Intramolecular Interactions between the Pnictogen Groups in a Rigid Ferrocene Phosphinostibine and the Corresponding Phosphine Chalcogenides, Stiboranes, and Their Complexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40413762
PubMed Central
PMC12152959
DOI
10.1021/acs.inorgchem.5c01332
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Differences in the chemical properties of phosphorus and antimony enable the synthesis of heteroditopic derivatives whose properties can be modified by altering the pnictogen substituents. In this work, 1-(diphenylstibino)-2-(dicyclohexylphosphino)ferrocene, [Fe(η5-1-Ph2Sb-2-Cy2PC5H3)(η5-C5H5)] (1), and the corresponding phosphine chalcogenides [Fe(η5-1-Ph2Sb-2-Cy2P(E)C5H3)(η5-C5H5)] (E = O, S, Se) and catecholatostiboranes [Fe(η5-1-Ph2(Cl4C6O2)Sb-2-Cy2P(E)C5H3)(η5-C5H5)] (E = void, O, S, Se) were examined, with a focus on the intramolecular donor-acceptor interactions between the antimony and the phosphorus substituents. Experimental data and theoretical analysis consistently indicated that these interactions can be described as pnictogen bonding between the Lewis acidic antimony and the lone pair at the phosphorus substituent (either at the phosphorus or at the chalcogen atom) and that they are significantly stronger in the stiboranes due to the increased Lewis acidity of the Sb atom. Noncovalent interactions were also observed in the chlorogold(I) complexes obtained from 1 and catecholatostiborane [Fe(η5-1-Ph2(Cl4C6O2)Sb-2-Cy2PC5H3)(η5-C5H5)] as P-donors. As shown by experiments in Au-mediated cyclization of N-propargylbenzamide, the noncoordinated antimony group influenced the catalytic properties of the Au(I) complexes. Notably, an intramolecular Cl → Sb pnictogen bond affected the molecular geometry of the Pd(II) complex [PdCl2(1-κ2P,Sb)], which in turn suggested that the structural influence exerted by ligands of this type needs to be assessed with care.
Zobrazit více v PubMed
Scerri, E. R. The Periodic Table: Its Story and Its Significance; Oxford University Press: New York, 2007.
The Periodic Table I: Historical Development and Essential Features, Mingos, D. M. P. , Ed.; Springer: Cham, 2020.
The Periodic Table II: Catalytic, Materials, Biological and Medical Applications, Mingos, D. M. P. , Ed.; Springer: Cham, 2020.
Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands. McAuliffe, M. C. Ed.; Macmillan Press: London, 1973.
Champness N. R., Levason W.. Coordination chemistry of stibine and bismuthine ligands. Coord. Chem. Rev. 1994;133:115–217. doi: 10.1016/0010-8545(94)80058-8. DOI
Werner H.. The Way into the Bridge: A New Bonding Mode of Tertiary Phosphanes, Arsanes and Stibanes. Angew. Chem., Int. Ed. 2004;43:938–954. doi: 10.1002/anie.200300627. PubMed DOI
Levason W., Reid G.. Developments in the coordination chemistry of stibine ligands. Coord. Chem. Rev. 2006;250:2565–2594. doi: 10.1016/j.ccr.2006.03.024. DOI
Greenacre V. K., Levason W., Reid G.. Developments in the chemistry of stibine and bismuthine complexes. Coord. Chem. Rev. 2021;432:No. 213698. doi: 10.1016/j.ccr.2020.213698. DOI
Lipschultz J. M., Li G., Radosevich A. T.. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Table Trends and Emerging Opportunities in Group 15. J. Am. Chem. Soc. 2021;143:1699–1721. doi: 10.1021/jacs.0c12816. PubMed DOI PMC
Hollingsworth W. M., Hill E. A.. Exploring the potential role of heavy pnictogen elements in ligand design for new metal-ligand cooperative chemistry. J. Coord. Chem. 2022;75:1436–1466. doi: 10.1080/00958972.2022.2124863. DOI
Son Y. J., Kim D., Park J. W., Yu Y., Hwang S. J.. Coordination chemistry of ligands bearing heavy group 14 and 15 elements: Comparative analysis of their influence on transition metal chemistry. Coord. Chem. Rev. 2025;526:No. 216317. doi: 10.1016/j.ccr.2024.216317. DOI
Benjamin S. L., Krämer T., Levason W., Light M. E., Macgregor S. A., Reid G.. [Pd4(μ3-SbMe3)4(SbMe3)4]: A Pd(0) Tetrahedron with μ3-Bridging Trimethylantimony Ligands. J. Am. Chem. Soc. 2016;138:6964–6967. doi: 10.1021/jacs.6b04060. PubMed DOI
Jolleys A., Lake B. R. M., Krämer T., Benjamin S. L.. A Five-Membered PdSb n Coordination Series. Organometallics. 2018;37:3854–3862. doi: 10.1021/acs.organomet.8b00556. DOI
Benjamin S. L., Levason W., Reid G., Warr R. P.. Halostibines SbMeX2 and SbMe2X: Lewis Acids or Lewis Bases? Organometallics. 2012;31:1025–1034. doi: 10.1021/om2010996. DOI
Benjamin S. L., Reid G.. Neutral organoantimony(III) and organobismuth(III) ligands as acceptors in transition metal complexes – Role of substituents and co-ligands. Coord. Chem. Rev. 2015;297–298:168–180. doi: 10.1016/j.ccr.2015.02.003. DOI
Wade C. R., Ke I.-S., Gabbaï F. P.. Sensing of Aqueous Fluoride Anions by Cationic Stibine-Palladium Complexes. Angew. Chem., Int. Ed. 2012;51:478–481. doi: 10.1002/anie.201106242. PubMed DOI
Ke I.-S., Myahkostupov M., Castellano F. N., Gabbaï F. P.. Stibonium ions for the fluorescence turn-on sensing of F– in drinking water at parts per million concentrations. J. Am. Chem. Soc. 2012;134:15309–15311. doi: 10.1021/ja308194w. PubMed DOI
Hirai M., Gabbaï F. P.. Lewis acidic stiborafluorenes for the fluorescence turn-on sensing of fluoride in drinking water at ppm concentrations. Chem. Sci. 2014;5:1886–1893. doi: 10.1039/C4SC00343H. DOI
Christianson A. M., Gabbaï F. P.. A Lewis Acidic, π-Conjugated Stibaindole with a Colorimetric Response to Anion Binding at Sb(III) Organometallics. 2017;36:3013–3015. doi: 10.1021/acs.organomet.7b00419. DOI
