Synthesis, Structure, Reactivity, and Intramolecular Donor-Acceptor Interactions in a Phosphinoferrocene Stibine and Its Corresponding Phosphine Chalcogenides and Stiboranes

. 2023 Aug 28 ; 62 (34) : 14028-14043. [epub] 20230810

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37566394

Ferrocene-based phosphines equipped with additional functional groups are versatile ligands for coordination chemistry and catalysis. This contribution describes a new compound of this type, combining phosphine and stibine groups at the ferrocene backbone, viz. 1-(diphenylphosphino)-1'-(diphenylstibino)ferrocene (1). Phosphinostibine 1 and the corresponding P-chalcogenide derivatives Ph2P(E)fcSbPh2 (1E, fc = ferrocene-1,1'-diyl, E = O, S, Se) were synthesized and further converted to the corresponding stiboranes Ph2P(E)fcSb(O2C6Cl4)Ph2 (6 and 6E) by oxidation with o-chloranil. All compounds were characterized by spectroscopic methods, X-ray diffraction analysis, cyclic voltammetry, and theoretical methods. Both NMR spectroscopy and DFT calculations confirmed the presence of P → Sb and P═O → Sb donor-acceptor interactions in 6 and 6O, triggered by the oxidation of the stibine moiety into Lewis acidic stiborane. The corresponding interactions in 6S and 6Se were of the same type but significantly weaker. A coordination study with AuCl as the model metal fragment revealed that the phosphine group acts as the "primary" coordination site, in line with its higher basicity. The obtained Au(I) complexes were applied as catalysts in the Au-catalyzed cyclization of N-propargylbenzamide and in the oxidative [2 + 2 + 1] cyclization of ethynylbenzene with acetonitrile and pyridine N-oxides. The catalytic results showed that the stibine complexes had worse catalytic performance than their phosphine counterparts, most likely due to the formation of weaker coordination bonds and hence poorer stabilization of the active metal species. Nevertheless, the stibine moiety could be used to fine-tune the properties of the ligated metal center by changing the oxidation state or substituents at the "remote" Sb atom.

Zobrazit více v PubMed

Jeffrey J. C.; Rauchfuss T. B. Metal Complexes of Hemilabile Ligands. Reactivity and Structure of Dichlorobis(o-(diphenylphosphino)anisole)ruthenium(II). Inorg. Chem. 1979, 18, 2658–2666. 10.1021/ic50200a004. DOI

Braunstein P.; Naud F. Hemilability of Hybrid Ligands and the Coordination Chemistry of Oxazoline-Based Systems. Angew. Chem., Int. Ed. 2001, 40, 680–699. 10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0. PubMed DOI

Slone C. S.; Weinberger D. A.; Mirkin C. A.; Karlin K. D. The Transition Metal Coordination Chemistry of Hemilabile Ligands. Prog. Inorg. Chem. 2007, 233–350. 10.1002/9780470166499.ch3. DOI

Dwadnia N.; Roger J.; Pirio N.; Cattey H.; Hierso J.-C. Input of P, N-(phosphanyl, amino)-ferrocene hybrid derivatives in late transition metals catalysis. Coord. Chem. Rev. 2018, 355, 74–100. 10.1016/j.ccr.2017.07.015. DOI

Kutzelnigg W. Chemical Bonding in Higher Main Group Elements. Angew. Chem., Int. Ed. 1984, 23, 272–295. 10.1002/anie.198402721. DOI

Champness N. R.; Levason W. Coordination chemistry of stibine and bismuthine ligands. Coord. Chem. Rev. 1994, 133, 115–217. 10.1016/0010-8545(94)80058-8. DOI

Werner H. The Way into the Bridge: A New Bonding Mode of Tertiary Phosphanes, Arsanes and Stibanes. Angew. Chem., Int. Ed. 2004, 43, 938–954. 10.1002/anie.200300627. PubMed DOI

Levason W.; Reid G. Developments in the coordination chemistry of stibine ligands. Coord. Chem. Rev. 2006, 250, 2565–2594. 10.1016/j.ccr.2006.03.024. DOI

Greenacre V. K.; Levason W.; Reid G. Developments in the chemistry of stibine and bismuthine complexes. Coord. Chem. Rev. 2021, 432, 213698.10.1016/j.ccr.2020.213698. DOI

Lipshultz J. M.; Li G.; Radosevich A. T. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Table Trends and Emerging Opportunities in Group 15. J. Am. Chem. Soc. 2021, 143, 1699–1721. 10.1021/jacs.0c12816. PubMed DOI PMC

Hollingsworth W. M.; Hill E. A. Exploring the potential role of heavy pnictogen elements in ligand design for new metal-ligand cooperative chemistry. J. Coord. Chem. 2022, 75, 1436–1466. 10.1080/00958972.2022.2124863. DOI

Benjamin S. L.; Reid G. Neutral organoantimony(III) and organobismuth(III) ligands as acceptors in transition metal complexes – Role of substituents and co-ligands. Coord. Chem. Rev. 2015, 297–298, 168–180. 10.1016/j.ccr.2015.02.003. DOI

Benjamin S. L.; Krämer T.; Levason W.; Light M. E.; Macgregor S. A.; Reid G. [Pd4(μ3-SbMe3)4(SbMe3)4]: A Pd(0) Tetrahedron with μ3-Bridging Trimethylantimony Ligands. J. Am. Chem. Soc. 2016, 138, 6964–6967. 10.1021/jacs.6b04060. PubMed DOI

Jolleys A.; Lake B. R. M.; Krämer T.; Benjamin S. L. A Five-Membered PdSbn Coordination Series. Organometallics 2018, 37, 3854–3862. 10.1021/acs.organomet.8b00556. DOI

Benjamin S. L.; Levason W.; Reid G.; Warr R. P. Halostibines SbMeX2 and SbMe2X: Lewis Acids or Lewis Bases?. Organometallics 2012, 31, 1025–1034. 10.1021/om2010996. DOI

