Intramolecular Interactions between the Pnictogen Groups in a Rigid Ferrocene Phosphinostibine and the Corresponding Phosphine Chalcogenides, Stiboranes, and Their Complexes

. 2025 Jun 09 ; 64 (22) : 11075-11092. [epub] 20250525

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40413762

Differences in the chemical properties of phosphorus and antimony enable the synthesis of heteroditopic derivatives whose properties can be modified by altering the pnictogen substituents. In this work, 1-(diphenylstibino)-2-(dicyclohexylphosphino)ferrocene, [Fe(η5-1-Ph2Sb-2-Cy2PC5H3)(η5-C5H5)] (1), and the corresponding phosphine chalcogenides [Fe(η5-1-Ph2Sb-2-Cy2P(E)C5H3)(η5-C5H5)] (E = O, S, Se) and catecholatostiboranes [Fe(η5-1-Ph2(Cl4C6O2)Sb-2-Cy2P(E)C5H3)(η5-C5H5)] (E = void, O, S, Se) were examined, with a focus on the intramolecular donor-acceptor interactions between the antimony and the phosphorus substituents. Experimental data and theoretical analysis consistently indicated that these interactions can be described as pnictogen bonding between the Lewis acidic antimony and the lone pair at the phosphorus substituent (either at the phosphorus or at the chalcogen atom) and that they are significantly stronger in the stiboranes due to the increased Lewis acidity of the Sb atom. Noncovalent interactions were also observed in the chlorogold(I) complexes obtained from 1 and catecholatostiborane [Fe(η5-1-Ph2(Cl4C6O2)Sb-2-Cy2PC5H3)(η5-C5H5)] as P-donors. As shown by experiments in Au-mediated cyclization of N-propargylbenzamide, the noncoordinated antimony group influenced the catalytic properties of the Au(I) complexes. Notably, an intramolecular Cl → Sb pnictogen bond affected the molecular geometry of the Pd(II) complex [PdCl2(1-κ2P,Sb)], which in turn suggested that the structural influence exerted by ligands of this type needs to be assessed with care.

Zobrazit více v PubMed

Scerri, E. R. The Periodic Table: Its Story and Its Significance; Oxford University Press: New York, 2007.

The Periodic Table I: Historical Development and Essential Features, Mingos, D. M. P. , Ed.; Springer: Cham, 2020.

The Periodic Table II: Catalytic, Materials, Biological and Medical Applications, Mingos, D. M. P. , Ed.; Springer: Cham, 2020.

Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands. McAuliffe, M. C. Ed.; Macmillan Press: London, 1973.

Champness N. R., Levason W.. Coordination chemistry of stibine and bismuthine ligands. Coord. Chem. Rev. 1994;133:115–217. doi: 10.1016/0010-8545(94)80058-8. DOI

Werner H.. The Way into the Bridge: A New Bonding Mode of Tertiary Phosphanes, Arsanes and Stibanes. Angew. Chem., Int. Ed. 2004;43:938–954. doi: 10.1002/anie.200300627. PubMed DOI

Levason W., Reid G.. Developments in the coordination chemistry of stibine ligands. Coord. Chem. Rev. 2006;250:2565–2594. doi: 10.1016/j.ccr.2006.03.024. DOI

Greenacre V. K., Levason W., Reid G.. Developments in the chemistry of stibine and bismuthine complexes. Coord. Chem. Rev. 2021;432:No. 213698. doi: 10.1016/j.ccr.2020.213698. DOI

Lipschultz J. M., Li G., Radosevich A. T.. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Table Trends and Emerging Opportunities in Group 15. J. Am. Chem. Soc. 2021;143:1699–1721. doi: 10.1021/jacs.0c12816. PubMed DOI PMC

Hollingsworth W. M., Hill E. A.. Exploring the potential role of heavy pnictogen elements in ligand design for new metal-ligand cooperative chemistry. J. Coord. Chem. 2022;75:1436–1466. doi: 10.1080/00958972.2022.2124863. DOI

Son Y. J., Kim D., Park J. W., Yu Y., Hwang S. J.. Coordination chemistry of ligands bearing heavy group 14 and 15 elements: Comparative analysis of their influence on transition metal chemistry. Coord. Chem. Rev. 2025;526:No. 216317. doi: 10.1016/j.ccr.2024.216317. DOI

Benjamin S. L., Krämer T., Levason W., Light M. E., Macgregor S. A., Reid G.. [Pd4(μ3-SbMe3)4(SbMe3)4]: A Pd(0) Tetrahedron with μ3-Bridging Trimethylantimony Ligands. J. Am. Chem. Soc. 2016;138:6964–6967. doi: 10.1021/jacs.6b04060. PubMed DOI

Jolleys A., Lake B. R. M., Krämer T., Benjamin S. L.. A Five-Membered PdSb n Coordination Series. Organometallics. 2018;37:3854–3862. doi: 10.1021/acs.organomet.8b00556. DOI

Benjamin S. L., Levason W., Reid G., Warr R. P.. Halostibines SbMeX2 and SbMe2X: Lewis Acids or Lewis Bases? Organometallics. 2012;31:1025–1034. doi: 10.1021/om2010996. DOI

Benjamin S. L., Reid G.. Neutral organoantimony­(III) and organobismuth­(III) ligands as acceptors in transition metal complexes – Role of substituents and co-ligands. Coord. Chem. Rev. 2015;297–298:168–180. doi: 10.1016/j.ccr.2015.02.003. DOI

Wade C. R., Ke I.-S., Gabbaï F. P.. Sensing of Aqueous Fluoride Anions by Cationic Stibine-Palladium Complexes. Angew. Chem., Int. Ed. 2012;51:478–481. doi: 10.1002/anie.201106242. PubMed DOI

Ke I.-S., Myahkostupov M., Castellano F. N., Gabbaï F. P.. Stibonium ions for the fluorescence turn-on sensing of F– in drinking water at parts per million concentrations. J. Am. Chem. Soc. 2012;134:15309–15311. doi: 10.1021/ja308194w. PubMed DOI

Hirai M., Gabbaï F. P.. Lewis acidic stiborafluorenes for the fluorescence turn-on sensing of fluoride in drinking water at ppm concentrations. Chem. Sci. 2014;5:1886–1893. doi: 10.1039/C4SC00343H. DOI

Christianson A. M., Gabbaï F. P.. A Lewis Acidic, π-Conjugated Stibaindole with a Colorimetric Response to Anion Binding at Sb­(III) Organometallics. 2017;36:3013–3015. doi: 10.1021/acs.organomet.7b00419. DOI

Kuhn H., Docker A., Beer P. D.. Anion Recognition with Antimony­(III) and Bismuth­(III) Triaryl-Based Pnictogen Bonding Receptors. Chem. - Eur. J. 2022;28:e202201838. doi: 10.1002/chem.202201838. PubMed DOI PMC

Louis Beckmann J., Krieft J., Vishnevskiy Y. V., Neumann B., Stammler H.-G., Mitzel N. W.. A Bidentate Antimony Pnictogen Bonding Host System. Angew. Chem., Int. Ed. 2023;62:e202310439. doi: 10.1002/anie.202310439. PubMed DOI

Qiu J., Bateman C. N., Lu S., George G. C. III, Li X., Gorden J. D., Vasylevskyi S., Cozzolino A. F.. Solution Studies of a Water-Stable, Trivalent Antimony Pnictogen Bonding Anion Receptor. Inorg. Chem. 2023;62:12582–12589. doi: 10.1021/acs.inorgchem.3c01887. PubMed DOI