Kuhn H., Docker A., Beer P. D.. Anion Recognition with Antimony(III) and Bismuth(III) Triaryl-Based Pnictogen Bonding Receptors. Chem. - Eur. J. 2022;28:e202201838. doi: 10.1002/chem.202201838. PubMed DOI PMC
Louis Beckmann J., Krieft J., Vishnevskiy Y. V., Neumann B., Stammler H.-G., Mitzel N. W.. A Bidentate Antimony Pnictogen Bonding Host System. Angew. Chem., Int. Ed. 2023;62:e202310439. doi: 10.1002/anie.202310439. PubMed DOI
Qiu J., Bateman C. N., Lu S., George G. C. III, Li X., Gorden J. D., Vasylevskyi S., Cozzolino A. F.. Solution Studies of a Water-Stable, Trivalent Antimony Pnictogen Bonding Anion Receptor. Inorg. Chem. 2023;62:12582–12589. doi: 10.1021/acs.inorgchem.3c01887. PubMed DOI
Castro-Castro P., Gabbaï F. P.. Pnictogen Bonding at the Core of a Carbene-Stiborane-Gold Complex. Organometallics. 2024;43:2334–2341. doi: 10.1021/acs.organomet.4c00347. PubMed DOI PMC
Webber C. K., Kong F., Kumawat J., Joy J., Richardson E. K., Siano P., Dickie D. A., Ess D. H., Gunnoe T. B.. Synthesis of Quinoline-Based Pt–Sb Complexes with L- or Z-Type Interaction. Organometallics. 2024;43:1789–1802. doi: 10.1021/acs.organomet.4c00221. PubMed DOI PMC
Zhou B., Bedajna S., Gabbaï F. P.. Pnictogen Bonding at the Service of Gold Catalysis: The Case of a Phosphinostiborane Gold Complex. Chem. Commun. 2023;60:192–195. doi: 10.1039/D3CC04942F. PubMed DOI
Rat C. I., Silvestru C., Breunig H. J.. Hypervalent organoantimony and -bismuth compounds with pendant arm ligands. Coord. Chem. Rev. 2013;257:818–879. doi: 10.1016/j.ccr.2012.07.026. DOI
Benjamin S. L., Levason W., Reid G., Rogers M. C.. Hybrid dibismuthines and distibines as ligands towards transition metal carbonyls. Dalton Trans. 2011;40:6565–6574. doi: 10.1039/c1dt10447k. PubMed DOI
Benjamin S. L., Karagiannidis L., Levason W., Reid G., Rogers M. C.. Hybrid Dibismuthines and Distibines: Preparation and Properties of Antimony and Bismuth Oxygen, Sulfur, and Nitrogen Donor Ligands. Organometallics. 2011;30:895–904. doi: 10.1021/om1010148. DOI
Jeffrey J. C., Rauchfuss T. B.. Metal Complexes of Hemilabile Ligands. Reactivity and Structure of Dichlorobis(o-(diphenylphosphino)anisole)ruthenium(II) Inorg. Chem. 1979;18:2658–2666. doi: 10.1021/ic50200a004. DOI
Slone, C. S. ; Weinberger, D. A. ; Mirkin, C. A. . The Transition Metal Coordination Chemistry of Hemilabile Ligands. In Progress in Inorganic Chemistry, Karlin, K. D. , Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999; pp. 233–350.
Braunstein P., Naud F.. Hemilability of Hybrid Ligands and the Coordination Chemistry of Oxazoline-Based Systems. Angew. Chem., Int. Ed. 2001;40:680–699. doi: 10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0. PubMed DOI
Kaufmann T., Joußen R., Klas N., Vahrenhorts A.. Neue Reagenzien, XXV. [(Diphenylstibino)methyl]lithium und -kupfer(I); Synthese und präparative Anwendungen. Chem. Ber. 1983;116:473–478. doi: 10.1002/cber.19831160207. DOI
Manger M., Wolf J., Laubender M., Teichert M., Stalke D., Werner H.. The First Peralkylated Phosphino(stibino)methanes and Their Organometallic Rhodium Complexes. Chem. - Eur. J. 1997;3:1442–1450. doi: 10.1002/chem.19970030910. DOI
Manger M., Gevert O., Werner H.. Unusual Dinuclear Hydridorhodium(III) Complexes Containing Bulky Phosphinyl(stibanyl)methanes as Chelating Ligands. Chem. Ber. 1997;130:1529–1531. doi: 10.1002/cber.19971301028. DOI
Karsch H. H., Witt E.. Phosphinomethanides and Group 15 element halides: Redox reactions, rearrangements and novel heterocycles. J. Organomet. Chem. 1997;529:151–169. doi: 10.1016/S0022-328X(96)06578-3. DOI
Levason W., McAuliffe C. A.. Bidentate ligands containing very soft donor atoms. Nickel(II) complexes of arylarsines and arylstibines. Inorg. Chim. Acta. 1974;11:33–40. doi: 10.1016/S0020-1693(00)93689-2. DOI
Levason W., McAuliffe C. A.. Bidentate group VB ligands. Part XVII. Palladium(II), platinum(II), and rhodium(III) complexes of o-phenylenebis(diphenylphosphine), (o-diphenylphosphinophenyl)diphenylstibine, and (o-diphenylarsinophenyl)diphenylstibine1. Inorg. Chim. Acta. 1976;16:167–172. doi: 10.1016/S0020-1693(00)91707-9. DOI
Levason W., Smith K. G., McAuliffe C. A., McCullough F. P., Sedgwick R. D., Murray S. G.. Synthesis and properties of group 5B ligand analogues of o-phenylenebis(dimethylarsine), o-C6H4(EMe2)(E′Me2) where E, E′ = P, N, As, or Sb. J. Chem. Soc., Dalton Trans. 1979:1718–1724. doi: 10.1039/DT9790001718. DOI
Talay R., Rehder D.. Carbonylvanadium, -manganese and -molybdenum complexes of the ligands o-C6H4EPh2(E′Ph2) (E,E′ = P, As, Sb, Bi) and cis-Ph2PCH=CHPPh2 . Z. Naturforsch. 1981;36:451–462. doi: 10.1515/znb-1981-0411. DOI
Gray L. R., Hale A. L., Levason W., McCullough F. P., Webster M.. Diphosphine and diarsine complexes of chromium(III). Crystal and molecular structure of tetra-n-propylammonium [cis-1,2-bis(diphenylphosphino)ethene]tetrachlorochromate(III) J. Chem. Soc., Dalton Trans. 1983:2573–2580. doi: 10.1039/dt9830002573. DOI
Black J. R., Levason W., Spicer M. D., Webster M.. Synthesis and solution multinuclear magnetic resonance studies of homoleptic copper(I) complexes of Group 15 donor ligands. J. Chem. Soc. Dalton Trans. 1993:3129–3136. doi: 10.1039/DT9930003129. DOI
Jewiss H. C., Levason W., Spicer M. D., Webster M.. Coordination chemistry of higher oxidation states. 25. Synthesis and properties (including 59Co NMR Spectra) of cobalt(III) complexes of ligands containing two tertiary stibine groups. Crystal structure of trans-[Co{o-C6H4(SbMe2)2}2Cl2]2[CoCl4] Inorg. Chem. 1987;26:2102–2016. doi: 10.1021/ic00260a018. DOI