Wade C. R.; Ke I.-S.; Gabbaï F. P. Sensing of Aqueous Fluoride Anions by Cationic Stibine-Palladium Complexes. Angew. Chem., Int. Ed. 2012, 51, 478–481. 10.1002/anie.201106242. PubMed DOI

Hirai M.; Gabbaï F. P. Lewis acidic stiborafluorenes for the fluorescence turn-on sensing of fluoride in drinking water at ppm concentrations. Chem. Sci. 2014, 5, 1886–1893. 10.1039/C4SC00343H. DOI

Christianson A. M.; Gabbaï F. P. A Lewis Acidic, π-Conjugated Stibaindole with a Colorimetric Response to Anion Binding at Sb(III). Organometallics 2017, 36, 3013–3015. 10.1021/acs.organomet.7b00419. DOI

Rat C. I.; Silvestru C.; Breunig H. J. Hypervalent organoantimony and -bismuth compounds with pendant arm ligands. Coord. Chem. Rev. 2013, 257, 818–879. 10.1016/j.ccr.2012.07.026. DOI

Benjamin S. L.; Levason W.; Reid G.; Rogers M. C. Hybrid dibismuthines and distibines as ligands towards transition metal carbonyls. Dalton Trans. 2011, 40, 6565–6574. 10.1039/c1dt10447k. PubMed DOI

Benjamin S. L.; Karagiannidis L.; Levason W.; Reid G.; Rogers M. C. Hybrid Dibismuthines and Distibines: Preparation and Properties of Antimony and Bismuth Oxygen, Sulfur, and Nitrogen Donor Ligands. Organometallics 2011, 30, 895–904. 10.1021/om1010148. DOI

Kauffmann T.; Joußen R.; Klas N.; Vahrenhorst A. Neue Reagenzien, XXV. [(Diphenylstibino)methyl]lithium und -kupfer(I); Synthese und präparative Anwendungen. Chem. Ber. 1983, 116, 473–478. 10.1002/cber.19831160207. DOI

Manger M.; Wolf J.; Laubender M.; Teichert M.; Stalke D.; Werner H. The First Peralkylated Phosphino(stibino)methanes and Their Organometallic Rhodium Complexes. Chem. Eur. J. 1997, 3, 1442–1450. 10.1002/chem.19970030910. DOI

Manger M.; Gevert O.; Werner H. Unusual Dinuclear Hydridorhodium(III) Complexes Containing Bulky Phosphinyl(stibanyl)methanes as Chelating Ligands. Chem. Ber. 1997, 130, 1529–1531. 10.1002/cber.19971301028. DOI

Karsch H. H.; Witt E. Phosphinomethanides and Group 15 element halides: Redox reactions, rearrangements and novel heterocycles. J. Organomet. Chem. 1997, 529, 151–169. 10.1016/S0022-328X(96)06578-3. DOI

Levason W.; McAuliffe C. A. Bidentate ligands containing very soft donor atoms. Nickel(II) complexes of arylarsines and arylstibines. Inorg. Chim. Acta 1974, 11, 33–40. 10.1016/S0020-1693(00)93689-2. DOI

Levason W.; McAuliffe C. A. Bidentate Group VB ligands. Part XVII. Palladium(II), platinum(II), and rhodium(III) complexes of o-phenylenebis(diphenylphosphine), (o-diphenylphosphinophenyl)diphenylstibine, and (o-diphenylarsinophenyl)diphenylstibine. Inorg. Chim. Acta 1976, 16, 167–172. 10.1016/S0020-1693(00)91707-9. DOI

Levason W.; Smith K. G.; McAuliffe C. A.; McCullough F. P.; Sedgwick R. D.; Murray S. G. Synthesis and properties of group 5B ligand analogues of o-phenylenebis(dimethylarsine), o-C6H4(EMe2)(E′Me2) where E, E′ = P, N, As, or Sb. J. Chem. Soc., Dalton Trans. 1979, 1718–1724. 10.1039/DT9790001718. DOI

Talay R.; Rehder D. Carbonylvanadium, -manganese and -molybdenum complexes of the ligands o-C6H4EPh2(E′Ph2) (E,E′ = P, As, Sb, Bi) and cis-Ph2PCH = CHPPh2. Z. Naturforsch. 1981, 36b, 451–462. 10.1515/znb-1981-0411. DOI

Gray L. R.; Hale A. L.; Levason W.; McCullough F. P.; Webster M. Diphosphine and diarsine complexes of chromium(III). Crystal and molecular structure of tetra-n-propylammonium [cis-1,2-bis(diphenylphosphino)ethene]tetrachlorochromate(III). J. Chem. Soc., Dalton Trans. 1983, 2573–2580. 10.1039/dt9830002573. DOI

Black J. R.; Levason W.; Spicer M. D.; Webster M. Synthesis and solution multinuclear magnetic resonance studies of homoleptic copper(I) complexes of Group 15 donor ligands. J. Chem. Soc.; Dalton Trans. 1993, 3129–3136. 10.1039/dt9930003129. DOI

Jewiss H. C.; Levason W.; Spicer M. D.; Webster M. Coordination chemistry of higher oxidation states. 25. Synthesis and properties (including 59Co NMR Spectra) of cobalt(III) complexes of ligands containing two tertiary stibine groups. Crystal structure of trans-[Co{o-C6H4(SbMe2)2}2Cl2]2[CoCl4]. Inorg. Chem. 1987, 26, 2102–2016. 10.1021/ic00260a018. DOI

Chalmers B. A.; Bühl M.; Arachige K. S. A.; Slawin A. M. Z.; Kilian P. Structural, Spectroscopic and Computational Examination of the Dative Interaction in Constrained Phosphine-Stibines and Phosphine-Stiboranes. Chem. Eur. J. 2015, 21, 7520–7531. 10.1002/chem.201500281. PubMed DOI