Castro-Castro P., Gabbaï F. P.. Pnictogen Bonding at the Core of a Carbene-Stiborane-Gold Complex. Organometallics. 2024;43:2334–2341. doi: 10.1021/acs.organomet.4c00347. PubMed DOI PMC

Webber C. K., Kong F., Kumawat J., Joy J., Richardson E. K., Siano P., Dickie D. A., Ess D. H., Gunnoe T. B.. Synthesis of Quinoline-Based Pt–Sb Complexes with L- or Z-Type Interaction. Organometallics. 2024;43:1789–1802. doi: 10.1021/acs.organomet.4c00221. PubMed DOI PMC

Zhou B., Bedajna S., Gabbaï F. P.. Pnictogen Bonding at the Service of Gold Catalysis: The Case of a Phosphinostiborane Gold Complex. Chem. Commun. 2023;60:192–195. doi: 10.1039/D3CC04942F. PubMed DOI

Rat C. I., Silvestru C., Breunig H. J.. Hypervalent organoantimony and -bismuth compounds with pendant arm ligands. Coord. Chem. Rev. 2013;257:818–879. doi: 10.1016/j.ccr.2012.07.026. DOI

Benjamin S. L., Levason W., Reid G., Rogers M. C.. Hybrid dibismuthines and distibines as ligands towards transition metal carbonyls. Dalton Trans. 2011;40:6565–6574. doi: 10.1039/c1dt10447k. PubMed DOI

Benjamin S. L., Karagiannidis L., Levason W., Reid G., Rogers M. C.. Hybrid Dibismuthines and Distibines: Preparation and Properties of Antimony and Bismuth Oxygen, Sulfur, and Nitrogen Donor Ligands. Organometallics. 2011;30:895–904. doi: 10.1021/om1010148. DOI

Jeffrey J. C., Rauchfuss T. B.. Metal Complexes of Hemilabile Ligands. Reactivity and Structure of Dichlorobis­(o-(diphenylphosphino)­anisole)­ruthenium­(II) Inorg. Chem. 1979;18:2658–2666. doi: 10.1021/ic50200a004. DOI

Slone, C. S. ; Weinberger, D. A. ; Mirkin, C. A. . The Transition Metal Coordination Chemistry of Hemilabile Ligands. In Progress in Inorganic Chemistry, Karlin, K. D. , Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999; pp. 233–350.

Braunstein P., Naud F.. Hemilability of Hybrid Ligands and the Coordination Chemistry of Oxazoline-Based Systems. Angew. Chem., Int. Ed. 2001;40:680–699. doi: 10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0. PubMed DOI

Kaufmann T., Joußen R., Klas N., Vahrenhorts A.. Neue Reagenzien, XXV. [(Diphenylstibino)­methyl]­lithium und -kupfer­(I); Synthese und präparative Anwendungen. Chem. Ber. 1983;116:473–478. doi: 10.1002/cber.19831160207. DOI

Manger M., Wolf J., Laubender M., Teichert M., Stalke D., Werner H.. The First Peralkylated Phosphino­(stibino)­methanes and Their Organometallic Rhodium Complexes. Chem. - Eur. J. 1997;3:1442–1450. doi: 10.1002/chem.19970030910. DOI

Manger M., Gevert O., Werner H.. Unusual Dinuclear Hydridorhodium­(III) Complexes Containing Bulky Phosphinyl­(stibanyl)­methanes as Chelating Ligands. Chem. Ber. 1997;130:1529–1531. doi: 10.1002/cber.19971301028. DOI

Karsch H. H., Witt E.. Phosphinomethanides and Group 15 element halides: Redox reactions, rearrangements and novel heterocycles. J. Organomet. Chem. 1997;529:151–169. doi: 10.1016/S0022-328X(96)06578-3. DOI

Levason W., McAuliffe C. A.. Bidentate ligands containing very soft donor atoms. Nickel­(II) complexes of arylarsines and arylstibines. Inorg. Chim. Acta. 1974;11:33–40. doi: 10.1016/S0020-1693(00)93689-2. DOI

Levason W., McAuliffe C. A.. Bidentate group VB ligands. Part XVII. Palladium­(II), platinum­(II), and rhodium­(III) complexes of o-phenylenebis­(diphenylphosphine), (o-diphenylphosphinophenyl)­diphenylstibine, and (o-diphenylarsinophenyl)­diphenylstibine1. Inorg. Chim. Acta. 1976;16:167–172. doi: 10.1016/S0020-1693(00)91707-9. DOI

Levason W., Smith K. G., McAuliffe C. A., McCullough F. P., Sedgwick R. D., Murray S. G.. Synthesis and properties of group 5B ligand analogues of o-phenylenebis­(dimethylarsine), o-C6H4(EMe2)­(E′Me2) where E, E′ = P, N, As, or Sb. J. Chem. Soc., Dalton Trans. 1979:1718–1724. doi: 10.1039/DT9790001718. DOI

Talay R., Rehder D.. Carbonylvanadium, -manganese and -molybdenum complexes of the ligands o-C6H4EPh2(E′Ph2) (E,E′ = P, As, Sb, Bi) and cis-Ph2PCH=CHPPh2 . Z. Naturforsch. 1981;36:451–462. doi: 10.1515/znb-1981-0411. DOI

Gray L. R., Hale A. L., Levason W., McCullough F. P., Webster M.. Diphosphine and diarsine complexes of chromium­(III). Crystal and molecular structure of tetra-n-propylammonium [cis-1,2-bis­(diphenylphosphino)­ethene]­tetrachlorochromate­(III) J. Chem. Soc., Dalton Trans. 1983:2573–2580. doi: 10.1039/dt9830002573. DOI

Black J. R., Levason W., Spicer M. D., Webster M.. Synthesis and solution multinuclear magnetic resonance studies of homoleptic copper­(I) complexes of Group 15 donor ligands. J. Chem. Soc. Dalton Trans. 1993:3129–3136. doi: 10.1039/DT9930003129. DOI

Jewiss H. C., Levason W., Spicer M. D., Webster M.. Coordination chemistry of higher oxidation states. 25. Synthesis and properties (including 59Co NMR Spectra) of cobalt­(III) complexes of ligands containing two tertiary stibine groups. Crystal structure of trans-[Co­{o-C6H4(SbMe2)2}2Cl2]2[CoCl4] Inorg. Chem. 1987;26:2102–2016. doi: 10.1021/ic00260a018. DOI

Chalmers B. A., Bühl M., Arachige K. S. A., Slawin A. M. Z., Kilian P.. Structural, Spectroscopic and Computational Examination of the Dative Interaction in Constrained Phosphine-Stibines and Phosphine-Stiboranes. Chem. - Eur. J. 2015;21:7520–7531. doi: 10.1002/chem.201500281. PubMed DOI

Chalmers B. A., Meigh C. B. E., Nejman P. S., Bühl M., Lébl T., Woollins J. D., Slawin A. M. Z., Kilian P.. Geminally Substituted Tris­(acenaphthyl) and Bis­(acenaphthyl) Arsines, Stibines, and Bismuthine: A Structural and Nuclear Magnetic Resonance Investigation. Inorg. Chem. 2016;55:7117–7125. doi: 10.1021/acs.inorgchem.6b01079. PubMed DOI