Chalmers B. A., Bühl M., Arachige K. S. A., Slawin A. M. Z., Kilian P.. Structural, Spectroscopic and Computational Examination of the Dative Interaction in Constrained Phosphine-Stibines and Phosphine-Stiboranes. Chem. - Eur. J. 2015;21:7520–7531. doi: 10.1002/chem.201500281. PubMed DOI
Chalmers B. A., Meigh C. B. E., Nejman P. S., Bühl M., Lébl T., Woollins J. D., Slawin A. M. Z., Kilian P.. Geminally Substituted Tris(acenaphthyl) and Bis(acenaphthyl) Arsines, Stibines, and Bismuthine: A Structural and Nuclear Magnetic Resonance Investigation. Inorg. Chem. 2016;55:7117–7125. doi: 10.1021/acs.inorgchem.6b01079. PubMed DOI
Stuart Jones J., Gabbaï F. P.. Activation of an Au–Cl Bond by a Pendent SbIII Lewis Acid: Impact on Structure and Catalytic Activity. Chem. - Eur. J. 2017;23:1136–1144. doi: 10.1002/chem.201604521. PubMed DOI
Yasuike S., Kawara S., Okajima S., Seki H., Yamaguchi K., Kurita J.. Non-C 2-symmetrical antimony–phosphorus ligand, (R/S)-2-diphenylphosphano-2′-di(p-tolyl)stibano-1,1′-binaphthyl (BINAPSb): Preparation and its use for asymmetric reactions as a chiral auxiliary. Tetrahedron Lett. 2004;45:9135–9138. doi: 10.1016/j.tetlet.2004.10.020. DOI
Dawson J. W., Venanzi L. M.. Phosphorus-31 nuclear magnetic resonance studies of coordination compounds. I. Stereochemistry of some complexes with multidentate ligands. J. Am. Chem. Soc. 1968;90:7229–7233. doi: 10.1021/ja01028a010. DOI
Higginson B. R., McAuliffe C. A., Venanzi L. M.. Anomalous ligand field effects in complexes of quadridentate ligands containing Group V donors. Inorg. Chim. Acta. 1971;5:37–40. doi: 10.1016/S0020-1693(00)95876-6. DOI
Wade C. R., Gabbaï F. P.. Two-Electron Redox Chemistry and Reversible Umpolung of a Gold–Antimony Bond. Angew. Chem., Int. Ed. 2011;50:7369–7372. doi: 10.1002/anie.201103109. PubMed DOI
Ke I.-S., Gabbaï F. P.. σ-Donor/Acceptor-Confused Ligands: The Case of a Chlorostibine. Inorg. Chem. 2013;52:7145–7151. doi: 10.1021/ic400736b. PubMed DOI
Ke I.-S., Gabbaï F. P.. Cu3(μ2-Cl)3 and Ag3(μ2-Cl)3 Complexes Supported by Tetradentate Trisphosphino-stibine and -bismuthine Ligands: Structural Evidence for Triply Bridging Heavy Pnictines. Aust. J. Chem. 2013;66:1281–1287. doi: 10.1071/CH13260. DOI
Jones J. S., Wade C. R., Gabbaï F. P.. Redox and Anion Exchange Chemistry of a Stibine-Nickel Complex: Writing L, X, Z Ligand Alphabet with a Single Element. Angew. Chem., Int. Ed. 2014;53:8876–8879. doi: 10.1002/anie.201404156. PubMed DOI
Ke I.-S., Jones J. S., Gabbaï F. P.. Anion-Controlled Switching of an X Ligand into a Z Ligand: Coordination Non-innocence of a Stiboranyl Ligand. Angew. Chem., Int. Ed. 2014;53:2633–2637. doi: 10.1002/anie.201309132. PubMed DOI
Yang H., Gabbaï F. P.. Activation of an Hydroamination Gold Catalyst by Oxidation of a Redox-Noninnocent Chlorostibine Z-Ligand. J. Am. Chem. Soc. 2015;137:13425–13432. doi: 10.1021/jacs.5b07998. PubMed DOI
You D., Gabbaï F. P.. Unmasking the Catalytic Activity of a Platinum Complex with a Lewis Acidic, Non-innocent Antimony Ligand. J. Am. Chem. Soc. 2017;139:6843–6846. doi: 10.1021/jacs.7b03287. PubMed DOI
Jones J. S., Wade C. R., Yang M., Gabbaï F. P.. On the coordination non-innocence of antimony in nickel(II) complexes of the tetradentate (o-(Ph2PC6H4)3Sb ligand. Dalton Trans. 2017;46:5598–5604. doi: 10.1039/C6DT04817J. PubMed DOI
Sen S., Ke I.-S., Gabbaï F. P.. T-Shaped Gold→Stiborane Complexes as Carbophilic Catalysts: Influence of the Peripheral Substituents. Organometallics. 2017;36:4224–4230. doi: 10.1021/acs.organomet.7b00654. DOI
Piesch M., Gabbaï F. P., Scheer M.. Phosphino-Stibine Ligands for the Synthesis of Heterometallic Comlexes. Z. Anorg. Allg. Chem. 2021;647:266–278. doi: 10.1002/zaac.202000249. DOI
Singh K. K., Bhattacharyya A., Havenridge S., Ghabin M., Ausmann H., Siegler M. A., Aikens C. M., Das A.. A First Glance into Mixed Phosphine–Stibine Moieties as Protecting Ligands for Gold Clusters. Nanoscale. 2023;15:6934–6940. doi: 10.1039/D2NR05497C. PubMed DOI
Furan S., Hupf E., Boidol J., Brünig J., Lork E., Mebs S., Beckmann J.. Transition metal complexes of antimony centered ligands based upon acenaphthyl scaffolds. Coordination non-innocent or not? Dalton Trans. 2019;48:4504–4513. doi: 10.1039/C9DT00088G. PubMed DOI
Krieft J., Trapp P. C., Vishnevskiy Y. V., Neumann B., Stammler H.-G., Lamm J.-H., Mitzel N. W.. A Geminal Antimony(III)/Phosphorus(III) Frustrated Lewis Pair. Chem. Sci. 2024;15:12118–12125. doi: 10.1039/D4SC02785J. PubMed DOI PMC
Štěpnička P.. Forever young: The first seventy years of ferrocene. Dalton Trans. 2022;51:8085–8102. doi: 10.1039/D2DT00903J. PubMed DOI
Dey S., Pietschnig R.. 1,1′-Disubstituted Ferrocene Ligand Scaffolds Featuring Pnictogens Other than Phosphorus as Donor Sites. Molecules. 2024;29:5283. doi: 10.3390/molecules29225283. PubMed DOI PMC
Ferrocenes: Homogeneous Catalysis. Organic Synthesis. Materials Science, Togni, A. ; Hayashi, T. , Eds.; VCH: Weinheim, 1995.
Atkinson R. C. J., Gibson V. C., Long N. J.. The syntheses and catalytic applications of unsymmetrical ferrocene ligands. Chem. Soc. Rev. 2004;33:313–328. doi: 10.1039/b316819k. PubMed DOI
Arrayás R. G., Adrio J., Carretero J. C.. Recent Applications of Chiral Ferrocene Ligands in Asymmetric Catalysis. Angew. Chem., Int. Ed. 2006;45:7674–7715. doi: 10.1002/anie.200602482. PubMed DOI
Ferrocenes: Ligands, Materials and Biomolecules, Štěpnička, P. , Ed.; Wiley: Chichester, 2008.