Chalmers B. A.; Meigh C. B. E.; Nejman P. S.; Bühl M.; Lébl T.; Woollins J. D.; Slawin A. M. Z.; Kilian P. Geminally Substituted Tris(acenaphthyl) and Bis(acenaphthyl) Arsines, Stibines, and Bismuthine: A Structural and Nuclear Magnetic Resonance Investigation. Inorg. Chem. 2016, 55, 7117–7125. 10.1021/acs.inorgchem.6b01079. PubMed DOI

Jones J. S.; Gabbaï F. P. Activation of an Au–Cl Bond by a Pendent SbIII Lewis Acid: Impact on Structure and Catalytic Activity. Chem. Eur. J. 2017, 23, 1136–1144. 10.1002/chem.201604521. PubMed DOI

Yasuike S.; Kawara S.; Okajima S.; Seki H.; Yamaguchi K.; Kurita J. Non-C2-symmetrical antimony–phosphorus ligand, (R/S)-2-diphenylphosphano-2′-di(p-tolyl)stibano-1,1′-binaphthyl (BINAPSb): preparation and its use for asymmetric reactions as a chiral auxiliary. Tetrahedron Lett. 2004, 45, 9135–9138. 10.1016/j.tetlet.2004.10.020. DOI

Dawson J. W.; Venanzi L. M. Phosphorus-31 nuclear magnetic resonance studies of coordination compounds. I. Stereochemistry of some complexes with multidentate ligands. J. Am. Chem. Soc. 1968, 90, 7229–7233. 10.1021/ja01028a010. DOI

Higginson B. R.; McAuliffe C. A.; Venanzi L. M. Anomalous ligand field effects in complexes of quadridentate ligands containing Group V donors. Inorg. Chim. Acta 1971, 5, 37–40. 10.1016/S0020-1693(00)95876-6. DOI

Wade C. R.; Gabbaï F. P. Two-Electron Redox Chemistry and Reversible Umpolung of a Gold–Antimony Bond,. Angew. Chem., Int. Ed. 2011, 50, 7369–7372. 10.1002/anie.201103109. PubMed DOI

Ke I.-S.; Gabbaï F. P. σ-Donor/Acceptor-Confused Ligands: The Case of a Chlorostibine. Inorg. Chem. 2013, 52, 7145–7151. 10.1021/ic400736b. PubMed DOI

Ke I.-S.; Gabbaï F. P. Cu3(μ2-Cl)3 and Ag3(μ2-Cl)3 Complexes Supported by Tetradentate Trisphosphino-stibine and -bismuthine Ligands: Structural Evidence for Triply Bridging Heavy Pnictines. Aust. J. Chem. 2013, 66, 1281–1287. 10.1071/CH13260. DOI

Jones J. S.; Wade C. R.; Gabbaï F. P. Redox and Anion Exchange Chemistry of a Stibine-Nickel Complex: Writing L, X, Z Ligand Alphabet with a Single Element. Angew. Chem., Int. Ed. 2014, 53, 8876–8879. 10.1002/anie.201404156. PubMed DOI

Ke I.-S.; Jones J. S.; Gabbaï F. P. Anion-Controlled Switching of an X Ligand into a Z Ligand: Coordination Non-innocence of a Stiboranyl Ligand. Angew. Chem., Int. Ed. 2014, 53, 2633–2637. 10.1002/anie.201309132. PubMed DOI

Yang H.; Gabbaï F. P. Activation of an Hydroamination Gold Catalyst by Oxidation of a Redox-Noninnocent Chlorostibine Z-Ligand. J. Am. Chem. Soc. 2015, 137, 13425–13432. 10.1021/jacs.5b07998. PubMed DOI

You D.; Gabbaï F. P. Unmasking the Catalytic Activity of a Platinum Complex with a Lewis Acidic, Non-innocent Antimony Ligand. J. Am. Chem. Soc. 2017, 139, 6843–6846. 10.1021/jacs.7b03287. PubMed DOI

Jones J. S.; Wade C. R.; Yang M.; Gabbaï F. P. On the coordination non-innocence of antimony in nickel(II) complexes of the tetradentate (o-(Ph2PC6H4)3Sb ligand. Dalton Trans. 2017, 46, 5598–5604. 10.1039/C6DT04817J. PubMed DOI

Sen S.; Ke I.-S.; Gabbaï F. P. T-Shaped Gold→Stiborane Complexes as Carbophilic Catalysts: Influence of the Peripheral Substituents. Organometallics 2017, 36, 4224–4230. 10.1021/acs.organomet.7b00654. DOI

Piesch M.; Gabbaï F. P.; Scheer M. Phosphino-Stibine Ligands for the Synthesis of Heterometallic Comlexes. Z. Anorg. Allg. Chem. 2021, 647, 266–278. 10.1002/zaac.202000249. DOI

Furan S.; Hupf E.; Boidol J.; Brünig J.; Lork E.; Mebs S.; Beckmann J. Transition metal complexes of antimony centered ligands based upon acenaphthyl scaffolds. Coordination non-innocent or not?. Dalton Trans. 2019, 48, 4504–4513. 10.1039/C9DT00088G. PubMed DOI

Garcia-Romero A.; Waters J. E.; Jethwa R. B.; Bond A. D.; Colebatch A. L.; Garcia-Rodriguez R.; Wright D. S. Highly Adaptive Nature of Group 15 Tris(quinolinyl) Ligands–Studies with Coinage Metals. Inorg. Chem. 2023, 62, 4625–4636. 10.1021/acs.inorgchem.3c00057. PubMed DOI

Ferrocenes. Homogeneous Catalysis. Organic Synthesis. Materials Science; Togni A., Hayashi T.; Eds.; VCH: 1995.