Stuart Jones J., Gabbaï F. P.. Activation of an Au–Cl Bond by a Pendent SbIII Lewis Acid: Impact on Structure and Catalytic Activity. Chem. - Eur. J. 2017;23:1136–1144. doi: 10.1002/chem.201604521. PubMed DOI

Yasuike S., Kawara S., Okajima S., Seki H., Yamaguchi K., Kurita J.. Non-C 2-symmetrical antimony–phosphorus ligand, (R/S)-2-diphenylphosphano-2′-di­(p-tolyl)­stibano-1,1′-binaphthyl (BINAPSb): Preparation and its use for asymmetric reactions as a chiral auxiliary. Tetrahedron Lett. 2004;45:9135–9138. doi: 10.1016/j.tetlet.2004.10.020. DOI

Dawson J. W., Venanzi L. M.. Phosphorus-31 nuclear magnetic resonance studies of coordination compounds. I. Stereochemistry of some complexes with multidentate ligands. J. Am. Chem. Soc. 1968;90:7229–7233. doi: 10.1021/ja01028a010. DOI

Higginson B. R., McAuliffe C. A., Venanzi L. M.. Anomalous ligand field effects in complexes of quadridentate ligands containing Group V donors. Inorg. Chim. Acta. 1971;5:37–40. doi: 10.1016/S0020-1693(00)95876-6. DOI

Wade C. R., Gabbaï F. P.. Two-Electron Redox Chemistry and Reversible Umpolung of a Gold–Antimony Bond. Angew. Chem., Int. Ed. 2011;50:7369–7372. doi: 10.1002/anie.201103109. PubMed DOI

Ke I.-S., Gabbaï F. P.. σ-Donor/Acceptor-Confused Ligands: The Case of a Chlorostibine. Inorg. Chem. 2013;52:7145–7151. doi: 10.1021/ic400736b. PubMed DOI

Ke I.-S., Gabbaï F. P.. Cu3(μ2-Cl)3 and Ag3(μ2-Cl)3 Complexes Supported by Tetradentate Trisphosphino-stibine and -bismuthine Ligands: Structural Evidence for Triply Bridging Heavy Pnictines. Aust. J. Chem. 2013;66:1281–1287. doi: 10.1071/CH13260. DOI

Jones J. S., Wade C. R., Gabbaï F. P.. Redox and Anion Exchange Chemistry of a Stibine-Nickel Complex: Writing L, X, Z Ligand Alphabet with a Single Element. Angew. Chem., Int. Ed. 2014;53:8876–8879. doi: 10.1002/anie.201404156. PubMed DOI

Ke I.-S., Jones J. S., Gabbaï F. P.. Anion-Controlled Switching of an X Ligand into a Z Ligand: Coordination Non-innocence of a Stiboranyl Ligand. Angew. Chem., Int. Ed. 2014;53:2633–2637. doi: 10.1002/anie.201309132. PubMed DOI

Yang H., Gabbaï F. P.. Activation of an Hydroamination Gold Catalyst by Oxidation of a Redox-Noninnocent Chlorostibine Z-Ligand. J. Am. Chem. Soc. 2015;137:13425–13432. doi: 10.1021/jacs.5b07998. PubMed DOI

You D., Gabbaï F. P.. Unmasking the Catalytic Activity of a Platinum Complex with a Lewis Acidic, Non-innocent Antimony Ligand. J. Am. Chem. Soc. 2017;139:6843–6846. doi: 10.1021/jacs.7b03287. PubMed DOI

Jones J. S., Wade C. R., Yang M., Gabbaï F. P.. On the coordination non-innocence of antimony in nickel­(II) complexes of the tetradentate (o-(Ph2PC6H4)3Sb ligand. Dalton Trans. 2017;46:5598–5604. doi: 10.1039/C6DT04817J. PubMed DOI

Sen S., Ke I.-S., Gabbaï F. P.. T-Shaped Gold→Stiborane Complexes as Carbophilic Catalysts: Influence of the Peripheral Substituents. Organometallics. 2017;36:4224–4230. doi: 10.1021/acs.organomet.7b00654. DOI

Piesch M., Gabbaï F. P., Scheer M.. Phosphino-Stibine Ligands for the Synthesis of Heterometallic Comlexes. Z. Anorg. Allg. Chem. 2021;647:266–278. doi: 10.1002/zaac.202000249. DOI

Singh K. K., Bhattacharyya A., Havenridge S., Ghabin M., Ausmann H., Siegler M. A., Aikens C. M., Das A.. A First Glance into Mixed Phosphine–Stibine Moieties as Protecting Ligands for Gold Clusters. Nanoscale. 2023;15:6934–6940. doi: 10.1039/D2NR05497C. PubMed DOI

Furan S., Hupf E., Boidol J., Brünig J., Lork E., Mebs S., Beckmann J.. Transition metal complexes of antimony centered ligands based upon acenaphthyl scaffolds. Coordination non-innocent or not? Dalton Trans. 2019;48:4504–4513. doi: 10.1039/C9DT00088G. PubMed DOI

Krieft J., Trapp P. C., Vishnevskiy Y. V., Neumann B., Stammler H.-G., Lamm J.-H., Mitzel N. W.. A Geminal Antimony­(III)/Phosphorus­(III) Frustrated Lewis Pair. Chem. Sci. 2024;15:12118–12125. doi: 10.1039/D4SC02785J. PubMed DOI PMC

Štěpnička P.. Forever young: The first seventy years of ferrocene. Dalton Trans. 2022;51:8085–8102. doi: 10.1039/D2DT00903J. PubMed DOI

Dey S., Pietschnig R.. 1,1′-Disubstituted Ferrocene Ligand Scaffolds Featuring Pnictogens Other than Phosphorus as Donor Sites. Molecules. 2024;29:5283. doi: 10.3390/molecules29225283. PubMed DOI PMC

Ferrocenes: Homogeneous Catalysis. Organic Synthesis. Materials Science, Togni, A. ; Hayashi, T. , Eds.; VCH: Weinheim, 1995.

Atkinson R. C. J., Gibson V. C., Long N. J.. The syntheses and catalytic applications of unsymmetrical ferrocene ligands. Chem. Soc. Rev. 2004;33:313–328. doi: 10.1039/b316819k. PubMed DOI

Arrayás R. G., Adrio J., Carretero J. C.. Recent Applications of Chiral Ferrocene Ligands in Asymmetric Catalysis. Angew. Chem., Int. Ed. 2006;45:7674–7715. doi: 10.1002/anie.200602482. PubMed DOI

Ferrocenes: Ligands, Materials and Biomolecules, Štěpnička, P. , Ed.; Wiley: Chichester, 2008.