Cunningham L., Benson A., Guiry P. J.. Recent developments in the synthesis and applications of chiral ferrocene ligands and organocatalysts in asymmetric catalysis. Org. Biomol. Chem. 2020;18:9329–9370. doi: 10.1039/D0OB01933J. PubMed DOI
Sharma P., Lopez J. G., Ortega C., Rosas N., Cabrera A., Alvarez C., Toscano A., Reyes E.. First ferrocenylstibines and their molecular structures. Inorg. Chem. Commun. 2006;9:82–85. doi: 10.1016/j.inoche.2005.09.029. DOI
Vázquez J., Sharma P., Cabrera A., Toscano A., Hernández S., Pérez J., Gutiérrez R.. Formation of (vinyl-ferrocenyl)stibines involving β-elimination: Hypervalent Sb–N bonding. J. Organomet. Chem. 2007;692:3486–3491. doi: 10.1016/j.jorganchem.2007.04.020. DOI
Ortiz A. M., Sharma P., Pérez D., Rosas N., Cabrera A., Velasco L., Toscano A., Hernández S.. New 1,2-disubstituted ferrocenyl stibines containing N-heterocyclic pendant arm: Sb–N hypervalent compounds. J. Organomet. Chem. 2009;694:2037–2042. doi: 10.1016/j.jorganchem.2009.01.051. DOI
Pérez D., Sharma P., Cabrera A., Rosas N., Arellano I., Toscano A., Hernández S.. Preparation of new 1,2-disubstituted ferrocenyl stibines containing ether/thioether arm from a quaternarny ferrocenyl ammonium salt. Polyhedron. 2009;28:3115–3119. doi: 10.1016/j.poly.2009.06.067. DOI
Perez D., Herrera C., Sharma M., Gutierrez R., Hernández S., Toscano A., Sharma P.. Synthesis of C3-symmetric tris(1,1′-formylferrocenyl)stibine and bismuthine: Rare examplex of tris 1,1′-asymmetrically ferrocenyl substituted group V compounds. J. Organomet. Chem. 2013;743:97–101. doi: 10.1016/j.jorganchem.2013.06.015. DOI
Ermoshkin A. E., Makarenko N. P., Sakodynskii K. I.. High-performance liquid chromatography of organometallic compounds. J. Chromatogr. 1984;290:377–391. doi: 10.1016/S0021-9673(01)93591-5. DOI
Schulz J., Antala J., Císařová I., Štěpnička P.. Beyond phosphorus: Synthesis, reactivity, coordination behaviour and catalytic properties of 1,1′-bis(diphenylstibino)ferrocene. Dalton Trans. 2023;52:1198–1211. doi: 10.1039/D2DT03770J. PubMed DOI
Gan, K.-S. ; Hor, T. S. A. . 1,1′-Bis(diphenylphosphino)ferrocene. Coordination Chemistry, Organic Syntheses, and Catalysis. In Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science, Togni, A. ; Hayashi, T. , Eds.; Wiley-VCH: Weinheim, Germany, 1995. pp. 3–104.
Chien, S. W. ; Hor, T. S. A. . The Coordination and Homogeneous Catalytic Chemistry of 1,1′-Bis(diphenylphosphino)ferrocene and its Chalcogenide Derivatives. In Ferrocenes: Ligands, Materials and Biomolecules, Štěpnička, P. , Ed.; Wiley: Chichester, 2008; pp. 33–116.
Colacot, T. J. ; Parisel, S. . Synthesis, Coordination Chemistry and Catalytic Use of dppf Analogs. In Ferrocenes: Ligands, Materials and Biomolecules, Štěpnička, P. , Ed.; Wiley: Chichester, 2008; pp. 117–140.
Bandoli G., Dolmella A.. Ligating ability of 1,1′-bis(diphenylphosphino)ferrocene: A structural survey (1994–1998) Coord. Chem. Rev. 2000;209:161–196. doi: 10.1016/S0010-8545(00)00229-0. DOI
Dey S., Pietschnig R.. Chemistry of sterically demanding dppf-analogs. Coord. Chem. Rev. 2021;437:No. 213850. doi: 10.1016/j.ccr.2021.213850. DOI
Bishop J. J., Davison A., Katcher M. L., Lichtenberg D. W., Merrill R. E., Smart J. C.. Symmetrically disubstituted ferrocenes: I. The synthesis of potential bidentate ligands. J. Organomet. Chem. 1971;27:241–249. doi: 10.1016/S0022-328X(00)80571-9. DOI
Davison A., Bishop J. J.. Symmetrically Disubstituted Ferrocenes II. Complexes of Ferrocene-1,1′-bis(dimethylarsine) and Ferrocene-1,1′-bis(diphenylarsine) with Group VI Carbonyls. Inorg. Chem. 1971;10:826–831. doi: 10.1021/ic50098a032. DOI
Davison A., Bishop J. J.. Symmetrically Disubstituted Ferrocenes III. Complexes of Ferrocene-1,1′-bis(dimethylarsine) and Ferrocene-1,1′-bis(diphenylarsine) with the Group VIII metals. Inorg. Chem. 1971;10:832–837. doi: 10.1021/ic50098a033. DOI
Warnick E. P., Dupuis R. J., Piro N. A., Scott Kassel W., Nataro C.. Compounds containing weak, non-covalent interactions to the metal in the backbone of 1,1′-bis(phosphino)metallocene ligands. Polyhedron. 2016;114:156–164. doi: 10.1016/j.poly.2015.11.025. DOI
Schulz J., Antala J., Rezazgui D., Císařová I., Štěpnička P.. Synthesis, Structure, Reactivity, and Intramolecular Donor–Acceptor Interactions in a Phosphinoferrocene Stibine and Its Corresponding Phosphine Chalcogenides and Stiboranes. Inorg. Chem. 2023;62:14028–14043. doi: 10.1021/acs.inorgchem.3c02075. PubMed DOI PMC
Antala J., Schulz J., Císařová I., Štěpnička P.. Synthesis, reactivity and coordination behaviour of a ferrocene phosphinostibine and intramolecular interactions in its P(V) and Sb(V) derivatives. New J. Chem. 2024;48:5107–5119. doi: 10.1039/D4NJ00349G. DOI
Haaland A., Nilsson J.-E.. The determination of the barrier to internal rotation in ferrocene and ruthenocene by means of electron diffraction. Chem. Commun. 1968:88–89. doi: 10.1039/c19680000088. DOI
Butler I. R., Müssig S., Plath M.. A remarkably simple route to tri-substituted ferrocenes: The ortho-lithiation of 1,1′-dibromoferrocene and bromoferrocene. Inorg. Chem. Commun. 1999;2:424–427. doi: 10.1016/S1387-7003(99)00109-4. DOI
Butler I. R.. The conversion of 1,1′-dibromoferrocene to 1,2-dibromoferrocene: The ferrocene-chemist’s dream reaction. Inorg. Chem. Commun. 2008;11:15–19. doi: 10.1016/j.inoche.2007.09.020. DOI
Werner G., Buttenschön H.. Improved Syntheses of 1,2-Disubstituted Ferrocenes. Eur. J. Inorg. Chem. 2017;2017:378–387. doi: 10.1002/ejic.201600766. DOI