Atkinson R. C. J.; Gibson V. C.; Long N. J. The syntheses and catalytic applications of unsymmetrical ferrocene ligands. Chem. Soc. Rev. 2004, 33, 313–328. 10.1039/b316819k. PubMed DOI

Gomez Arrayas R.; Adrio J.; Carretero J. C. Recent Applications of Chiral Ferrocene Ligands in Asymmetric Catalysis. Angew. Chem., Int. Ed. 2006, 45, 7674–7715. 10.1002/anie.200602482. PubMed DOI

Ferrocenes: Ligands, Materials and Biomolecules, Štěpnička P.; Ed.; Wiley: 2008.

Cunningham L.; Benson A.; Guiry P. J. Recent developments in the synthesis and applications of chiral ferrocene ligands and organocatalysts in asymmetric catalysis. Org. Biomol. Chem. 2020, 18, 9329–9370. 10.1039/D0OB01933J. PubMed DOI

Štěpnička P. Forever young: the first seventy years of ferrocene. Dalton Trans. 2022, 51, 8085–8102. 10.1039/D2DT00903J. PubMed DOI

Sharma P.; Lopez J. G.; Ortega C.; Rosas N.; Cabrera A.; Alvarez C.; Toscano A.; Reyes E. First ferrocenylstibines and their molecular structures. Inorg. Chem. Commun. 2006, 9, 82–85. 10.1016/j.inoche.2005.09.029. DOI

Vázquez J.; Sharma P.; Cabrera A.; Toscano A.; Hernández S.; Pérez J.; Gutiérrez R. Formation of (vinyl-ferrocenyl)stibines involving β-elimination: Hypervalent Sb–N bonding. J. Organomet. Chem. 2007, 692, 3486–3491. 10.1016/j.jorganchem.2007.04.020. DOI

Ortiz A. M.; Sharma P.; Pérez D.; Rosas N.; Velasco L.; Toscano A.; Hernández S. New 1,2-disubstituted ferrocenyl stibines containing N-heterocyclic pendant arm: Sb–N hypervalent compounds. J. Organomet. Chem. 2009, 694, 2037–2042. 10.1016/j.jorganchem.2009.01.051. DOI

Pérez D.; Sharma P.; Cabrera A.; Rosas N.; Arellano I.; Toscano A.; Hernández S. Preparation of new 1,2-disubstituted ferrocenyl stibines containing ether/thioether arm from a quaternarny ferrocenyl ammonium salt. Polyhedron 2009, 28, 3115–3119. 10.1016/j.poly.2009.06.067. DOI

Perez D.; Herrera C.; Sharma M.; Gutierrez R.; Hernández S.; Toscano A.; Sharma P. Synthesis of C3-symmetric tris(1,1′-formylferrocenyl)stibine and bismuthine: Rare examplex of tris 1,1′-asymmetrically ferrocenyl substituted group V compounds. J. Organomet. Chem. 2013, 743, 97–101. 10.1016/j.jorganchem.2013.06.015. DOI

Schulz J.; Antala J.; Císařová I.; Štěpnička P. Beyond phosphorus: synthesis, reactivity, coordination behaviour and catalytic properties of 1,1′-bis(diphenylstibino)ferrocene. Dalton Trans. 2023, 52, 1198–1211. 10.1039/D2DT03770J. PubMed DOI

Gan K.-S.; Hor T. S. A.. 1,1′-Bis(diphenylphosphino)ferrocene. Coordination Chemistry, Organic Syntheses, and Catalysis. In Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science; Togni A., Hayashi T., Eds.; Wiley-VCH: 1995; Chapter 1, pp 3–104.

Chien S. W.; Hor T. S. A.. The Coordination and Homogeneous Catalytic Chemistry of 1,1′-Bis(diphenylphosphino)ferrocene and its Chalcogenide Derivatives. In Ferrocenes: Ligands, Materials and Biomolecules; Štěpnička P., Ed.; Wiley: 2008; Chapter 2, pp 33–116.

Colacot T. J.; Parisel S.. Synthesis, Coordination Chemistry and Catalytic Use of dppf Analogs. In Ferrocenes: Ligands, Materials and Biomolecules; Štěpnička P., Ed.; Wiley: 2008; Chapter 3, pp 117–140.

Bandoli G.; Dolmella A. Ligating ability of 1,1′-bis(diphenylphosphino)ferrocene: a structural survey (1994–1998). Coord. Chem. Rev. 2000, 209, 161–196. 10.1016/S0010-8545(00)00229-0. DOI

Dey S.; Pietschnig R. Chemistry of sterically demanding dppf-analogs. Coord. Chem. Rev. 2021, 437, 213850.10.1016/j.ccr.2021.213850. DOI

Brunel J. M.; Faure B.; Maffei M. Phosphane–boranes: synthesis, characterization and synthetic applications,. Coord. Chem. Rev. 1998, 178–180, 665–698. 10.1016/S0010-8545(98)00072-1. DOI

Brisset H.; Gourdel Y.; Pellon P.; Le Corre M. Phosphine-borane complexes; direct use in asymmetric catalysis. Tetrahedron Lett. 1993, 34, 4523–4526. 10.1016/0040-4039(93)88075-T. DOI

Estevan F.; Lahuerta P.; Latorre J.; Peris E.; García-Granda S.; Gómez-Beltrán F.; Aguirre A.; Salvadó M. A. Synthesis and electrochemical studies of new ferrocene-labelled dinuclear rhodium(II) complexes. Crystal structures of [Rh2(O2CMe)2{[(C6H4)PhP(C5H4)]Fe(C5H5)}2(HO2CMe)2] and [Rh2(O2CMe)2{[(C6H4)PhP(C5H4)]2Fe}(HO2CMe)]·CH2Cl2. J. Chem. Soc., Dalton Trans. 1993, 1681–1688. 10.1039/DT9930001681. DOI