Cunningham L., Benson A., Guiry P. J.. Recent developments in the synthesis and applications of chiral ferrocene ligands and organocatalysts in asymmetric catalysis. Org. Biomol. Chem. 2020;18:9329–9370. doi: 10.1039/D0OB01933J. PubMed DOI

Sharma P., Lopez J. G., Ortega C., Rosas N., Cabrera A., Alvarez C., Toscano A., Reyes E.. First ferrocenylstibines and their molecular structures. Inorg. Chem. Commun. 2006;9:82–85. doi: 10.1016/j.inoche.2005.09.029. DOI

Vázquez J., Sharma P., Cabrera A., Toscano A., Hernández S., Pérez J., Gutiérrez R.. Formation of (vinyl-ferrocenyl)­stibines involving β-elimination: Hypervalent Sb–N bonding. J. Organomet. Chem. 2007;692:3486–3491. doi: 10.1016/j.jorganchem.2007.04.020. DOI

Ortiz A. M., Sharma P., Pérez D., Rosas N., Cabrera A., Velasco L., Toscano A., Hernández S.. New 1,2-disubstituted ferrocenyl stibines containing N-heterocyclic pendant arm: Sb–N hypervalent compounds. J. Organomet. Chem. 2009;694:2037–2042. doi: 10.1016/j.jorganchem.2009.01.051. DOI

Pérez D., Sharma P., Cabrera A., Rosas N., Arellano I., Toscano A., Hernández S.. Preparation of new 1,2-disubstituted ferrocenyl stibines containing ether/thioether arm from a quaternarny ferrocenyl ammonium salt. Polyhedron. 2009;28:3115–3119. doi: 10.1016/j.poly.2009.06.067. DOI

Perez D., Herrera C., Sharma M., Gutierrez R., Hernández S., Toscano A., Sharma P.. Synthesis of C3-symmetric tris(1,1′-formylferrocenyl)­stibine and bismuthine: Rare examplex of tris 1,1′-asymmetrically ferrocenyl substituted group V compounds. J. Organomet. Chem. 2013;743:97–101. doi: 10.1016/j.jorganchem.2013.06.015. DOI

Ermoshkin A. E., Makarenko N. P., Sakodynskii K. I.. High-performance liquid chromatography of organometallic compounds. J. Chromatogr. 1984;290:377–391. doi: 10.1016/S0021-9673(01)93591-5. DOI

Schulz J., Antala J., Císařová I., Štěpnička P.. Beyond phosphorus: Synthesis, reactivity, coordination behaviour and catalytic properties of 1,1′-bis­(diphenylstibino)­ferrocene. Dalton Trans. 2023;52:1198–1211. doi: 10.1039/D2DT03770J. PubMed DOI

Gan, K.-S. ; Hor, T. S. A. . 1,1′-Bis­(diphenylphosphino)­ferrocene. Coordination Chemistry, Organic Syntheses, and Catalysis. In Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science, Togni, A. ; Hayashi, T. , Eds.; Wiley-VCH: Weinheim, Germany, 1995. pp. 3–104.

Chien, S. W. ; Hor, T. S. A. . The Coordination and Homogeneous Catalytic Chemistry of 1,1′-Bis­(diphenylphosphino)­ferrocene and its Chalcogenide Derivatives. In Ferrocenes: Ligands, Materials and Biomolecules, Štěpnička, P. , Ed.; Wiley: Chichester, 2008; pp. 33–116.

Colacot, T. J. ; Parisel, S. . Synthesis, Coordination Chemistry and Catalytic Use of dppf Analogs. In Ferrocenes: Ligands, Materials and Biomolecules, Štěpnička, P. , Ed.; Wiley: Chichester, 2008; pp. 117–140.

Bandoli G., Dolmella A.. Ligating ability of 1,1′-bis­(diphenylphosphino)­ferrocene: A structural survey (1994–1998) Coord. Chem. Rev. 2000;209:161–196. doi: 10.1016/S0010-8545(00)00229-0. DOI

Dey S., Pietschnig R.. Chemistry of sterically demanding dppf-analogs. Coord. Chem. Rev. 2021;437:No. 213850. doi: 10.1016/j.ccr.2021.213850. DOI

Bishop J. J., Davison A., Katcher M. L., Lichtenberg D. W., Merrill R. E., Smart J. C.. Symmetrically disubstituted ferrocenes: I. The synthesis of potential bidentate ligands. J. Organomet. Chem. 1971;27:241–249. doi: 10.1016/S0022-328X(00)80571-9. DOI

Davison A., Bishop J. J.. Symmetrically Disubstituted Ferrocenes II. Complexes of Ferrocene-1,1′-bis­(dimethylarsine) and Ferrocene-1,1′-bis­(diphenylarsine) with Group VI Carbonyls. Inorg. Chem. 1971;10:826–831. doi: 10.1021/ic50098a032. DOI

Davison A., Bishop J. J.. Symmetrically Disubstituted Ferrocenes III. Complexes of Ferrocene-1,1′-bis­(dimethylarsine) and Ferrocene-1,1′-bis­(diphenylarsine) with the Group VIII metals. Inorg. Chem. 1971;10:832–837. doi: 10.1021/ic50098a033. DOI

Warnick E. P., Dupuis R. J., Piro N. A., Scott Kassel W., Nataro C.. Compounds containing weak, non-covalent interactions to the metal in the backbone of 1,1′-bis­(phosphino)­metallocene ligands. Polyhedron. 2016;114:156–164. doi: 10.1016/j.poly.2015.11.025. DOI

Schulz J., Antala J., Rezazgui D., Císařová I., Štěpnička P.. Synthesis, Structure, Reactivity, and Intramolecular Donor–Acceptor Interactions in a Phosphinoferrocene Stibine and Its Corresponding Phosphine Chalcogenides and Stiboranes. Inorg. Chem. 2023;62:14028–14043. doi: 10.1021/acs.inorgchem.3c02075. PubMed DOI PMC

Antala J., Schulz J., Císařová I., Štěpnička P.. Synthesis, reactivity and coordination behaviour of a ferrocene phosphinostibine and intramolecular interactions in its P­(V) and Sb­(V) derivatives. New J. Chem. 2024;48:5107–5119. doi: 10.1039/D4NJ00349G. DOI

Haaland A., Nilsson J.-E.. The determination of the barrier to internal rotation in ferrocene and ruthenocene by means of electron diffraction. Chem. Commun. 1968:88–89. doi: 10.1039/c19680000088. DOI

Butler I. R., Müssig S., Plath M.. A remarkably simple route to tri-substituted ferrocenes: The ortho-lithiation of 1,1′-dibromoferrocene and bromoferrocene. Inorg. Chem. Commun. 1999;2:424–427. doi: 10.1016/S1387-7003(99)00109-4. DOI

Butler I. R.. The conversion of 1,1′-dibromoferrocene to 1,2-dibromoferrocene: The ferrocene-chemist’s dream reaction. Inorg. Chem. Commun. 2008;11:15–19. doi: 10.1016/j.inoche.2007.09.020. DOI

Werner G., Buttenschön H.. Improved Syntheses of 1,2-Disubstituted Ferrocenes. Eur. J. Inorg. Chem. 2017;2017:378–387. doi: 10.1002/ejic.201600766. DOI

Carrión M. C., Torres J., Jalón F. A., Rodríguez A. M., Zirakzadeh A., Manzano B. R.. Phosphinofulvene Enolate Ligands in Ruthenium Complexes by Ferrocene Photolysis under Solar Radiation. Eur. J. Inorg. Chem. 2017;2017:1153–1162. doi: 10.1002/ejic.201601440. DOI

Brunel J. M., Faure B., Maffei M.. Phosphane–boranes: Synthesis, characterization and synthetic applications. Coord. Chem. Rev. 1998;178–180:665–698. doi: 10.1016/S0010-8545(98)00072-1. DOI

Chalmers B. A., Bühl M., Arachchige K. S. A., Slawin A. M. Z., Kilian P.. Structural, Spectroscopic and Computational Examination of the Dative Interaction in Constrained Phosphine–Stibines and Phosphine–Stiboranes. Chem. - Eur. J. 2015;21:7520–7531. doi: 10.1002/chem.201500281. PubMed DOI