Carrión M. C., Torres J., Jalón F. A., Rodríguez A. M., Zirakzadeh A., Manzano B. R.. Phosphinofulvene Enolate Ligands in Ruthenium Complexes by Ferrocene Photolysis under Solar Radiation. Eur. J. Inorg. Chem. 2017;2017:1153–1162. doi: 10.1002/ejic.201601440. DOI
Brunel J. M., Faure B., Maffei M.. Phosphane–boranes: Synthesis, characterization and synthetic applications. Coord. Chem. Rev. 1998;178–180:665–698. doi: 10.1016/S0010-8545(98)00072-1. DOI
Chalmers B. A., Bühl M., Arachchige K. S. A., Slawin A. M. Z., Kilian P.. Structural, Spectroscopic and Computational Examination of the Dative Interaction in Constrained Phosphine–Stibines and Phosphine–Stiboranes. Chem. - Eur. J. 2015;21:7520–7531. doi: 10.1002/chem.201500281. PubMed DOI
Brisset H., Gourdel Y., Pellon P., Le Corre M.. Phosphine-Borane Complexes; Direct Use in Asymmetric Catalysis. Tetrahedron Lett. 1993;34:4523–4526. doi: 10.1016/0040-4039(93)88075-T. DOI
Butler I. R.. The Simple Synthesis of Ferrocene Ligands from a Practitioner’s Perspective. Eur. J. Inorg. Chem. 2012;2012:4387–4406. doi: 10.1002/ejic.201200540. DOI
Butler I. R., Davies R. L.. A Rapid Convenient Synthesis of Ferrocene-Based Triphos Analogue Ligands. Synthesis. 1996;1996:1350–1354. doi: 10.1055/s-1996-4394. DOI
Lai L.-L., Dong T.-Y.. A novel method to synthesize unsymmetrical disubstituted ferrocenes. J. Chem. Soc., Chem. Commun. 1994:2347–2348. doi: 10.1039/c39940002347. DOI
Venezky D. L., Sink C. W., Nevett B. A., Fortescue W. F.. Preparation, properties and structure of poly(triphenylstibine oxide) J. Organomet. Chem. 1972;35:131–142. doi: 10.1016/S0022-328X(00)86891-6. DOI
Bordner J., Doak G. O., Everett T. S.. Crystal Structure of 2,2,4,4-Tetrahydro-2,2,2,4,4,4-hexaphenyl-1,3,2,4-dioxadistibetane (Triphenylstibine Oxide Dimer) and Related Compounds. J. Am. Chem. Soc. 1986;108:4206–4213. doi: 10.1021/ja00274a059. DOI
Carmalt C. J., Crossley J. G., Norman N. C., Guy Orpen A.. The structure of amorphous Ph3SbO: Information from EXAFS (extended X-ray absorption fine structure) spectroscopy. Chem. Commun. 1996:1657–1658. doi: 10.1039/CC9960001675. DOI
Wenger J. S., Johnstone T. C.. Unsupported monomeric stibine oxides (R3SbO) remain undiscovered. Chem. Commun. 2021;57:3484–3487. doi: 10.1039/D1CC00619C. PubMed DOI
Wenger J. S., Weng M., George G. N., Johnstone T. C.. Isolation, bonding and reactivity of a monomeric stibine oxide. Nat. Chem. 2023;15:633–640. doi: 10.1038/s41557-023-01160-x. PubMed DOI PMC
Arduengo A. J. III, Stewart C. A., Davidson F., Dixon D. A., Becker J. Y., Culley S. A., Mizen M. B.. The Synthesis, Structure, and Chemistry of 10-Pn-3 Systems: Tricoordinate Hypervalent Pnicogen Compounds. J. Am. Chem. Soc. 1987;109:627–647. doi: 10.1021/ja00237a001. DOI
Li J., Daniliuc C. G., Kehr G., Erker G.. Preparation of the Borane (Fmes)BH2 and its Utilization in the FLP-Reduction of Carbon Monoxide and Carbon Dioxide. Angew. Chem., Int. Ed. 2019;58:6737–6741. doi: 10.1002/anie.201901634. PubMed DOI
Fukin G. K., Zakharov L. N., Domrachev G. A., Fedorov A. Y., Zaburdyaeva S. N., Dodonov V. A.. Synthesis and structures of the six-coordinate donor-acceptor complexes R3(C6H4O2)Sb···L (R = Ph, L = OSMe2 or ONC5H5; R = Me, L = ONC5H5 or NC5H5) and R3(C2H4O2)Sb···L (R = Ph, L = ONC5H5; R = Cl or C6F5, L = OPPh3) Russ. Chem. Bull. 1999;48:1722–1732. doi: 10.1007/BF02494820. DOI
Tofan D., Gabbaï F.. Fluorinated antimony(V) derivatives: Strong Lewis acidic properties and application to the complexation of formaldehyde in aqueous solutions. Chem. Sci. 2016;7:6768–6778. doi: 10.1039/C6SC02558G. PubMed DOI PMC
Poddel’sky A. I., Smolyaninov I. V., Fukin G. K., Berberova N. T., Cherkasov V. K., Abakumov G. A.. 3,6-Di-tert-butylcatecholates of trialkyl/triarylantimony(V) J. Organomet. Chem. 2018;867:238–245. doi: 10.1016/j.jorganchem.2017.12.006. DOI
Asok N., Gaffen J. R., Pradhan E., Zeng T., Baumgartner T.. Structure-reactivity studies on hypervalent square-pyramidal dithieno[3,2-b: 2′,3′-d]phospholes. Dalton Trans. 2021;50:2243–2252. doi: 10.1039/D1DT00062D. PubMed DOI
Chishiro A., Akioka I., Sumida A., Oka K., Tohnai N., Yumura T., Imoto H., Naka K.. Tetrachlorocatecholates of triarylarsines as a novel class of Lewis acid. Dalton Trans. 2022;51:13716–13724. doi: 10.1039/D2DT02145E. PubMed DOI
Schraml J., Čapka M., Blechta V.. 31P and 13C NMR Spectra of Cyclohexylphenylphosphines, Tricyclohexylphosphine and Triphenylphosphine. Magn. Reson. Chem. 1992;30:544–547. doi: 10.1002/mrc.1260300615. DOI
Baillie C., Zhang L., Xiao J.. Ferrocenyl Monophosphine Ligands: Synthesis and Applications in the Suzuki–Miyaura Coupling of Aryl Chlorides. J. Org. Chem. 2004;69:7779–7782. doi: 10.1021/jo048963u. PubMed DOI
Lindner C., Maryasin B., Richter F., Zipse H.. Methyl cation affinity (MCA) for phosphanes. J. Phys. Org. Chem. 2010;23:1036–1042. doi: 10.1002/poc.1726. DOI
Lindner C., Tandon R., Maryasin B., Larionov E., Zipse H.. Cation affinity numbers of Lewis bases. Beilstein J. Org. Chem. 2012;8:1406–1442. doi: 10.3762/bjoc.8.163. PubMed DOI PMC
Erdmann P., Leitner J., Schwarz J., Greb L.. An Extensive Set of Accurate Fluoride Ion Affinities for p-Block Element Lewis Acids and Basic Design Principles for Strong Fluoride Ion Acceptors. ChemPhysChem. 2020;21:987–994. doi: 10.1002/cphc.202000244. PubMed DOI PMC
Kutzelnigg W.. Chemical Bonding in Higher Main Group Elements. Angew. Chem., Int. Ed. 1984;23:272–295. doi: 10.1002/anie.198402721. DOI
Reichl K. D., Mandell C. L., Henn O. D., Dougherty W. G., Kassel W. S., Nataro C.. Synthesis and electrochemistry of 1,1′-bis(phosphino)cobaltocenium compounds. J. Organomet. Chem. 2011;696:3882–3894. doi: 10.1016/j.jorganchem.2011.09.004. DOI