Muller A.; Otto S.; Roodt A. Rapid phosphorus(III) ligand evaluation utilising potassium selenocyanate. Dalton Trans. 2008, 650–657. 10.1039/B712782K. PubMed DOI

Donaghy K. J.; Carroll P. J.; Sneddon L. G. Reactions of 1,1′-Bis(diphenylphosphino)ferrocene with Boranes, Thiaboranes, and Carboranes. Inorg. Chem. 1997, 36, 547–553. 10.1021/ic9611913. DOI

Štěpnička P.; Císařová I. Selective borane reduction of phosphinoferrocene carbaldehydes to phosphinoalcohol–borane adducts. The coordination behaviour of 1-(diphenylphosphino)-1′-(methoxymethyl)ferrocene, a new ferrocene O,P-hybrid donor prepared from such an adduct. Dalton Trans. 2013, 42, 3373–3389. 10.1039/C2DT32511J. PubMed DOI

Lindner C.; Maryasin B.; Richter F.; Zipse H. Methyl cation affinity (MCA) for phosphanes. J. Phys. Org. Chem. 2010, 23, 1036–1042. 10.1002/poc.1726. DOI

Lindner C.; Tandon R.; Maryasin B.; Larionov E.; Zipse H. Cation affinity numbers of Lewis bases. Beilstein J. Org. Chem. 2012, 8, 1406–1442. 10.3762/bjoc.8.163. PubMed DOI PMC

Henry M. C.; Wittig G. The Organometallic Alkylidene Reaction. J. Am. Chem. Soc. 1960, 82, 563–564. 10.1021/ja01488a017. DOI

Kübler P.; Sundermeyer J. Ferrocenyl-phosphonium ionic liquids–synthesis, characterisation and electrochemistry. Dalton Trans. 2014, 43, 3750–3766. 10.1039/c3dt53402b. PubMed DOI

Vosáhlo P.; Císařová I.; Štěpnička P. Synthesis, coordination behavior, and catalytic properties of dppf congeners with an inserted carbonyl moiety. New J. Chem. 2022, 46, 21536–21552. 10.1039/D2NJ04270C. DOI

Holmes R. R.; Day R. O.; Chandrasekhar V.; Holmes J. M. Pentacoordinated molecules. 67. Formation and structure of cyclic five-coordinated antimony derivatives. The first square-pyramidal geometry for a bicyclic stiborane. Inorg. Chem. 1987, 26, 157–163. 10.1021/ic00248a031. DOI

Tofan D.; Gabbaï F. P. Fluorinated antimony(V) derivatives: strong Lewis acidic properties and application to the complexation of formaldehyde in aqueous solutions. Chem. Sci. 2016, 7, 6768–6778. 10.1039/C6SC02558G. PubMed DOI PMC

Arduengo A. J. III; Stewart C. A.; Davidson F.; Dixon D. A.; Becker J. Y.; Culley S. A.; Mizen M. B. The Synthesis, Structure, and Chemistry of 10-Pn-3 Systems: Tricoordinate Hypervalent Pnictogen Compounds. J. Am. Chem. Soc. 1987, 109, 627–647. 10.1021/ja00237a001. DOI

Chishiro A.; Akioka I.; Sumida A.; Oka K.; Tohnai N.; Yumura T.; Imoto H.; Naka K. Tetrachlorocatecholates of triarylarsines as a novel class of Lewis acids. Dalton Trans. 2022, 51, 13716–13724. 10.1039/D2DT02145E. PubMed DOI

Štěpnička P.; Horký F. The coordination and catalytic chemistry of phosphanylferrocene chalcogenides. Eur. J. Inorg. Chem. 2022, 2022, e20220027610.1002/ejic.202200276. DOI

Kühl O.Phosphorus-31 NMR Spectroscopy: A Concise Introduction for the Synthetic Organic and Organometallic Chemist; Springer: 2008.

Baillie C.; Zhang L.; Xiao J. Ferrocenyl Monophosphine Ligands: Synthesis and Applications in the Suzuki–Miyaura Coupling of Aryl Chlorides. J. Org. Chem. 2004, 69, 7779–7782. 10.1021/jo048963u. PubMed DOI

Verschoor-Kirss M. J.; Hendricks O.; Verschoor C. M.; Conry R.; Kirss R. U. Chemical oxidation of ferrocenyl(phenyl)phosphines and ferrocenyl(phenyl)phosphine chalcogenides. Inorg. Chim. Acta 2016, 450, 30–38. 10.1016/j.ica.2016.05.010. DOI

Beckmann U.; Süslüyan D.; Kunz P. C. Is the 1JPSe Coupling Constant a Reliable Probe for the Basicity of Phosphines? A 31P NMR Study. Phosphorus, Sulfur, Silicon, Relat. Elem. 2011, 186, 2061–2070. 10.1080/10426507.2010.547892. DOI

Fang Z.-G.; Hor T. S. A.; Wen Y.-S.; Liu L.-K.; Mak T. C. W. Molecular structures of 1,1′-bis(diphenylphosphino) ferrocene oxide and sulphide and their thermal properties. Polyhedron 1995, 14, 2403–2409. 10.1016/0277-5387(95)00072-Z. DOI

Pilloni G.; Longato B.; Bandoli G.; Corain B. Bonding ability of 1,1′-bis(diphenylthiophosphoryl)ferrocene (dptpf) and its selenium analogue towards copper(I). Crystal structure of [Cu(dptpf)]BF4. J. Chem. Soc., Dalton Trans. 1997, 819–826. 10.1039/a606877d. DOI

Štěpnička P.; Císařová I. Synthesis of [1′-(diphenylthiophosphoryl)ferrocenyl]ethyne and alkyne-metal complexes thereof. J. Organomet. Chem. 2006, 691, 2863–2871. 10.1016/j.jorganchem.2006.02.027. DOI