Brisset H., Gourdel Y., Pellon P., Le Corre M.. Phosphine-Borane Complexes; Direct Use in Asymmetric Catalysis. Tetrahedron Lett. 1993;34:4523–4526. doi: 10.1016/0040-4039(93)88075-T. DOI

Butler I. R.. The Simple Synthesis of Ferrocene Ligands from a Practitioner’s Perspective. Eur. J. Inorg. Chem. 2012;2012:4387–4406. doi: 10.1002/ejic.201200540. DOI

Butler I. R., Davies R. L.. A Rapid Convenient Synthesis of Ferrocene-Based Triphos Analogue Ligands. Synthesis. 1996;1996:1350–1354. doi: 10.1055/s-1996-4394. DOI

Lai L.-L., Dong T.-Y.. A novel method to synthesize unsymmetrical disubstituted ferrocenes. J. Chem. Soc., Chem. Commun. 1994:2347–2348. doi: 10.1039/c39940002347. DOI

Venezky D. L., Sink C. W., Nevett B. A., Fortescue W. F.. Preparation, properties and structure of poly­(triphenylstibine oxide) J. Organomet. Chem. 1972;35:131–142. doi: 10.1016/S0022-328X(00)86891-6. DOI

Bordner J., Doak G. O., Everett T. S.. Crystal Structure of 2,2,4,4-Tetrahydro-2,2,2,4,4,4-hexaphenyl-1,3,2,4-dioxadistibetane (Triphenylstibine Oxide Dimer) and Related Compounds. J. Am. Chem. Soc. 1986;108:4206–4213. doi: 10.1021/ja00274a059. DOI

Carmalt C. J., Crossley J. G., Norman N. C., Guy Orpen A.. The structure of amorphous Ph3SbO: Information from EXAFS (extended X-ray absorption fine structure) spectroscopy. Chem. Commun. 1996:1657–1658. doi: 10.1039/CC9960001675. DOI

Wenger J. S., Johnstone T. C.. Unsupported monomeric stibine oxides (R3SbO) remain undiscovered. Chem. Commun. 2021;57:3484–3487. doi: 10.1039/D1CC00619C. PubMed DOI

Wenger J. S., Weng M., George G. N., Johnstone T. C.. Isolation, bonding and reactivity of a monomeric stibine oxide. Nat. Chem. 2023;15:633–640. doi: 10.1038/s41557-023-01160-x. PubMed DOI PMC

Arduengo A. J. III, Stewart C. A., Davidson F., Dixon D. A., Becker J. Y., Culley S. A., Mizen M. B.. The Synthesis, Structure, and Chemistry of 10-Pn-3 Systems: Tricoordinate Hypervalent Pnicogen Compounds. J. Am. Chem. Soc. 1987;109:627–647. doi: 10.1021/ja00237a001. DOI

Li J., Daniliuc C. G., Kehr G., Erker G.. Preparation of the Borane (Fmes)­BH2 and its Utilization in the FLP-Reduction of Carbon Monoxide and Carbon Dioxide. Angew. Chem., Int. Ed. 2019;58:6737–6741. doi: 10.1002/anie.201901634. PubMed DOI

Fukin G. K., Zakharov L. N., Domrachev G. A., Fedorov A. Y., Zaburdyaeva S. N., Dodonov V. A.. Synthesis and structures of the six-coordinate donor-acceptor complexes R3(C6H4O2)­Sb···L (R = Ph, L = OSMe2 or ONC5H5; R = Me, L = ONC5H5 or NC5H5) and R3(C2H4O2)­Sb···L (R = Ph, L = ONC5H5; R = Cl or C6F5, L = OPPh3) Russ. Chem. Bull. 1999;48:1722–1732. doi: 10.1007/BF02494820. DOI

Tofan D., Gabbaï F.. Fluorinated antimony­(V) derivatives: Strong Lewis acidic properties and application to the complexation of formaldehyde in aqueous solutions. Chem. Sci. 2016;7:6768–6778. doi: 10.1039/C6SC02558G. PubMed DOI PMC

Poddel’sky A. I., Smolyaninov I. V., Fukin G. K., Berberova N. T., Cherkasov V. K., Abakumov G. A.. 3,6-Di-tert-butylcatecholates of trialkyl/triarylantimony­(V) J. Organomet. Chem. 2018;867:238–245. doi: 10.1016/j.jorganchem.2017.12.006. DOI

Asok N., Gaffen J. R., Pradhan E., Zeng T., Baumgartner T.. Structure-reactivity studies on hypervalent square-pyramidal dithieno­[3,2-b: 2′,3′-d]­phospholes. Dalton Trans. 2021;50:2243–2252. doi: 10.1039/D1DT00062D. PubMed DOI

Chishiro A., Akioka I., Sumida A., Oka K., Tohnai N., Yumura T., Imoto H., Naka K.. Tetrachlorocatecholates of triarylarsines as a novel class of Lewis acid. Dalton Trans. 2022;51:13716–13724. doi: 10.1039/D2DT02145E. PubMed DOI

Schraml J., Čapka M., Blechta V.. 31P and 13C NMR Spectra of Cyclohexylphenylphosphines, Tricyclohexylphosphine and Triphenylphosphine. Magn. Reson. Chem. 1992;30:544–547. doi: 10.1002/mrc.1260300615. DOI

Baillie C., Zhang L., Xiao J.. Ferrocenyl Monophosphine Ligands: Synthesis and Applications in the Suzuki–Miyaura Coupling of Aryl Chlorides. J. Org. Chem. 2004;69:7779–7782. doi: 10.1021/jo048963u. PubMed DOI

Lindner C., Maryasin B., Richter F., Zipse H.. Methyl cation affinity (MCA) for phosphanes. J. Phys. Org. Chem. 2010;23:1036–1042. doi: 10.1002/poc.1726. DOI

Lindner C., Tandon R., Maryasin B., Larionov E., Zipse H.. Cation affinity numbers of Lewis bases. Beilstein J. Org. Chem. 2012;8:1406–1442. doi: 10.3762/bjoc.8.163. PubMed DOI PMC

Erdmann P., Leitner J., Schwarz J., Greb L.. An Extensive Set of Accurate Fluoride Ion Affinities for p-Block Element Lewis Acids and Basic Design Principles for Strong Fluoride Ion Acceptors. ChemPhysChem. 2020;21:987–994. doi: 10.1002/cphc.202000244. PubMed DOI PMC

Kutzelnigg W.. Chemical Bonding in Higher Main Group Elements. Angew. Chem., Int. Ed. 1984;23:272–295. doi: 10.1002/anie.198402721. DOI

Reichl K. D., Mandell C. L., Henn O. D., Dougherty W. G., Kassel W. S., Nataro C.. Synthesis and electrochemistry of 1,1′-bis­(phosphino)­cobaltocenium compounds. J. Organomet. Chem. 2011;696:3882–3894. doi: 10.1016/j.jorganchem.2011.09.004. DOI

Štěpnička P., Císařová I.. Selective borane reduction of phosphinoferrocene carbaldehydes to phosphinoalcohol–borane adducts. The coordination behaviour of 1-(diphenylphosphino)-1′-(methoxymethyl)­ferrocene, a new ferrocene O,P-hybrid donor prepared from such an adduct. Dalton Trans. 2013;42:3373–3389. doi: 10.1039/C2DT32511J. PubMed DOI