Štěpnička P., Císařová I.. Selective borane reduction of phosphinoferrocene carbaldehydes to phosphinoalcohol–borane adducts. The coordination behaviour of 1-(diphenylphosphino)-1′-(methoxymethyl)ferrocene, a new ferrocene O,P-hybrid donor prepared from such an adduct. Dalton Trans. 2013;42:3373–3389. doi: 10.1039/C2DT32511J. PubMed DOI
Schulz J., Vosáhlo P., Uhlík F., Císařová I., Štěpnička P.. Probing the Influence of Phosphine Substituents on the Donor and Catalytic Properties of Phosphinoferrocene Carboxamides: A Combined Experimental and Theoretical Study. Organometallics. 2017;36:1828–1841. doi: 10.1021/acs.organomet.7b00181. DOI
Schulz J., Horký F., Císařová I., Štěpnička P.. Synthesis, structural characterization and catalytic evaluation of anionic phosphinoferrocene amidosulfonate ligands. Catalysts. 2017;7:167. doi: 10.3390/catal7060167. DOI
Vosáhlo P., Císařová I., Štěpnička P.. Comparing the asymmetric dppf-type ligands with their semi-homologous counterparts. J. Organomet. Chem. 2018;860:14–29. doi: 10.1016/j.jorganchem.2018.01.009. DOI
Vosáhlo P., Císařová I., Štěpnička P.. Synthesis, coordination behavior, and catalytic properties of dppf congeners with an inserted carbonyl moiety. New J. Chem. 2022;46:21536–21552. doi: 10.1039/D2NJ04270C. DOI
Mantina M., Chamberlin A. C., Valero R., Cramer C. J., Truhlar D. G.. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A. 2009;113:5806–5812. doi: 10.1021/jp8111556. PubMed DOI PMC
Cordero B., Gómez V., Platero-Prats A. E., Revés M., Echeverría J., Cremades E., Barragán F., Alvarez S.. Covalent radii revisited. Dalton Trans. 2008:2832–2838. doi: 10.1039/b801115j. PubMed DOI
Structural data for (diphenylphosphinoyl)ferrocenes are not yet available. The only related compound whose structure has been determined appears to be dimenthyl-(2-(trimethylsilyl)ferrocenyl)phosphine oxide; refcodes PILFUP and PILGAW in the Cambridge Structural Database (P = O ≈ 1.49 Å): Windisch, F. ; Lonnecke, P. ; Hey-Hawkins, E. . CCDC 2258589: Experimental Crystal Structure Determination, The University of Leipzig: 2023.
Windisch, F. ; Lonnecke, P. . CCDC 2258590: Experimental Crystal Structure Determination.The University of Leipzig: 2023.
Addison A. W., Rao T. N., Reedijk J., van Rijn J., Verschoor G. C.. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984:1349–1356. doi: 10.1039/DT9840001349. DOI
Custelcean R., Jackson J. E.. Dihydrogen Bonding: Structures, Energetics, and Dynamics. Chem. Rev. 2001;101:1963–1980. doi: 10.1021/cr000021b. Hydrogen bonds involving BH3 moiety as a H-bond acceptor are well established: PubMed DOI
Hall M., Sowerby D. B.. Synthesis and Crystal Structure of Bis(triphenylantimony Catecholate) Hydrate. A New Square-Pyramidal Antimony(V) Compound. J. Am. Chem. Soc. 1980;102:628–632. doi: 10.1021/ja00522a031. DOI
Holmes R. R., Day R. O., Chandrasekhar V., Holmes J. M.. Formation and Structure of Cyclic Five-Coordinated Antimony Derivatives. The First Square-Pyramidal Geometry for a Bicyclic Stiborane. Inorg. Chem. 1987;26:157–166. doi: 10.1021/ic00248a031. DOI
Holmes R. R., Day R. O., Chandrasekhar V., Holmes J. M.. Distortion Coordinate for Nonrigid Five-Coordinated Antimony. Synthesis and Structure of Oxygen- and Sulfur-Containing Cyclic Organostiboranes. Inorg. Chem. 1987;26:163–168. doi: 10.1021/ic00248a032. DOI
Thomas J. A., Hamor T. A.. Structure of orthorhombic triphenylphosphine oxide: A redetermination at room temperature. The O-Sb distance in the adduct was 2.2384(4) Å. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1993;49(49):355–357. doi: 10.1107/S0108270192006176. DOI
Dodonov V. A., Fedorov A. Y., Fukin G. K., Zaburdyaeva S. N., Zakharov L. N., Ígnatenko A. V.. Synthesis and Structural Characterization of Some Complexes of Hexa-coordinated Antimony. Main Group Chem. 1999;3:15–22. doi: 10.1080/13583149912331338951. DOI
Asok N., Zondag B. A., Pradhan E., Odagwe M., LeBlanc J., Walsh J. C., Bodwell G. J., Zeng T., Baumgartner T.. Exploring the Lewis Acidity and Reactivity of Neutral Pentacoordinate Dithienophospholes. Chem. - Eur. J. 2023;29:e202300173. doi: 10.1002/chem.202300173. PubMed DOI
Allcock H. R., Bissell E. C.. Triethylammonium Tris(o-phenylenedioxy)phosphate. Crystal and Molecular Structure. J. Am. Chem. Soc. 1973;95:3154–3157. doi: 10.1021/ja00791a013. DOI
Maskey R., Schädler M., Legler C., Greb L.. Bis(perchlorocatecholato)silaneA Neutral Silicon Lewis Super Acid. Angew. Chem., Int. Ed. 2018;57:1717–1720. doi: 10.1002/anie.201712155. PubMed DOI
Davies J. A., Dutremez S., Pinkerton A. A.. Solid-State 31P NMR and X-ray Crystallographic Studies of Tertiary Phosphines and Their Derivatives. Inorg. Chem. 1991;30:2380–2387. doi: 10.1021/ic00010a029. DOI
Johnson E. R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., Yang W.. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010;132:6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC
Scheiner S.. The Pnicogen Bond: Its Relation to Hydrogen, Halogen, and Other Noncovalent Bonds. Acc. Chem. Res. 2013;46:280–288. doi: 10.1021/ar3001316. PubMed DOI
Bader R. F. W.. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991;91:893–928. doi: 10.1021/cr00005a013. DOI
Bader, R. F. W. Atoms in Molecules: A Quantum Theory, International Series of Monographs on Chemistry 22; Oxford Science Publications: Oxford, 1990.
Matta, C. F. ; Boyd, R. J. . The Quantum Theory of Atoms in Molecules; Matta, C. F. ; Boyd, R. J. , Eds.; Wiley-VCH: New York, 2007; pp. 1–34.