Kahn S. L.; Breheney M. K.; Martinak S. L.; Fosbenner S. M.; Seibert A. R.; Kassel W. S.; Dougherty W. G.; Nataro C. Synthesis, Characterization, and Electrochemistry of Compounds Containing 1-Diphenylphosphino-1′-(di-tert-butylphosphino)ferrocene (dppdtbpf). Organometallics 2009, 28, 2119–2126. 10.1021/om800850c. DOI

Fernandes T. A.; Solařová H.; Císařová I.; Uhlík F.; Štícha M.; Štěpnička P. Synthesis of phosphinoferrocene amides and thioamides from carbamoyl chlorides and the structural chemistry of Group 11 metal complexes with these mixed-donor ligands. Dalton Trans. 2015, 44, 3092–3108. 10.1039/C4DT03279A. PubMed DOI

Schulz J.; Vosáhlo P.; Uhlík F.; Císařová I.; Štěpnička P. Probing the Influence of Phosphine Substituents on the Donor and Catalytic Properties of Phosphinoferrocene Carboxamides: A Combined Experimental and Theoretical Study. Organometallics 2017, 36, 1828–1841. 10.1021/acs.organomet.7b00181. DOI

Vosáhlo P.; Císařová I.; Štěpnička P. Comparing the asymmetric dppf-type ligands with their semi-homologous counterparts. J. Organomet. Chem. 2018, 860, 14–29. 10.1016/j.jorganchem.2018.01.009. DOI

Mantina M.; Chamberlin A. C.; Valero R.; Cramer C. J.; Truhlar D. G. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A 2009, 113, 5806–5812. 10.1021/jp8111556. PubMed DOI PMC

Cordero B.; Gómez V.; Platero-Prats A. E.; Revés M.; Echeverría J.; Cremades E.; Barragán F.; Alvarez S. Covalent radii revisited. Dalton Trans. 2008, 2832–2838. 10.1039/b801115j. PubMed DOI

Addison A. W.; Rao T. N.; Reedijk J.; van Rijn J.; Verschoor G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984, 1349–1356. 10.1039/DT9840001349. DOI

Gonzalez V. M.; Park G.; Yang M.; Gabbai F. Fluoride anion complexation and transport using a stibonium cation stabilized by an intramolecular P = O → Sb pnictogen bond. Dalton Trans. 2021, 50, 17897–17900. 10.1039/D1DT03370K. PubMed DOI

Adeleke J. A.; Liu L.-K. Diphenylphosphinoferrocene. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1993, 49, 680–682. 10.1107/S0108270192010436. DOI

Kim T.-J.; Lee J.-H.; Kwon S.-C.; Kwon K.-H.; Uhm J.-K.; Lee H.; Byum S.-I. Reaction and Coordination Chemistry of Ferrocenylphosphines with (η5-C5H5)Co(CO)2-Crystal structures of Two Ferrocenylphosphine Oxides. Bull. Korean Chem. Soc. 1991, 12, 116–118.

Bader R. F. W. A Quantum Theory of Molecular Structure and its Applications. Chem. Rev. 1991, 91, 893–928. 10.1021/cr00005a013. DOI

Cremer D.; Kraka E. Chemical-Bonds without Bonding Electron-Density – Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical-Bond?. Angew. Chem., Int. Ed. Engl. 1984, 23, 627–628. 10.1002/anie.198406271. DOI

Hupf E.; Lork E.; Mebs S.; Beckmann J. Intramolecularly Coordinated (6-(Diphenylphosphino)acenaphth-5-yl)stannanes. Repulsion vs Attraction of P- and Sn-Containing Substituents in the peri Positions. Organometallics 2014, 33, 2409–2423. 10.1021/om500133a. DOI

Hupf E.; Lork E.; Mebs S.; Checińska L.; Beckmann J. Probing Donor-Acceptor Interactions in peri-Substituted Diphenylphosphinoacenaphthyl-Element Dichlorides of Group 13 and 15 Elements. Organometallics 2014, 33, 7247–7259. 10.1021/om501036c. DOI

Hupf E.; Do T. G.; Nordheider A.; Wehrhahn M.; Sanz Camacho P.; Ashbrook S. E.; Lork E.; Slawin A. M. Z.; Mebs S.; Woollins J. D.; Beckmann J. Selective Oxidation and Functionalization of 6-Diphenylphosphinoacenaphthyl-5-tellurenyl Species 6-Ph2P-Ace-5-TeX (X = Mes, Cl, O3SCF3). Various Types of P–E···Te(II,IV) Bonding Situations (E = O, S, Se). Organometallics 2017, 36, 1566–1579. 10.1021/acs.organomet.7b00133. DOI

Mokrai R.; Barrett J.; Apperley D. C.; Benkö Z.; Heift D. Tweaking the Charge Transfer: Bonding Analysis of Bismuth(III) Complexes with a Flexidentate Phosphane Ligand. Inorg. Chem. 2020, 59, 8916–8924. 10.1021/acs.inorgchem.0c00734. PubMed DOI PMC

Streitweiser A. Jr; Rajca A.; McDowell R. S.; Glaser R. Semipolar P–O and P–C Bonds: A Theoretical Study of Hypophosphite and Related Methylenephosphoranes. J. Am. Chem. Soc. 1987, 109, 4184–4188. 10.1021/ja00248a010. DOI

Chesnut D. B. An Ab Initio Nuclear Magnetic Resonance and Atoms-in-Molecules Study of the PO Bond in Phosphine Oxides. J. Am. Chem. Soc. 1998, 120, 10504–10510. 10.1021/ja9822198. DOI

Dobado J. A.; Martínez-García H.; Molina J. M.; Sundberg M. R. Chemical Bonding in Hypervalent Molecules Revised. Application of the Atoms in Molecules Theory to Y3X and Y3XZ (Y = H or CH3; X = N, P or As; Z = O or S) Compounds. J. Am. Chem. Soc. 1998, 120, 8461–8471. 10.1021/ja980141p. DOI