Schulz J., Vosáhlo P., Uhlík F., Císařová I., Štěpnička P.. Probing the Influence of Phosphine Substituents on the Donor and Catalytic Properties of Phosphinoferrocene Carboxamides: A Combined Experimental and Theoretical Study. Organometallics. 2017;36:1828–1841. doi: 10.1021/acs.organomet.7b00181. DOI

Schulz J., Horký F., Císařová I., Štěpnička P.. Synthesis, structural characterization and catalytic evaluation of anionic phosphinoferrocene amidosulfonate ligands. Catalysts. 2017;7:167. doi: 10.3390/catal7060167. DOI

Vosáhlo P., Císařová I., Štěpnička P.. Comparing the asymmetric dppf-type ligands with their semi-homologous counterparts. J. Organomet. Chem. 2018;860:14–29. doi: 10.1016/j.jorganchem.2018.01.009. DOI

Vosáhlo P., Císařová I., Štěpnička P.. Synthesis, coordination behavior, and catalytic properties of dppf congeners with an inserted carbonyl moiety. New J. Chem. 2022;46:21536–21552. doi: 10.1039/D2NJ04270C. DOI

Mantina M., Chamberlin A. C., Valero R., Cramer C. J., Truhlar D. G.. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A. 2009;113:5806–5812. doi: 10.1021/jp8111556. PubMed DOI PMC

Cordero B., Gómez V., Platero-Prats A. E., Revés M., Echeverría J., Cremades E., Barragán F., Alvarez S.. Covalent radii revisited. Dalton Trans. 2008:2832–2838. doi: 10.1039/b801115j. PubMed DOI

Structural data for (diphenylphosphinoyl)ferrocenes are not yet available. The only related compound whose structure has been determined appears to be dimenthyl-(2-(trimethylsilyl)ferrocenyl)phosphine oxide; refcodes PILFUP and PILGAW in the Cambridge Structural Database (P = O ≈ 1.49 Å): Windisch, F. ; Lonnecke, P. ; Hey-Hawkins, E. . CCDC 2258589: Experimental Crystal Structure Determination, The University of Leipzig: 2023.

Windisch, F. ; Lonnecke, P. . CCDC 2258590: Experimental Crystal Structure Determination.The University of Leipzig: 2023.

Addison A. W., Rao T. N., Reedijk J., van Rijn J., Verschoor G. C.. Synthesis, structure, and spectroscopic properties of copper­(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua­[1,7-bis­(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]­copper­(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984:1349–1356. doi: 10.1039/DT9840001349. DOI

Custelcean R., Jackson J. E.. Dihydrogen Bonding: Structures, Energetics, and Dynamics. Chem. Rev. 2001;101:1963–1980. doi: 10.1021/cr000021b. Hydrogen bonds involving BH3 moiety as a H-bond acceptor are well established: PubMed DOI

Hall M., Sowerby D. B.. Synthesis and Crystal Structure of Bis­(triphenylantimony Catecholate) Hydrate. A New Square-Pyramidal Antimony­(V) Compound. J. Am. Chem. Soc. 1980;102:628–632. doi: 10.1021/ja00522a031. DOI

Holmes R. R., Day R. O., Chandrasekhar V., Holmes J. M.. Formation and Structure of Cyclic Five-Coordinated Antimony Derivatives. The First Square-Pyramidal Geometry for a Bicyclic Stiborane. Inorg. Chem. 1987;26:157–166. doi: 10.1021/ic00248a031. DOI

Holmes R. R., Day R. O., Chandrasekhar V., Holmes J. M.. Distortion Coordinate for Nonrigid Five-Coordinated Antimony. Synthesis and Structure of Oxygen- and Sulfur-Containing Cyclic Organostiboranes. Inorg. Chem. 1987;26:163–168. doi: 10.1021/ic00248a032. DOI

Thomas J. A., Hamor T. A.. Structure of orthorhombic triphenylphosphine oxide: A redetermination at room temperature. The O-Sb distance in the adduct was 2.2384(4) Å. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1993;49(49):355–357. doi: 10.1107/S0108270192006176. DOI

Dodonov V. A., Fedorov A. Y., Fukin G. K., Zaburdyaeva S. N., Zakharov L. N., Ígnatenko A. V.. Synthesis and Structural Characterization of Some Complexes of Hexa-coordinated Antimony. Main Group Chem. 1999;3:15–22. doi: 10.1080/13583149912331338951. DOI

Asok N., Zondag B. A., Pradhan E., Odagwe M., LeBlanc J., Walsh J. C., Bodwell G. J., Zeng T., Baumgartner T.. Exploring the Lewis Acidity and Reactivity of Neutral Pentacoordinate Dithienophospholes. Chem. - Eur. J. 2023;29:e202300173. doi: 10.1002/chem.202300173. PubMed DOI

Allcock H. R., Bissell E. C.. Triethylammonium Tris­(o-phenylenedioxy)­phosphate. Crystal and Molecular Structure. J. Am. Chem. Soc. 1973;95:3154–3157. doi: 10.1021/ja00791a013. DOI

Maskey R., Schädler M., Legler C., Greb L.. Bis­(perchlorocatecholato)­silaneA Neutral Silicon Lewis Super Acid. Angew. Chem., Int. Ed. 2018;57:1717–1720. doi: 10.1002/anie.201712155. PubMed DOI

Davies J. A., Dutremez S., Pinkerton A. A.. Solid-State 31P NMR and X-ray Crystallographic Studies of Tertiary Phosphines and Their Derivatives. Inorg. Chem. 1991;30:2380–2387. doi: 10.1021/ic00010a029. DOI

Johnson E. R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., Yang W.. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010;132:6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC

Scheiner S.. The Pnicogen Bond: Its Relation to Hydrogen, Halogen, and Other Noncovalent Bonds. Acc. Chem. Res. 2013;46:280–288. doi: 10.1021/ar3001316. PubMed DOI

Bader R. F. W.. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991;91:893–928. doi: 10.1021/cr00005a013. DOI

Bader, R. F. W. Atoms in Molecules: A Quantum Theory, International Series of Monographs on Chemistry 22; Oxford Science Publications: Oxford, 1990.

Matta, C. F. ; Boyd, R. J. . The Quantum Theory of Atoms in Molecules; Matta, C. F. ; Boyd, R. J. , Eds.; Wiley-VCH: New York, 2007; pp. 1–34.

