis. Tetrahedron Lett. 1993, 34, 4523–4526. 10.1016/0040-4039(93)88075-T. DOI
Estevan F.; Lahuerta P.; Latorre J.; Peris E.; García-Granda S.; Gómez-Beltrán F.; Aguirre A.; Salvadó M. A. Synthesis and electrochemical studies of new ferrocene-labelled dinuclear rhodium(II) complexes. Crystal structures of [Rh2(O2CMe)2{[(C6H4)PhP(C5H4)]Fe(C5H5)}2(HO2CMe)2] and [Rh2(O2CMe)2{[(C6H4)PhP(C5H4)]2Fe}(HO2CMe)]·CH2Cl2. J. Chem. Soc., Dalton Trans. 1993, 1681–1688. 10.1039/DT9930001681. DOI
Muller A.; Otto S.; Roodt A. Rapid phosphorus(III) ligand evaluation utilising potassium selenocyanate. Dalton Trans. 2008, 650–657. 10.1039/B712782K. PubMed DOI
Donaghy K. J.; Carroll P. J.; Sneddon L. G. Reactions of 1,1′-Bis(diphenylphosphino)ferrocene with Boranes, Thiaboranes, and Carboranes. Inorg. Chem. 1997, 36, 547–553. 10.1021/ic9611913. DOI
Štěpnička P.; Císařová I. Selective borane reduction of phosphinoferrocene carbaldehydes to phosphinoalcohol–borane adducts. The coordination behaviour of 1-(diphenylphosphino)-1′-(methoxymethyl)ferrocene, a new ferrocene O,P-hybrid donor prepared from such an adduct. Dalton Trans. 2013, 42, 3373–3389. 10.1039/C2DT32511J. PubMed DOI
Lindner C.; Maryasin B.; Richter F.; Zipse H. Methyl cation affinity (MCA) for phosphanes. J. Phys. Org. Chem. 2010, 23, 1036–1042. 10.1002/poc.1726. DOI
Lindner C.; Tandon R.; Maryasin B.; Larionov E.; Zipse H. Cation affinity numbers of Lewis bases. Beilstein J. Org. Chem. 2012, 8, 1406–1442. 10.3762/bjoc.8.163. PubMed DOI PMC
Henry M. C.; Wittig G. The Organometallic Alkylidene Reaction. J. Am. Chem. Soc. 1960, 82, 563–564. 10.1021/ja01488a017. DOI
Kübler P.; Sundermeyer J. Ferrocenyl-phosphonium ionic liquids–synthesis, characterisation and electrochemistry. Dalton Trans. 2014, 43, 3750–3766. 10.1039/c3dt53402b. PubMed DOI
Vosáhlo P.; Císařová I.; Štěpnička P. Synthesis, coordination behavior, and catalytic properties of dppf congeners with an inserted carbonyl moiety. New J. Chem. 2022, 46, 21536–21552. 10.1039/D2NJ04270C. DOI
Holmes R. R.; Day R. O.; Chandrasekhar V.; Holmes J. M. Pentacoordinated molecules. 67. Formation and structure of cyclic five-coordinated antimony derivatives. The first square-pyramidal geometry for a bicyclic stiborane. Inorg. Chem. 1987, 26, 157–163. 10.1021/ic00248a031. DOI
Tofan D.; Gabbaï F. P. Fluorinated antimony(V) derivatives: strong Lewis acidic properties and application to the complexation of formaldehyde in aqueous solutions. Chem. Sci. 2016, 7, 6768–6778. 10.1039/C6SC02558G. PubMed DOI PMC
Arduengo A. J. III; Stewart C. A.; Davidson F.; Dixon D. A.; Becker J. Y.; Culley S. A.; Mizen M. B. The Synthesis, Structure, and Chemistry of 10-Pn-3 Systems: Tricoordinate Hypervalent Pnictogen Compounds. J. Am. Chem. Soc. 1987, 109, 627–647. 10.1021/ja00237a001. DOI
Chishiro A.; Akioka I.; Sumida A.; Oka K.; Tohnai N.; Yumura T.; Imoto H.; Naka K. Tetrachlorocatecholates of triarylarsines as a novel class of Lewis acids. Dalton Trans. 2022, 51, 13716–13724. 10.1039/D2DT02145E. PubMed DOI
Štěpnička P.; Horký F. The coordination and catalytic chemistry of phosphanylferrocene chalcogenides. Eur. J. Inorg. Chem. 2022, 2022, e20220027610.1002/ejic.202200276. DOI
Kühl O.Phosphorus-31 NMR Spectroscopy: A Concise Introduction for the Synthetic Organic and Organometallic Chemist; Springer: 2008.