Chesnut D. B.; Savin A. The Electron Localization Function (ELF) Description of the PO Bond in Phosphine Oxide. J. Am. Chem. Soc. 1999, 121, 2335–2336. 10.1021/ja984314m. DOI

Yamada K.; Koga N. Variationally Determined Electronic States for the Theoretical Analysis of Intramolecular Interaction. II. Qualitative Nature of the P–O Bond in Phosphine Oxides. J. Comput. Chem. 2013, 34, 149–161. 10.1002/jcc.23118. PubMed DOI

Yang T.; Andrada D. M.; Frenking G. Dative versus electron-sharing bonding in N-oxides and phosphane oxides R3EO and relative energies of the R2EOR isomers (E = N, P; R = H, F, Cl, Me, Ph). A theoretical study. Phys. Chem. Chem. Phys. 2018, 20, 11856–11866. 10.1039/C8CP00951A. PubMed DOI

Lindquist-Kleissler B.; Wenger J. S.; Johnstone T. C. Analysis of Oxygen–Pnictogen Bonding with Full Bond Path Topological Analysis of the Electron Density. Inorg. Chem. 2021, 60, 1846–1856. 10.1021/acs.inorgchem.0c03308. PubMed DOI

Haaland A.; Nilsson J. E.; et al. The Determination of Barriers to Internal Rotation by Means of Electron Diffraction. Ferrocene and Ruthenocene. Acta Chem. Scand. 1968, 22, 2653–2670. 10.3891/acta.chem.scand.22-2653. DOI

Erdmann P.; Leitner J.; Schwarz J.; Greb L. An Extensive Set of Accurate Fluoride Ion Affinities for p-Block Element Lewis Acids and Basic Design Principles for Strong Fluoride Ion Acceptors. ChemPhysChem 2020, 21, 987–994. 10.1002/cphc.202000244. PubMed DOI PMC

Knizia G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013, 9, 4834–4843. 10.1021/ct400687b. PubMed DOI

Knizia G.; Klein J. E. M. N. Electron Flow in Reaction Mechanisms–Revealed from First Principles. Angew. Chem., Int. Ed. 2015, 54, 5518–5522. 10.1002/anie.201410637. PubMed DOI

Sandblom N.; Ziegler T.; Chivers T. A density functional study of the bonding in tertiary phosphine chalcogenides and related molecules. Can. J. Chem. 1996, 74, 2363–2371. 10.1139/v96-263. DOI

Yamada K.; Koga N. Variationally Determined Electronic States for the Theoretical Analysis of Intramolecular Interaction. II. Qualitative Nature of the P–O Bond in Phosphine Oxides. J. Comput. Chem. 2013, 34, 149–161. 10.1002/jcc.23118. PubMed DOI

Gritzner G.; Kůta J. Recommendations on reporting electrode potentials in nonaqueous solvents. Pure Appl. Chem. 1984, 56, 461–466. 10.1351/pac198456040461. DOI

Gagné R. R.; Koval C. A.; Lisensky G. C. Ferrocene as an Internal Standard for Electrochemical Measurements. Inorg. Chem. 1980, 19, 2854–2855. 10.1021/ic50211a080. DOI

Pilloni G.; Longato B.; Corain B. Heteropolymetallic complexes of 1,1′-bis(diphenylphosphino)ferrocene (dppf) VII. Redox behaviour of dppf. J. Organomet. Chem. 1991, 420, 57–65. 10.1016/0022-328X(91)86445-V. DOI

Zanello P.; Opromolla G.; Giorgi G.; Sasso G.; Togni A. Redox behaviour of ferrocene derivatives VIII. 1,1′-Bis(diphenylphosphino)ferrocenes. J. Organomet. Chem. 1996, 506, 61–65. 10.1016/0022-328X(95)05720-A. DOI

Nataro C.; Campbell A. N.; Ferguson M. A.; Incarvito C. D.; Rheingold A. L. Group 10 metal complexes of 1,1′-bis(diphenylphosphino)ferrocene (dppf) and 1,1′-bis(diphenylphosphino)ruthenocene: A structural and electrochemical investigation. X-ray structures of [MCl2(dppr)] (M = Ni, Pd). J. Organomet. Chem. 2003, 673, 47–55. 10.1016/S0022-328X(03)00155-4. DOI

Podlaha J.; Štěpnička P.; Ludvík J.; Císařová I. 1′-(Diphenylphosphino)ferrocenecarboxylic acid and Its P-Oxide and Methylester: Synthesis, Characterization, Crystal Structure, and Electrochemistry. Organometallics 1996, 15, 543–550. 10.1021/om950528q. DOI

Ghent B. L.; Martinak S. L.; Sites L. A.; Golen J. A.; Rheingold A. L.; Nataro C. Electrochemistry and complexation of Josiphos ligands. J. Organomet. Chem. 2007, 692, 2365–2374. 10.1016/j.jorganchem.2007.02.039. DOI

Bennett M. A.; Bhargava S. K.; Bond A. M.; Burgar I. M.; Guo S.-X.; Kar G.; Privér S. H.; Wagler J.; Willis A. C.; Torriero A. A. J. Synthesis, X-ray structure and electrochemical oxidation of palladium(II) complexes of ferrocenyldiphenylphosphine. Dalton Trans. 2010, 39, 9079–9090. 10.1039/c0dt00016g. PubMed DOI

Swartz B. D.; Nataro C. Anodic Electrochemistry of Ferrocenylphosphine and Ruthenocenylphosphine Chalcogenide Complexes and Lewis Acid Adducts. Organometallics 2005, 24, 2447–2451. See also10.1021/om050074p. DOI

Barriere F.; Kirss R. U.; Geiger W. E. Anodic Electrochemistry of Multiferrocenyl Phosphine and Phosphine Chalcogenide Complexes in Weakly Nucleophilic Electrolytes. Organometallics 2005, 24, 48–52. 10.1021/om040123i. DOI