Scheiner S., Michalczyk M., Zierkiewicz W.. Influence of Internal Angular Arrangement on Pnicogen Bond Strength. Inorg. Chem. 2023;62:20209–20218. doi: 10.1021/acs.inorgchem.3c03141. PubMed DOI

Bianchi R., Gervasio G., Marabello D.. Experimental Electron Density Analysis of Mn2(CO)10: Metal–Metal and Metal–Ligand Bond Characterization. Inorg. Chem. 2000;39:2360–2366. doi: 10.1021/ic991316e. PubMed DOI

Espinosa E., Alkorta I., Elguero J., Molins E.. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H···F–Y systems. J. Chem. Phys. 2002;117:5529–5542. doi: 10.1063/1.1501133. DOI

Vishnevskiy Y. V., Mitzel N. W.. Reply to a Comment on “The Nature of Chalcogen-Bonding-Type Tellurium–Nitrogen Interactions’’. Angew. Chem., Int. Ed. 2021;60:13150–13157. doi: 10.1002/anie.202104899. PubMed DOI PMC

Mewes J.-M., Hansen A., Grimme S.. Comment on “The Nature of Chalcogen-Bonding-Type Tellurium–Nitrogen Interactions”: Fixing the Description of Finite-Temperature Effects Restores the Agreement Between Experiment and Theory. Angew. Chem., Int. Ed. 2021;60:13144–13149. doi: 10.1002/anie.202102679. PubMed DOI PMC

Glodde T., Vishnevskiy Y. V., Zimmermann L., Stammler H.-G., Neumann B., Mitzel N. W.. The Nature of Chalcogen-Bonding-Type Tellurium–Nitrogen Interactions: A First Experimental Structure from the Gas Phase. Angew. Chem., Int. Ed. 2021;60:1519–1523. doi: 10.1002/anie.202013480. PubMed DOI PMC

Bauzá A., Quiñonero D., Deyà P. M., Frontera A.. Halogen Bonding versus Chalcogen and Pnicogen Bonding: A Combined Cambridge Structural Database and Theoretical Study. CrystEngComm. 2013;15:3137–3144. doi: 10.1039/C2CE26741A. DOI

Tomasi J., Mennucci B., Cammi R.. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005;105:2999–3094. doi: 10.1021/cr9904009. PubMed DOI

Scalmani G., Frisch M. J.. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010;132:114110. doi: 10.1063/1.3359469. PubMed DOI

Lepetit C., Fau P., Fajerwerg K., Kahn M. L., Silvi B.. Topological analysis of the metal-metal bond: A tutorial review. Coord. Chem. Rev. 2017;345:150–181. doi: 10.1016/j.ccr.2017.04.009. DOI

Cremer D., Kraka E.. Chemical Bonds without Bonding Electron Density – Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond? Angew. Chem., Int. Ed. 1984;23:627–628. doi: 10.1002/anie.198406271. DOI

Macchi P., Proserpio D. M., Sironi A.. Experimental Electron Density in a Transition Metal Dimer: Metal-Metal and Metal-Ligand Bonds. J. Am. Chem. Soc. 1998;120:13429–13435. doi: 10.1021/ja982903m. DOI

Macchi P., Sironi A.. Chemical bonding in transition metal carbonyl clusters: Complementary analysis of theoretical and experimental electron densities. Coord. Chem. Rev. 2003;238–239:383–412. doi: 10.1016/S0010-8545(02)00252-7. DOI

Stalke D.. Meaningful Structural Descriptors from Charge Density. Chem. - Eur. J. 2011;17:9264–9278. doi: 10.1002/chem.201100615. PubMed DOI

Knizia G.. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013;9:4834–4843. doi: 10.1021/ct400687b. PubMed DOI

Knizia G., Klein J. E. M. N.. Electron Flow in Reaction Mechanisms–Revealed from First Principles. Angew. Chem., Int. Ed. 2015;54:5518–5522. doi: 10.1002/anie.201410637. PubMed DOI

Puddephatt, R. J. ; Comprehensive Coordination Chemistry. The Synthesis, Reactions, Properties and Applications of Coordination Compounds. Wilkinson, G. ; Gillard, R. D. ; McCleverty, J. A. ; Eds.; Pergamon Press: Oxford, 1987, Vol. 5 pp. 861–923.

Bárta O., Císařová I., Schulz J., Štěpnička P.. Assessing the influence of phosphine substituents on the catalytic properties of self-stabilised digold­(I) complexes with supporting ferrocene phosphinonitrile ligands. New J. Chem. 2019;43:11258–11262. doi: 10.1039/C9NJ02555C. DOI

Schmidbaur H.. The Aurophilicity Phenomenon: A Decade of Experimental Findings, Theoretical Concepts and Emerging Applications. Gold Bull. 2000;33:3–10. doi: 10.1007/BF03215477. DOI

Schmidbaur H., Schier A.. A briefing on aurophilicity. Chem. Soc. Rev. 2008;37:1931–1951. doi: 10.1039/b708845k. PubMed DOI

Schmidbaur H., Schier A.. Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev. 2012;41:370–412. doi: 10.1039/C1CS15182G. PubMed DOI

Hashmi A. S. K., Weyrauch J. P., Frey W., Bats J. W.. Gold Catalysis: Mild Conditions for the Synthesis of Oxazoles from N-Propargylcarboxamides and Mechanistic Aspects. Org. Lett. 2004;6:4391–4394. doi: 10.1021/ol0480067. PubMed DOI

Weyrauch J. P., Hashmi A. S. K., Schuster A., Hengst T., Schetter S., Littmann A., Rudolph M., Hamzic M., Visus J., Rominger F., Frey W., Bats J. W.. Cyclization of Propargylic Amides: Mild Access to Oxazole Derivatives. Chem. - Eur. J. 2010;16:956–963. doi: 10.1002/chem.200902472. PubMed DOI

Hansch C., Leo A., Taft R. W.. A survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev. 1991;91:165–195. doi: 10.1021/cr00002a004. DOI

Blanco V., Leigh D. A., Marcos V.. Artificial switchable catalysts. Chem. Soc. Rev. 2015;44:5341–5370. doi: 10.1039/C5CS00096C. PubMed DOI

Gregson C. K. A., Gibson V. C., Long N. J., Marshall E. L., Oxford P. J., White A. J. P.. Redox Control within Single-Site Polymerization Catalysts. J. Am. Chem. Soc. 2006;128:7410–7411. doi: 10.1021/ja061398n. PubMed DOI

Arumugam K., Varnado C. D., Sproules S., Lynch V. M., Bielawski C. W.. Redox-Switchable Ring-Closing Metathesis: Catalyst Design, Synthesis, and Study. Chem. - Eur. J. 2013;19:10866–10875. doi: 10.1002/chem.201301247. PubMed DOI

Hettmanczyk L., Manck C., Hoyer C., Hohloch S., Sarkar B.. Heterobimetallic complexes with redox-active mesoionic carbenes as metalloligands: Electrochemical properties, electronic structures and catalysis. Chem. Commun. 2015;51:10949–10952. doi: 10.1039/C5CC01578B. PubMed DOI

Zhao M., Chen C.. Accessing Multiple Catalytically Active States in Redox-Controlled Olefin Polymerization. ACS Catal. 2017;7:7490–7494. doi: 10.1021/acscatal.7b02564. DOI

Straube A., Coburger P., Dütsch L., Hey-Hawkins E.. Triple the fun–Tris­(ferrocenyl)­arene-based gold­(I) complexes or redox-switchable catalysis. Chem. Sci. 2020;11:10657–10668. doi: 10.1039/D0SC03604H. PubMed DOI PMC

Deng S., Diaconescu P. L.. A switchable dimeric yttrium complex and its three catalytic states in ring opening polymerization. Inorg. Chem. Front. 2021;8:2088–2096. doi: 10.1039/D0QI01479F. DOI

Vosáhlo P., Štěpnička P.. Assessing the role of substituents in ferrocene acylphosphines and their impact on gold-catalysed reactions. New J. Chem. 2023;47:4510–4520. doi: 10.1039/D3NJ00201B. DOI

Schmidbaur H., Raubenheimer H. G., Dobrzańska L.. The gold–hydrogen bond, Au–H, and the hydrogen bond to gold, Au···H–X. Chem. Soc. Rev. 2014;43:345–380. doi: 10.1039/C3CS60251F. PubMed DOI