Baillie C.; Zhang L.; Xiao J. Ferrocenyl Monophosphine Ligands: Synthesis and Applications in the Suzuki–Miyaura Coupling of Aryl Chlorides. J. Org. Chem. 2004, 69, 7779–7782. 10.1021/jo048963u. PubMed DOI
Verschoor-Kirss M. J.; Hendricks O.; Verschoor C. M.; Conry R.; Kirss R. U. Chemical oxidation of ferrocenyl(phenyl)phosphines and ferrocenyl(phenyl)phosphine chalcogenides. Inorg. Chim. Acta 2016, 450, 30–38. 10.1016/j.ica.2016.05.010. DOI
Beckmann U.; Süslüyan D.; Kunz P. C. Is the 1JPSe Coupling Constant a Reliable Probe for the Basicity of Phosphines? A 31P NMR Study. Phosphorus, Sulfur, Silicon, Relat. Elem. 2011, 186, 2061–2070. 10.1080/10426507.2010.547892. DOI
Fang Z.-G.; Hor T. S. A.; Wen Y.-S.; Liu L.-K.; Mak T. C. W. Molecular structures of 1,1′-bis(diphenylphosphino) ferrocene oxide and sulphide and their thermal properties. Polyhedron 1995, 14, 2403–2409. 10.1016/0277-5387(95)00072-Z. DOI
Pilloni G.; Longato B.; Bandoli G.; Corain B. Bonding ability of 1,1′-bis(diphenylthiophosphoryl)ferrocene (dptpf) and its selenium analogue towards copper(I). Crystal structure of [Cu(dptpf)]BF4. J. Chem. Soc., Dalton Trans. 1997, 819–826. 10.1039/a606877d. DOI
Štěpnička P.; Císařová I. Synthesis of [1′-(diphenylthiophosphoryl)ferrocenyl]ethyne and alkyne-metal complexes thereof. J. Organomet. Chem. 2006, 691, 2863–2871. 10.1016/j.jorganchem.2006.02.027. DOI
Kahn S. L.; Breheney M. K.; Martinak S. L.; Fosbenner S. M.; Seibert A. R.; Kassel W. S.; Dougherty W. G.; Nataro C. Synthesis, Characterization, and Electrochemistry of Compounds Containing 1-Diphenylphosphino-1′-(di-tert-butylphosphino)ferrocene (dppdtbpf). Organometallics 2009, 28, 2119–2126. 10.1021/om800850c. DOI
Fernandes T. A.; Solařová H.; Císařová I.; Uhlík F.; Štícha M.; Štěpnička P. Synthesis of phosphinoferrocene amides and thioamides from carbamoyl chlorides and the structural chemistry of Group 11 metal complexes with these mixed-donor ligands. Dalton Trans. 2015, 44, 3092–3108. 10.1039/C4DT03279A. PubMed DOI
Schulz J.; Vosáhlo P.; Uhlík F.; Císařová I.; Štěpnička P. Probing the Influence of Phosphine Substituents on the Donor and Catalytic Properties of Phosphinoferrocene Carboxamides: A Combined Experimental and Theoretical Study. Organometallics 2017, 36, 1828–1841. 10.1021/acs.organomet.7b00181. DOI
Vosáhlo P.; Císařová I.; Štěpnička P. Comparing the asymmetric dppf-type ligands with their semi-homologous counterparts. J. Organomet. Chem. 2018, 860, 14–29. 10.1016/j.jorganchem.2018.01.009. DOI
Mantina M.; Chamberlin A. C.; Valero R.; Cramer C. J.; Truhlar D. G. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A 2009, 113, 5806–5812. 10.1021/jp8111556. PubMed DOI PMC
Cordero B.; Gómez V.; Platero-Prats A. E.; Revés M.; Echeverría J.; Cremades E.; Barragán F.; Alvarez S. Covalent radii revisited. Dalton Trans. 2008, 2832–2838. 10.1039/b801115j. PubMed DOI