Scheiner S., Michalczyk M., Zierkiewicz W.. Influence of Internal Angular Arrangement on Pnicogen Bond Strength. Inorg. Chem. 2023;62:20209–20218. doi: 10.1021/acs.inorgchem.3c03141. PubMed DOI
Bianchi R., Gervasio G., Marabello D.. Experimental Electron Density Analysis of Mn2(CO)10: Metal–Metal and Metal–Ligand Bond Characterization. Inorg. Chem. 2000;39:2360–2366. doi: 10.1021/ic991316e. PubMed DOI
Espinosa E., Alkorta I., Elguero J., Molins E.. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H···F–Y systems. J. Chem. Phys. 2002;117:5529–5542. doi: 10.1063/1.1501133. DOI
Vishnevskiy Y. V., Mitzel N. W.. Reply to a Comment on “The Nature of Chalcogen-Bonding-Type Tellurium–Nitrogen Interactions’’. Angew. Chem., Int. Ed. 2021;60:13150–13157. doi: 10.1002/anie.202104899. PubMed DOI PMC
Mewes J.-M., Hansen A., Grimme S.. Comment on “The Nature of Chalcogen-Bonding-Type Tellurium–Nitrogen Interactions”: Fixing the Description of Finite-Temperature Effects Restores the Agreement Between Experiment and Theory. Angew. Chem., Int. Ed. 2021;60:13144–13149. doi: 10.1002/anie.202102679. PubMed DOI PMC
Glodde T., Vishnevskiy Y. V., Zimmermann L., Stammler H.-G., Neumann B., Mitzel N. W.. The Nature of Chalcogen-Bonding-Type Tellurium–Nitrogen Interactions: A First Experimental Structure from the Gas Phase. Angew. Chem., Int. Ed. 2021;60:1519–1523. doi: 10.1002/anie.202013480. PubMed DOI PMC
Bauzá A., Quiñonero D., Deyà P. M., Frontera A.. Halogen Bonding versus Chalcogen and Pnicogen Bonding: A Combined Cambridge Structural Database and Theoretical Study. CrystEngComm. 2013;15:3137–3144. doi: 10.1039/C2CE26741A. DOI
Tomasi J., Mennucci B., Cammi R.. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005;105:2999–3094. doi: 10.1021/cr9904009. PubMed DOI
Scalmani G., Frisch M. J.. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010;132:114110. doi: 10.1063/1.3359469. PubMed DOI
Lepetit C., Fau P., Fajerwerg K., Kahn M. L., Silvi B.. Topological analysis of the metal-metal bond: A tutorial review. Coord. Chem. Rev. 2017;345:150–181. doi: 10.1016/j.ccr.2017.04.009. DOI
Cremer D., Kraka E.. Chemical Bonds without Bonding Electron Density – Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond? Angew. Chem., Int. Ed. 1984;23:627–628. doi: 10.1002/anie.198406271. DOI
Macchi P., Proserpio D. M., Sironi A.. Experimental Electron Density in a Transition Metal Dimer: Metal-Metal and Metal-Ligand Bonds. J. Am. Chem. Soc. 1998;120:13429–13435. doi: 10.1021/ja982903m. DOI
Macchi P., Sironi A.. Chemical bonding in transition metal carbonyl clusters: Complementary analysis of theoretical and experimental electron densities. Coord. Chem. Rev. 2003;238–239:383–412. doi: 10.1016/S0010-8545(02)00252-7. DOI
Stalke D.. Meaningful Structural Descriptors from Charge Density. Chem. - Eur. J. 2011;17:9264–9278. doi: 10.1002/chem.201100615. PubMed DOI
Knizia G.. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013;9:4834–4843. doi: 10.1021/ct400687b. PubMed DOI
Knizia G., Klein J. E. M. N.. Electron Flow in Reaction Mechanisms–Revealed from First Principles. Angew. Chem., Int. Ed. 2015;54:5518–5522. doi: 10.1002/anie.201410637. PubMed DOI
Puddephatt, R. J. ; Comprehensive Coordination Chemistry. The Synthesis, Reactions, Properties and Applications of Coordination Compounds. Wilkinson, G. ; Gillard, R. D. ; McCleverty, J. A. ; Eds.; Pergamon Press: Oxford, 1987, Vol. 5 pp. 861–923.
Bárta O., Císařová I., Schulz J., Štěpnička P.. Assessing the influence of phosphine substituents on the catalytic properties of self-stabilised digold(I) complexes with supporting ferrocene phosphinonitrile ligands. New J. Chem. 2019;43:11258–11262. doi: 10.1039/C9NJ02555C. DOI
Schmidbaur H.. The Aurophilicity Phenomenon: A Decade of Experimental Findings, Theoretical Concepts and Emerging Applications. Gold Bull. 2000;33:3–10. doi: 10.1007/BF03215477. DOI
Schmidbaur H., Schier A.. A briefing on aurophilicity. Chem. Soc. Rev. 2008;37:1931–1951. doi: 10.1039/b708845k. PubMed DOI
Schmidbaur H., Schier A.. Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev. 2012;41:370–412. doi: 10.1039/C1CS15182G. PubMed DOI
Hashmi A. S. K., Weyrauch J. P., Frey W., Bats J. W.. Gold Catalysis: Mild Conditions for the Synthesis of Oxazoles from N-Propargylcarboxamides and Mechanistic Aspects. Org. Lett. 2004;6:4391–4394. doi: 10.1021/ol0480067. PubMed DOI
Weyrauch J. P., Hashmi A. S. K., Schuster A., Hengst T., Schetter S., Littmann A., Rudolph M., Hamzic M., Visus J., Rominger F., Frey W., Bats J. W.. Cyclization of Propargylic Amides: Mild Access to Oxazole Derivatives. Chem. - Eur. J. 2010;16:956–963. doi: 10.1002/chem.200902472. PubMed DOI
Hansch C., Leo A., Taft R. W.. A survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev. 1991;91:165–195. doi: 10.1021/cr00002a004. DOI
Blanco V., Leigh D. A., Marcos V.. Artificial switchable catalysts. Chem. Soc. Rev. 2015;44:5341–5370. doi: 10.1039/C5CS00096C. PubMed DOI
Gregson C. K. A., Gibson V. C., Long N. J., Marshall E. L., Oxford P. J., White A. J. P.. Redox Control within Single-Site Polymerization Catalysts. J. Am. Chem. Soc. 2006;128:7410–7411. doi: 10.1021/ja061398n. PubMed DOI
Arumugam K., Varnado C. D., Sproules S., Lynch V. M., Bielawski C. W.. Redox-Switchable Ring-Closing Metathesis: Catalyst Design, Synthesis, and Study. Chem. - Eur. J. 2013;19:10866–10875. doi: 10.1002/chem.201301247. PubMed DOI
Hettmanczyk L., Manck C., Hoyer C., Hohloch S., Sarkar B.. Heterobimetallic complexes with redox-active mesoionic carbenes as metalloligands: Electrochemical properties, electronic structures and catalysis. Chem. Commun. 2015;51:10949–10952. doi: 10.1039/C5CC01578B. PubMed DOI
Zhao M., Chen C.. Accessing Multiple Catalytically Active States in Redox-Controlled Olefin Polymerization. ACS Catal. 2017;7:7490–7494. doi: 10.1021/acscatal.7b02564. DOI