Schmidbaur H.. Proof of Concept for Hydrogen Bonding to Gold, Au···H–X. Angew. Chem., Int. Ed. 2019;58:5806–5809. doi: 10.1002/anie.201902526. PubMed DOI

Mikherdov A. S., Jin M., Ito H.. Exploring Au­(I) involving halogen bonding with N-heterocyclic carbene Au­(I) aryl complexes in crystalline media. Chem. Sci. 2023;14:4485–4494. doi: 10.1039/D3SC00373F. PubMed DOI PMC

Wade C. R., Gabbaï F. P.. Two-Electron Redox Chemistry and Reversible Umpolung of a Gold–Antimony Bond. Angew. Chem., Int. Ed. 2011;50:7369–7372. doi: 10.1002/anie.201103109. PubMed DOI

Ke I.-S., Gabbaï F. P.. σ-Donor/Acceptor-Confused Ligands: The Case of a Chlorostibine. Inorg. Chem. 2013;52:7145–7151. doi: 10.1021/ic400736b. PubMed DOI

Stuart Jones J., Gabbai F. P.. Activation of an Au–Cl Bond by a Pendent SbIII Lewis Acid: Impact on Structure and Catalytic Activity. Chem. - Eur. J. 2017;23:1136–1144. doi: 10.1002/chem.201604521. PubMed DOI

Do T. G., Hupf E., Lork E., Kögel J. F., Mohr F., Brown A., Toyoda R., Sakamoto R., Nishihara H., Mebs S., Beckmann J.. Aurophilicity and Photoluminescence of (6-Diphenylpnicogenoacenaphth-5-yl)gold Compounds. Eur. J. Inorg. Chem. 2019;2019:647–659. doi: 10.1002/ejic.201801190. DOI

Gericke R., Bennett M. A., Privér S. H., Bhargava S. K.. Formation of Heterobimetallic Complexes by Addition of d10-Metal Ions to [(Me3P x M­(2-C6F4PPh2)] (x = 1,2; M = Ni and Pt): A Synthetic and Computational Study of Metallophilic Interactions. Inorg. Chem. 2023;62:8846–8862. doi: 10.1021/acs.inorgchem.3c00311. PubMed DOI PMC

Nunes dos Santos Comprido L., Klein J. E. M. N., Knizia G., Kästner J., Hashmi A. S. K.. The stabilizing Effects in Gold Carbene Complexes. Angew. Chem., Int. Ed. 2015;54:10336–10340. doi: 10.1002/anie.201412401. PubMed DOI

Mulks F. F., Hashmi A. S. K., Faraji S.. Sesquicarbene Complexes: Bonding at the Interface Between M-C Single Bonds and M = C Double Bonds. Organometallics. 2020;39:1814–1823. doi: 10.1021/acs.organomet.0c00102. DOI

Nunes dos Santos Comprido L., Klein J. E. M. N., Knizia G., Kästner J., Hashmi A. S. K.. Gold (I), Vinylidene Complexes as Reactive Intermediates and Their Tendency to π-Backbond. Chem. - Eur. J. 2016;22:2892–2895. doi: 10.1002/chem.201504511. PubMed DOI

Sorbelli D., Nunes dos Santos Comprido L., Knizia G., Hashmi A. S. K., Belpassi L., Belanzoni P., Klein J. E. M. N.. Cationic Gold­(I) Diarylallenylidene Complexes: Bonding Features and Ligand Effects. ChemPhysChem. 2019;20:1671–1679. doi: 10.1002/cphc.201900411. PubMed DOI PMC

Dewar M. J. S.. A review of π-complex theory. Bull. Soc. Chim. Fr. 1951;18:C71–C79.

Chatt J., Duncanson L. A.. Olefin Co-ordination Compounds. Part III. Infra-Red Spectra and Structure: Attempted Preparation of Acetylene Complexes. J. Chem. Soc. 1953:2939–2947. doi: 10.1039/jr9530002939. DOI

Bistoni G., Belpassi L., Tarantelli F.. Disentanglement of Donation and Back-Donation Effects on Experimental Observables: A Case Study of Gold-Ethyne Complexes. Angew. Chem., Int. Ed. 2013;52:11599–11602. doi: 10.1002/anie.201305505. PubMed DOI

Fürstner A., Davies P. W.. Catalytic Carbophilic Activation: Catalysis by Platinum and Gold π Acids. Angew. Chem., Int. Ed. 2007;46:3410–3449. doi: 10.1002/anie.200604335. PubMed DOI

Appleton T. G., Clark H. C., Manzer L. E.. The trans-influence: Its measurement and significance. Coord. Chem. Rev. 1973;10:335–422. doi: 10.1016/S0010-8545(00)80238-6. DOI

Hartley F. R.. The cis- and trans-effects of ligands. Chem. Soc. Rev. 1973;2:163–179. doi: 10.1039/cs9730200163. DOI

Broussier R., Bentabet E., Laly M., Richard P., Kuz’mina L. G., Serp P., Wheatley N., Kalck P., Gautheron B.. Rhodium and palladium complexes from 1,1′ and 1,2 ferrocenylphosphine as bidentate ligands. Versatile coordination. J. Organomet. Chem. 2000;613:77–85. doi: 10.1016/S0022-328X(00)00501-5. DOI

Sharma P., Cabrera A., Sharma M., Alvarez C., Arias J. L., Gomez R. M., Hernandez S.. Trans Influence of Triphenylstibine: Crystal Structures of cis-[PtBr2(SbPh3)2], trans-[PtBr­(Ph)­(SbPh3)2], [NMe4]­[PtBr3(SbPh3)], and cis-[PtBr2(SbPh3)­(PPh3)] Z. Anorg. Allg. Chem. 2000;626:2330–2334. doi: 10.1002/1521-3749(200011)626:11<2330::AID-ZAAC2330>3.0.CO;2-2. DOI

Wendt O. F., Scodinu A., Elding L. I.. Trans influence of triphenylstibine. Crystal and molecular structures of cis-[PtCl2(SbPh3)2] and trans-[PtI2(SbPh3)2] Inorg. Chim. Acta. 1998;277:237–241. doi: 10.1016/S0020-1693(97)06130-6. DOI

Hierso J.-C., Fihri A., Amardeil R., Meunier P., Doucet H., Santelli M., Donnadieu B.. A Palladium–Ferrocenyl Tetraphosphine System as Catalyst for Suzuki Cross-Coupling and Heck Vinylation of Aryl Halides: Dynamic Behavior of the Palladium/Phosphine Species. Organometallics. 2003;22:4490–4499. doi: 10.1021/om0302948. DOI

Mahmudov K. T., Gurbanov A. V., Aliyeva V. A., Resnati G., Pombeiro A. J. L.. Pnictogen bonding in coordination chemistry. Coord. Chem. Rev. 2020;418:213381. doi: 10.1016/j.ccr.2020.213381. DOI

Cheranyova A. M., Zelenkov L. E., Baykov S. V., Izotova Y. A., Ivanov D. M., Bokach N. A., Kukushkin V. Y.. Intermolecular Metal-Involving Pnictogen Bonding: The Case of σ-(SbIII)-Hole···d z 2[PtII] Interaction. Inorg. Chem. 2024;63:14943–14957. doi: 10.1021/acs.inorgchem.4c01570. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...