Addison A. W.; Rao T. N.; Reedijk J.; van Rijn J.; Verschoor G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984, 1349–1356. 10.1039/DT9840001349. DOI
Gonzalez V. M.; Park G.; Yang M.; Gabbai F. Fluoride anion complexation and transport using a stibonium cation stabilized by an intramolecular P = O → Sb pnictogen bond. Dalton Trans. 2021, 50, 17897–17900. 10.1039/D1DT03370K. PubMed DOI
Adeleke J. A.; Liu L.-K. Diphenylphosphinoferrocene. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1993, 49, 680–682. 10.1107/S0108270192010436. DOI
Kim T.-J.; Lee J.-H.; Kwon S.-C.; Kwon K.-H.; Uhm J.-K.; Lee H.; Byum S.-I. Reaction and Coordination Chemistry of Ferrocenylphosphines with (η5-C5H5)Co(CO)2-Crystal structures of Two Ferrocenylphosphine Oxides. Bull. Korean Chem. Soc. 1991, 12, 116–118.
Bader R. F. W. A Quantum Theory of Molecular Structure and its Applications. Chem. Rev. 1991, 91, 893–928. 10.1021/cr00005a013. DOI
Cremer D.; Kraka E. Chemical-Bonds without Bonding Electron-Density – Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical-Bond?. Angew. Chem., Int. Ed. Engl. 1984, 23, 627–628. 10.1002/anie.198406271. DOI
Hupf E.; Lork E.; Mebs S.; Beckmann J. Intramolecularly Coordinated (6-(Diphenylphosphino)acenaphth-5-yl)stannanes. Repulsion vs Attraction of P- and Sn-Containing Substituents in the peri Positions. Organometallics 2014, 33, 2409–2423. 10.1021/om500133a. DOI
Hupf E.; Lork E.; Mebs S.; Checińska L.; Beckmann J. Probing Donor-Acceptor Interactions in peri-Substituted Diphenylphosphinoacenaphthyl-Element Dichlorides of Group 13 and 15 Elements. Organometallics 2014, 33, 7247–7259. 10.1021/om501036c. DOI
Hupf E.; Do T. G.; Nordheider A.; Wehrhahn M.; Sanz Camacho P.; Ashbrook S. E.; Lork E.; Slawin A. M. Z.; Mebs S.; Woollins J. D.; Beckmann J. Selective Oxidation and Functionalization of 6-Diphenylphosphinoacenaphthyl-5-tellurenyl Species 6-Ph2P-Ace-5-TeX (X = Mes, Cl, O3SCF3). Various Types of P–E···Te(II,IV) Bonding Situations (E = O, S, Se). Organometallics 2017, 36, 1566–1579. 10.1021/acs.organomet.7b00133. DOI
Mokrai R.; Barrett J.; Apperley D. C.; Benkö Z.; Heift D. Tweaking the Charge Transfer: Bonding Analysis of Bismuth(III) Complexes with a Flexidentate Phosphane Ligand. Inorg. Chem. 2020, 59, 8916–8924. 10.1021/acs.inorgchem.0c00734. PubMed DOI PMC
Streitweiser A. Jr; Rajca A.; McDowell R. S.; Glaser R. Semipolar P–O and P–C Bonds: A Theoretical Study of Hypophosphite and Related Methylenephosphoranes. J. Am. Chem. Soc. 1987, 109, 4184–4188. 10.1021/ja00248a010. DOI
Chesnut D. B. An Ab Initio Nuclear Magnetic Resonance and Atoms-in-Molecules Study of the PO Bond in Phosphine Oxides. J. Am. Chem. Soc. 1998, 120, 10504–10510. 10.1021/ja9822198. DOI
Dobado J. A.; Martínez-García H.; Molina J. M.; Sundberg M. R. Chemical Bonding in Hypervalent Molecules Revised. Application of the Atoms in Molecules Theory to Y3X and Y3XZ (Y = H or CH3; X = N, P or As; Z = O or S) Compounds. J. Am. Chem. Soc. 1998, 120, 8461–8471. 10.1021/ja980141p. DOI