Schulz J.; Uhlík F.; Speck J. M.; Císařová I.; Lang H.; Štěpnička P. Synthesis, Crystal Structures, and Electrochemical Behavior of Fe–Ru Heterobimetallic Complexes with Bridged Metallocene Units. Organometallics 2014, 33, 5020–5032. 10.1021/om500505n. DOI

Škoch K.; Císařová I.; Uhlík F.; Štěpnička P. Comparing the reactivity of isomeric phosphinoferrocene nitrile and isocyanide in Pd(ii) complexes: synthesis of simple coordination compounds vs. preparation of P-chelated insertion products and Fischer-type carbenes. Dalton Trans. 2018, 47, 16082–16101. 10.1039/C8DT03564D. PubMed DOI

Škoch K.; Schulz J.; Císařová I.; Štěpnička P. Pd(II) Complexes with Chelating Phosphinoferrocene Diaminocarbene Ligands: Synthesis, Characterization, and Catalytic Use in Pd-Catalyzed Borylation of Aryl Bromides. Organometallics 2019, 38, 3060–3073. 10.1021/acs.organomet.9b00398. DOI

Vosáhlo P.; Schulz J.; Císařová I.; Štěpnička P. Cyclopalladation of a ferrocene acylphosphine and the reactivity of the C–H activated products. Dalton Trans. 2021, 50, 6232–6244. 10.1039/D1DT00668A. PubMed DOI

Lo Y.-H.; Gabbaï F. P. Controlling the Properties of a 2,2′-bipy–Platinum Dichloride Complex via Oxidation of a Peripheral Stibine Moiety. Organometallics 2018, 37, 2500–2506. 10.1021/acs.organomet.8b00296. DOI

Rössler K.; Rüffer T.; Walfort B.; Packheiser R.; Holze R.; Zharnikov M.; Lang H. Synthesis, characterization and electrochemical behavior of unsymmetric transition metal-terminated biphenyl ethynyl thiols. J. Organomet. Chem. 2007, 692, 1530–1545. 10.1016/j.jorganchem.2006.12.002. DOI

Dunstan S. P. C.; Healy P. C.; Sobolev A. N.; Tiekink E. R. T.; White A. H.; Williams M. L. Isomorphism in the structural chemistry of two-coordinate adducts of diphenyl(2-formylphenyl)phosphine and triphenylphosphine with gold(I) halides. J. Mol. Struct. 2014, 1072, 253–259. 10.1016/j.molstruc.2014.05.020. DOI

Schmidbaur H. The Aurophilicity Phenomenon: A Decade of Experimental Findings, Theoretical Concepts and Emerging Applications. Gold Bull. 2000, 33, 3–10. 10.1007/BF03215477. DOI

Schmidbaur H.; Schier A. A briefing on aurophilicity. Chem. Soc. Rev. 2008, 37, 1931–1951. 10.1039/b708845k. PubMed DOI

Schmidbaur H.; Schier A. Aurophilic interactions as a subject of current research: an up-date. Chem. Soc. Rev. 2012, 41, 370–412. 10.1039/C1CS15182G. PubMed DOI

Steed K. M.; Steed J. W. Packing Problems: High Z′ Crystal Structures and Their Relationship to Cocrystals, Inclusion Compounds, and Polymorphism. Chem. Rev. 2015, 115, 2895–2933. 10.1021/cr500564z. PubMed DOI

Taylor R.; Cole J. C.; Groom C. R. Molecular Interactions in Crystal Structures with Z′ > 1. Cryst. Growth Des. 2016, 16, 2988–3001. 10.1021/acs.cgd.6b00355. DOI

Orthaber A.; Borucki S.; Shen W.; Réau R.; Lescop C.; Pietschnig R. Coordination Behaviour of a Hexadentate1,1′-Ferrocenylene-Bridged Bisphosphole towards CoinageMetal Centres. Eur. J. Inorg. Chem. 2014, 2014, 1751–1759. 10.1002/ejic.201301281. DOI

Hashmi A. S. K.; Weyrauch J. P.; Frey W.; Bats J. W. Gold Catalysis: Mild Conditions for the Synthesis of Oxazoles from N-Propargylcarboxamides and Mechanistic Aspects. Org. Lett. 2004, 6, 4391–4394. 10.1021/ol0480067. PubMed DOI

Weyrauch J. P.; Hashmi A. S. K.; Schuster A.; Hengst T.; Schetter S.; Littmann A.; Rudolph M.; Hamzic M.; Visus J.; Rominger F.; Frey W.; Bats J. W. Cyclization of Propargylic Amides: Mild Access to Oxazole Derivatives. Chem. Eur. J. 2010, 16, 956–963. 10.1002/chem.200902472. PubMed DOI

Bárta O.; Císařová I.; Schulz J.; Štěpnička P. Assessing the influence of phosphine substituents on the catalytic properties of self-stabilised digold(I) complexes with supporting ferrocene phosphinonitrile ligands. New J. Chem. 2019, 43, 11258–11262. 10.1039/C9NJ02555C. DOI

Vosáhlo P.; Štěpnička P. Assessing the role of substituents in ferrocene acylphosphines and their impact on gold-catalysed reactions. New J. Chem. 2023, 47, 4510–4520. 10.1039/D3NJ00201B. DOI

He W.; Li C.; Zhang L. An Efficient [2 + 2 + 1] Synthesis of 2,5-Disubstituted Oxazoles via Gold-Catalyzed Intermolecular Alkyne Oxidation. J. Am. Chem. Soc. 2011, 133, 8482–8485. 10.1021/ja2029188. PubMed DOI

Astruc D. Why is Ferrocene so Exceptional?. Eur. J. Inorg. Chem. 2017, 2017, 6–29. 10.1002/ejic.201600983. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...