Straube A., Coburger P., Dütsch L., Hey-Hawkins E.. Triple the fun–Tris(ferrocenyl)arene-based gold(I) complexes or redox-switchable catalysis. Chem. Sci. 2020;11:10657–10668. doi: 10.1039/D0SC03604H. PubMed DOI PMC
Deng S., Diaconescu P. L.. A switchable dimeric yttrium complex and its three catalytic states in ring opening polymerization. Inorg. Chem. Front. 2021;8:2088–2096. doi: 10.1039/D0QI01479F. DOI
Vosáhlo P., Štěpnička P.. Assessing the role of substituents in ferrocene acylphosphines and their impact on gold-catalysed reactions. New J. Chem. 2023;47:4510–4520. doi: 10.1039/D3NJ00201B. DOI
Schmidbaur H., Raubenheimer H. G., Dobrzańska L.. The gold–hydrogen bond, Au–H, and the hydrogen bond to gold, Au···H–X. Chem. Soc. Rev. 2014;43:345–380. doi: 10.1039/C3CS60251F. PubMed DOI
Schmidbaur H.. Proof of Concept for Hydrogen Bonding to Gold, Au···H–X. Angew. Chem., Int. Ed. 2019;58:5806–5809. doi: 10.1002/anie.201902526. PubMed DOI
Mikherdov A. S., Jin M., Ito H.. Exploring Au(I) involving halogen bonding with N-heterocyclic carbene Au(I) aryl complexes in crystalline media. Chem. Sci. 2023;14:4485–4494. doi: 10.1039/D3SC00373F. PubMed DOI PMC
Wade C. R., Gabbaï F. P.. Two-Electron Redox Chemistry and Reversible Umpolung of a Gold–Antimony Bond. Angew. Chem., Int. Ed. 2011;50:7369–7372. doi: 10.1002/anie.201103109. PubMed DOI
Ke I.-S., Gabbaï F. P.. σ-Donor/Acceptor-Confused Ligands: The Case of a Chlorostibine. Inorg. Chem. 2013;52:7145–7151. doi: 10.1021/ic400736b. PubMed DOI
Stuart Jones J., Gabbai F. P.. Activation of an Au–Cl Bond by a Pendent SbIII Lewis Acid: Impact on Structure and Catalytic Activity. Chem. - Eur. J. 2017;23:1136–1144. doi: 10.1002/chem.201604521. PubMed DOI
Do T. G., Hupf E., Lork E., Kögel J. F., Mohr F., Brown A., Toyoda R., Sakamoto R., Nishihara H., Mebs S., Beckmann J.. Aurophilicity and Photoluminescence of (6-Diphenylpnicogenoacenaphth-5-yl)gold Compounds. Eur. J. Inorg. Chem. 2019;2019:647–659. doi: 10.1002/ejic.201801190. DOI
Gericke R., Bennett M. A., Privér S. H., Bhargava S. K.. Formation of Heterobimetallic Complexes by Addition of d10-Metal Ions to [(Me3P x M(2-C6F4PPh2)] (x = 1,2; M = Ni and Pt): A Synthetic and Computational Study of Metallophilic Interactions. Inorg. Chem. 2023;62:8846–8862. doi: 10.1021/acs.inorgchem.3c00311. PubMed DOI PMC
Nunes dos Santos Comprido L., Klein J. E. M. N., Knizia G., Kästner J., Hashmi A. S. K.. The stabilizing Effects in Gold Carbene Complexes. Angew. Chem., Int. Ed. 2015;54:10336–10340. doi: 10.1002/anie.201412401. PubMed DOI
Mulks F. F., Hashmi A. S. K., Faraji S.. Sesquicarbene Complexes: Bonding at the Interface Between M-C Single Bonds and M = C Double Bonds. Organometallics. 2020;39:1814–1823. doi: 10.1021/acs.organomet.0c00102. DOI
Nunes dos Santos Comprido L., Klein J. E. M. N., Knizia G., Kästner J., Hashmi A. S. K.. Gold (I), Vinylidene Complexes as Reactive Intermediates and Their Tendency to π-Backbond. Chem. - Eur. J. 2016;22:2892–2895. doi: 10.1002/chem.201504511. PubMed DOI
Sorbelli D., Nunes dos Santos Comprido L., Knizia G., Hashmi A. S. K., Belpassi L., Belanzoni P., Klein J. E. M. N.. Cationic Gold(I) Diarylallenylidene Complexes: Bonding Features and Ligand Effects. ChemPhysChem. 2019;20:1671–1679. doi: 10.1002/cphc.201900411. PubMed DOI PMC
Dewar M. J. S.. A review of π-complex theory. Bull. Soc. Chim. Fr. 1951;18:C71–C79.
Chatt J., Duncanson L. A.. Olefin Co-ordination Compounds. Part III. Infra-Red Spectra and Structure: Attempted Preparation of Acetylene Complexes. J. Chem. Soc. 1953:2939–2947. doi: 10.1039/jr9530002939. DOI
Bistoni G., Belpassi L., Tarantelli F.. Disentanglement of Donation and Back-Donation Effects on Experimental Observables: A Case Study of Gold-Ethyne Complexes. Angew. Chem., Int. Ed. 2013;52:11599–11602. doi: 10.1002/anie.201305505. PubMed DOI
Fürstner A., Davies P. W.. Catalytic Carbophilic Activation: Catalysis by Platinum and Gold π Acids. Angew. Chem., Int. Ed. 2007;46:3410–3449. doi: 10.1002/anie.200604335. PubMed DOI
Appleton T. G., Clark H. C., Manzer L. E.. The trans-influence: Its measurement and significance. Coord. Chem. Rev. 1973;10:335–422. doi: 10.1016/S0010-8545(00)80238-6. DOI
Hartley F. R.. The cis- and trans-effects of ligands. Chem. Soc. Rev. 1973;2:163–179. doi: 10.1039/cs9730200163. DOI
Broussier R., Bentabet E., Laly M., Richard P., Kuz’mina L. G., Serp P., Wheatley N., Kalck P., Gautheron B.. Rhodium and palladium complexes from 1,1′ and 1,2 ferrocenylphosphine as bidentate ligands. Versatile coordination. J. Organomet. Chem. 2000;613:77–85. doi: 10.1016/S0022-328X(00)00501-5. DOI
Sharma P., Cabrera A., Sharma M., Alvarez C., Arias J. L., Gomez R. M., Hernandez S.. Trans Influence of Triphenylstibine: Crystal Structures of cis-[PtBr2(SbPh3)2], trans-[PtBr(Ph)(SbPh3)2], [NMe4][PtBr3(SbPh3)], and cis-[PtBr2(SbPh3)(PPh3)] Z. Anorg. Allg. Chem. 2000;626:2330–2334. doi: 10.1002/1521-3749(200011)626:11<2330::AID-ZAAC2330>3.0.CO;2-2. DOI
Wendt O. F., Scodinu A., Elding L. I.. Trans influence of triphenylstibine. Crystal and molecular structures of cis-[PtCl2(SbPh3)2] and trans-[PtI2(SbPh3)2] Inorg. Chim. Acta. 1998;277:237–241. doi: 10.1016/S0020-1693(97)06130-6. DOI
Hierso J.-C., Fihri A., Amardeil R., Meunier P., Doucet H., Santelli M., Donnadieu B.. A Palladium–Ferrocenyl Tetraphosphine System as Catalyst for Suzuki Cross-Coupling and Heck Vinylation of Aryl Halides: Dynamic Behavior of the Palladium/Phosphine Species. Organometallics. 2003;22:4490–4499. doi: 10.1021/om0302948. DOI
Mahmudov K. T., Gurbanov A. V., Aliyeva V. A., Resnati G., Pombeiro A. J. L.. Pnictogen bonding in coordination chemistry. Coord. Chem. Rev. 2020;418:213381. doi: 10.1016/j.ccr.2020.213381. DOI
Cheranyova A. M., Zelenkov L. E., Baykov S. V., Izotova Y. A., Ivanov D. M., Bokach N. A., Kukushkin V. Y.. Intermolecular Metal-Involving Pnictogen Bonding: The Case of σ-(SbIII)-Hole···d z 2[PtII] Interaction. Inorg. Chem. 2024;63:14943–14957. doi: 10.1021/acs.inorgchem.4c01570. PubMed DOI