Chesnut D. B.; Savin A. The Electron Localization Function (ELF) Description of the PO Bond in Phosphine Oxide. J. Am. Chem. Soc. 1999, 121, 2335–2336. 10.1021/ja984314m. DOI
Yamada K.; Koga N. Variationally Determined Electronic States for the Theoretical Analysis of Intramolecular Interaction. II. Qualitative Nature of the P–O Bond in Phosphine Oxides. J. Comput. Chem. 2013, 34, 149–161. 10.1002/jcc.23118. PubMed DOI
Yang T.; Andrada D. M.; Frenking G. Dative versus electron-sharing bonding in N-oxides and phosphane oxides R3EO and relative energies of the R2EOR isomers (E = N, P; R = H, F, Cl, Me, Ph). A theoretical study. Phys. Chem. Chem. Phys. 2018, 20, 11856–11866. 10.1039/C8CP00951A. PubMed DOI
Lindquist-Kleissler B.; Wenger J. S.; Johnstone T. C. Analysis of Oxygen–Pnictogen Bonding with Full Bond Path Topological Analysis of the Electron Density. Inorg. Chem. 2021, 60, 1846–1856. 10.1021/acs.inorgchem.0c03308. PubMed DOI
Haaland A.; Nilsson J. E.; et al. The Determination of Barriers to Internal Rotation by Means of Electron Diffraction. Ferrocene and Ruthenocene. Acta Chem. Scand. 1968, 22, 2653–2670. 10.3891/acta.chem.scand.22-2653. DOI
Erdmann P.; Leitner J.; Schwarz J.; Greb L. An Extensive Set of Accurate Fluoride Ion Affinities for p-Block Element Lewis Acids and Basic Design Principles for Strong Fluoride Ion Acceptors. ChemPhysChem 2020, 21, 987–994. 10.1002/cphc.202000244. PubMed DOI PMC
Knizia G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013, 9, 4834–4843. 10.1021/ct400687b. PubMed DOI
Knizia G.; Klein J. E. M. N. Electron Flow in Reaction Mechanisms–Revealed from First Principles. Angew. Chem., Int. Ed. 2015, 54, 5518–5522. 10.1002/anie.201410637. PubMed DOI
Sandblom N.; Ziegler T.; Chivers T. A density functional study of the bonding in tertiary phosphine chalcogenides and related molecules. Can. J. Chem. 1996, 74, 2363–2371. 10.1139/v96-263. DOI
Yamada K.; Koga N. Variationally Determined Electronic States for the Theoretical Analysis of Intramolecular Interaction. II. Qualitative Nature of the P–O Bond in Phosphine Oxides. J. Comput. Chem. 2013, 34, 149–161. 10.1002/jcc.23118. PubMed DOI
Gritzner G.; Kůta J. Recommendations on reporting electrode potentials in nonaqueous solvents. Pure Appl. Chem. 1984, 56, 461–466. 10.1351/pac198456040461. DOI
Gagné R. R.; Koval C. A.; Lisensky G. C. Ferrocene as an Internal Standard for Electrochemical Measurements. Inorg. Chem. 1980, 19, 2854–2855. 10.1021/ic50211a080. DOI
Pilloni G.; Longato B.; Corain B. Heteropolymetallic complexes of 1,1′-bis(diphenylphosphino)ferrocene (dppf) VII. Redox behaviour of dppf. J. Organomet. Chem. 1991, 420, 57–65. 10.1016/0022-328X(91)86445-V. DOI
Zanello P.; Opromolla G.; Giorgi G.; Sasso G.; Togni A. Redox behaviour of ferrocene derivatives VIII. 1,1′-Bis(diphenylphosphino)ferrocenes. J. Organomet. Chem. 1996, 506, 61–65. 10.1016/0022-328X(95)05720-A. DOI
Nataro C.; Campbell A. N.; Ferguson M. A.; Incarvito C. D.; Rheingold A. L. Group 10 metal complexes of 1,1′-bis(diphenylphosphino)ferrocene (dppf) and 1,1′-bis(diphenylphosphino)ruthenocene: A structural and electrochemical investigation. X-ray structures of [MCl2(dppr)] (M = Ni, Pd). J. Organomet. Chem. 2003, 673, 47–55. 10.1016/S0022-328X(03)00155-4. DOI
Podlaha J.; Štěpnička P.; Ludvík J.; Císařová I. 1′-(Diphenylphosphino)ferrocenecarboxylic acid and Its P-Oxide and Methylester: Synthesis, Characterization, Crystal Structure, and Electrochemistry. Organometallics 1996, 15, 543–550. 10.1021/om950528q. DOI
Ghent B. L.; Martinak S. L.; Sites L. A.; Golen J. A.; Rheingold A. L.; Nataro C. Electrochemistry and complexation of Josiphos ligands. J. Organomet. Chem. 2007, 692, 2365–2374. 10.1016/j.jorganchem.2007.02.039. DOI
Bennett M. A.; Bhargava S. K.; Bond A. M.; Burgar I. M.; Guo S.-X.; Kar G.; Privér S. H.; Wagler J.; Willis A. C.; Torriero A. A. J. Synthesis, X-ray structure and electrochemical oxidation of palladium(II) complexes of ferrocenyldiphenylphosphine. Dalton Trans. 2010, 39, 9079–9090. 10.1039/c0dt00016g. PubMed DOI
Swartz B. D.; Nataro C. Anodic Electrochemistry of Ferrocenylphosphine and Ruthenocenylphosphine Chalcogenide Complexes and Lewis Acid Adducts. Organometallics 2005, 24, 2447–2451. See also10.1021/om050074p. DOI
Barriere F.; Kirss R. U.; Geiger W. E. Anodic Electrochemistry of Multiferrocenyl Phosphine and Phosphine Chalcogenide Complexes in Weakly Nucleophilic Electrolytes. Organometallics 2005, 24, 48–52. 10.1021/om040123i. DOI
Schulz J.; Uhlík F.; Speck J. M.; Císařová I.; Lang H.; Štěpnička P. Synthesis, Crystal Structures, and Electrochemical Behavior of Fe–Ru Heterobimetallic Complexes with Bridged Metallocene Units. Organometallics 2014, 33, 5020–5032. 10.1021/om500505n. DOI
Škoch K.; Císařová I.; Uhlík F.; Štěpnička P. Comparing the reactivity of isomeric phosphinoferrocene nitrile and isocyanide in Pd(ii) complexes: synthesis of simple coordination compounds vs. preparation of P-chelated insertion products and Fischer-type carbenes. Dalton Trans. 2018, 47, 16082–16101. 10.1039/C8DT03564D. PubMed DOI
Škoch K.; Schulz J.; Císařová I.; Štěpnička P. Pd(II) Complexes with Chelating Phosphinoferrocene Diaminocarbene Ligands: Synthesis, Characterization, and Catalytic Use in Pd-Catalyzed Borylation of Aryl Bromides. Organometallics 2019, 38, 3060–3073. 10.1021/acs.organomet.9b00398. DOI
Vosáhlo P.; Schulz J.; Císařová I.; Štěpnička P. Cyclopalladation of a ferrocene acylphosphine and the reactivity of the C–H activated products. Dalton Trans. 2021, 50, 6232–6244. 10.1039/D1DT00668A. PubMed DOI
Lo Y.-H.; Gabbaï F. P. Controlling the Properties of a 2,2′-bipy–Platinum Dichloride Complex via Oxidation of a Peripheral Stibine Moiety. Organometallics 2018, 37, 2500–2506. 10.1021/acs.organomet.8b00296. DOI
Rössler K.; Rüffer T.; Walfort B.; Packheiser R.; Holze R.; Zharnikov M.; Lang H. Synthesis, characterization and electrochemical behavior of unsymmetric transition metal-terminated biphenyl ethynyl thiols. J. Organomet. Chem. 2007, 692, 1530–1545. 10.1016/j.jorganchem.2006.12.002. DOI
Dunstan S. P. C.; Healy P. C.; Sobolev A. N.; Tiekink E. R. T.; White A. H.; Williams M. L. Isomorphism in the structural chemistry of two-coordinate adducts of diphenyl(2-formylphenyl)phosphine and triphenylphosphine with gold(I) halides. J. Mol. Struct. 2014, 1072, 253–259. 10.1016/j.molstruc.2014.05.020. DOI
Schmidbaur H. The Aurophilicity Phenomenon: A Decade of Experimental Findings, Theoretical Concepts and Emerging Applications. Gold Bull. 2000, 33, 3–10. 10.1007/BF03215477. DOI
Schmidbaur H.; Schier A. A briefing on aurophilicity. Chem. Soc. Rev. 2008, 37, 1931–1951. 10.1039/b708845k. PubMed DOI
Schmidbaur H.; Schier A. Aurophilic interactions as a subject of current research: an up-date. Chem. Soc. Rev. 2012, 41, 370–412. 10.1039/C1CS15182G. PubMed DOI
Steed K. M.; Steed J. W. Packing Problems: High Z′ Crystal Structures and Their Relationship to Cocrystals, Inclusion Compounds, and Polymorphism. Chem. Rev. 2015, 115, 2895–2933. 10.1021/cr500564z. PubMed DOI
Taylor R.; Cole J. C.; Groom C. R. Molecular Interactions in Crystal Structures with Z′ > 1. Cryst. Growth Des. 2016, 16, 2988–3001. 10.1021/acs.cgd.6b00355. DOI
Orthaber A.; Borucki S.; Shen W.; Réau R.; Lescop C.; Pietschnig R. Coordination Behaviour of a Hexadentate1,1′-Ferrocenylene-Bridged Bisphosphole towards CoinageMetal Centres. Eur. J. Inorg. Chem. 2014, 2014, 1751–1759. 10.1002/ejic.201301281. DOI
Hashmi A. S. K.; Weyrauch J. P.; Frey W.; Bats J. W. Gold Catalysis: Mild Conditions for the Synthesis of Oxazoles from N-Propargylcarboxamides and Mechanistic Aspects. Org. Lett. 2004, 6, 4391–4394. 10.1021/ol0480067. PubMed DOI
Weyrauch J. P.; Hashmi A. S. K.; Schuster A.; Hengst T.; Schetter S.; Littmann A.; Rudolph M.; Hamzic M.; Visus J.; Rominger F.; Frey W.; Bats J. W. Cyclization of Propargylic Amides: Mild Access to Oxazole Derivatives. Chem. Eur. J. 2010, 16, 956–963. 10.1002/chem.200902472. PubMed DOI
Bárta O.; Císařová I.; Schulz J.; Štěpnička P. Assessing the influence of phosphine substituents on the catalytic properties of self-stabilised digold(I) complexes with supporting ferrocene phosphinonitrile ligands. New J. Chem. 2019, 43, 11258–11262. 10.1039/C9NJ02555C. DOI
Vosáhlo P.; Štěpnička P. Assessing the role of substituents in ferrocene acylphosphines and their impact on gold-catalysed reactions. New J. Chem. 2023, 47, 4510–4520. 10.1039/D3NJ00201B. DOI
He W.; Li C.; Zhang L. An Efficient [2 + 2 + 1] Synthesis of 2,5-Disubstituted Oxazoles via Gold-Catalyzed Intermolecular Alkyne Oxidation. J. Am. Chem. Soc. 2011, 133, 8482–8485. 10.1021/ja2029188. PubMed DOI
Astruc D. Why is Ferrocene so Exceptional?. Eur. J. Inorg. Chem. 2017, 2017, 6–29. 10.1002/ejic.201600983. DOI