Three ancient hormonal cues co-ordinate shoot branching in a moss
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/L00224811
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
25806686
PubMed Central
PMC4391503
DOI
10.7554/elife.06808
Knihovny.cz E-zdroje
- Klíčová slova
- Physcomitrella, apical dominance, branching, developmental biology, gametophyte, plant biology, stem cells,
- MeSH
- biologické modely MeSH
- biologický transport účinky léků MeSH
- cytokininy biosyntéza MeSH
- epidermis rostlin cytologie růst a vývoj MeSH
- geneticky modifikované rostliny MeSH
- kyseliny indoloctové metabolismus farmakologie MeSH
- laktony farmakologie MeSH
- mechy účinky léků růst a vývoj MeSH
- morfogeneze účinky léků MeSH
- mutace genetika MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin farmakologie MeSH
- rostlinné proteiny metabolismus MeSH
- rozvržení tělního plánu účinky léků MeSH
- výhonky rostlin účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
- laktony MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.
Department of Plant Sciences University of Cambridge Cambridge United Kingdom
Sainsbury Laboratory University of Cambridge Cambridge United Kingdom
Zobrazit více v PubMed
Abley K, De Reuille PB, Strutt D, Bangham A, Prusinkiewicz P, Marée AF, Grieneisen VA, Coen E. An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development. 2013;140:2061–2074. doi: 10.1242/dev.062984. PubMed DOI
Ashton NW, Grimsley NH, Cove DJ. Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta. 1979;144:427–435. doi: 10.1007/BF00380118. PubMed DOI
Bennett T, Brockington SF, Rothfels C, Graham SW, Stevenson D, Kutchan T, Rolf M, Thomas P, Wong GK, Leyser O, Glover BJ, Harrison CJ. Paralagous radiations of PIN proteins with multiple origins of non-canonical PIN structure. Molecular Biology and Evolution. 2014a;31:2042–2060. doi: 10.1093/molbev/msu147. PubMed DOI PMC
Bennett TA, Liu MM, Aoyama T, Bierfreund NM, Braun M, Coudert Y, Dennis RJ, O'Connor D, Wang XY, White CD, Decker EL, Reski R, Harrison CJ. Plasma membrane-targeted PIN proteins drive shoot development in a moss. Current Biology. 2014b;24:2776–2785. doi: 10.1016/j.cub.2014.09.054. PubMed DOI PMC
Bergamini A, Peintinger M. Effects of light and nitrogen on morphological plasticity of the moss Calliergonella cuspidata. Oikos. 2002;96:355–363. doi: 10.1034/j.1600-0706.2002.960217.x. DOI
Berthier J. Organisation à l'aisselle des feuilles chez les bryophytes. Bulletin de la Societé Botanique de France. 1970;117:171–182. doi: 10.1080/00378941.1970.10838824. DOI
Berthier J, Galtier J, Hébant C, Hébant-Mauri R. Remarques sur la ramification de la stèle chez les mousses. Compte Rendus Académie Sciences Paris. 1965;272:2868–2871.
Booker J, Chatfield S, Leyser O. Auxin acts in xylem-associated or medullary cells to mediate apical dominance. The Plant Cell. 2003;15:495–507. doi: 10.1105/tpc.007542. PubMed DOI PMC
Bower F. Primitive land plants. London: Macmillan; 1935.
Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature. 2012;482:103–106. doi: 10.1038/nature10791. PubMed DOI
Carraro N, Tisdale-Orr TE, Clouse RM, Knöller AS, Spicer R. Diversification and expression of the PIN, AUX/LAX, and ABCB families of putative auxin transporters in Populus. Frontiers in Plant Science. 2012;3:17. doi: 10.3389/fpls.2012.00017. PubMed DOI PMC
Challis RJ, Hepworth J, Mouchel C, Waites R, Leyser O. A role for more axillary growth1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. Plant Physiology. 2013;161:1885–1902. doi: 10.1104/pp.112.211383. PubMed DOI PMC
Cho M, Cho HT. The function of ABCB transporters in auxin transport. Plant Signalling and Behaviour. 2013;8:e22990. doi: 10.4161/psb.22990. PubMed DOI PMC
Cline MG. Apical dominance. Botanical Review. 1991;57:318–358. doi: 10.1007/BF02858771. DOI
Cooke TJ, Poli D, Sztein E, Cohen JD. Evolutionary patterns in auxin action. Plant Molecular Biology. 2002;49:319–338. doi: 10.1023/A:1015242627321. PubMed DOI
Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska MA, Leyser O. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development. 2010;137:2905–2913. doi: 10.1242/dev.051987. PubMed DOI
de Saint Germain A, Bonhomme S, Boyer FD, Rameau C. Novel insights into strigolactone distribution and signalling. Current Opinion in Plant Biology. 2013;16:583–589. doi: 10.1016/j.pbi.2013.06.007. PubMed DOI
De Smet I, Voss U, Lau S, Wilson M, Shao N, Timme RE, Swarup R, Kerr I, Hodgman C, Bock R, Bennett M, Jürgens G, Beeckman T. Unraveling the evolution of auxin signaling. Plant Physiology. 2011;155:209–221. doi: 10.1104/pp.110.168161. PubMed DOI PMC
Delaux PM, Xie X, Timme RE, Puech-Pages V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Bécard G, Séjalon-Delmas N. Origin of strigolactones in the green lineage. New Phytologist. 2013;195:857–871. doi: 10.1111/j.1469-8137.2012.04209.x. PubMed DOI
Domagalska MA, Leyser O. Signal integration in the control of shoot branching. Nature Reviews Molecular Cell Biology. 2011;12:211–221. doi: 10.1038/nrm3088. PubMed DOI
Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G. A microscale technique for gas-chromatography mass-spectrometry measurements of picogram amounts of Indole-3-Acetic-Acid in plant tissues. Plant Physiology. 1995;108:1043–1047. PubMed PMC
Edwards D, Morris JL, Richardson JB, Kenrick P. Cryptospores and cryptophytes reveal hidden diversity in early land floras. New Phytologist. 2014;202:50–78. doi: 10.1111/nph.12645. PubMed DOI
Eklund DM, Thelander M, Landberg K, Ståldal V, Nilsson A, Johansson M, Valsecchi I, Pederson ER, Kowalczyk M, Ljung K, Ronne H, Sundberg E. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development. 2010;137:1275–1284. doi: 10.1242/dev.039594. PubMed DOI
Fujita T, Hasebe M. Convergences and divergences in polar auxin transport and shoot development in land plant evolution. Plant Signaling & Behavior. 2009;4:313–315. doi: 10.4161/psb.4.4.8090. PubMed DOI PMC
Farge-England CL. Growth form, branching pattern, and perichaetial position in mosses: cladocarpy and pleurocarpy redefined. The Bryologist. 1996;99:170–186. doi: 10.2307/3244546. DOI
Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff SJ, Ito M, Deguchi H, Sato T, Hasebe M. Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evolution & Development. 2008;10:176–186. doi: 10.1111/j.1525-142X.2008.00225.x. PubMed DOI
Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science. 1998;282:2226–2230. doi: 10.1126/science.282.5397.2226. PubMed DOI
Gerrienne P, Dilcher DL, Bergamaschi S, Milagres I, Pereira E, C Rodrigues MA. An exceptional specimen of the early land plant Cooksonia paranensis, and a hypothesis on the life cycle of the earliest eutracheophytes. Review of Palaeobotany and Palynology. 2006;142:123–130. doi: 10.1016/j.revpalbo.2006.05.005. DOI
Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF. Strigolactone inhibition of shoot branching. Nature. 2008;455:189–194. doi: 10.1038/nature07271. PubMed DOI
Gruhn N, Heyl A. Updates on the model and the evolution of cytokinin signalling. Current Opinion in Plant Biology. 2013;16:569–574. doi: 10.1016/j.pbi.2013.09.001. PubMed DOI
Han X, Hyun TK, Zhang M, Kumar R, Koh EJ, Kang BH, Lucas WJ, Kim JY. Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Developmental Cell. 2014;28:132–146. doi: 10.1016/j.devcel.2013.12.008. PubMed DOI
Harrison CJ, Corley SB, Moylan EC, Alexander DL, Scotland RW, Langdale JA. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature. 2005;434:509–514. doi: 10.1038/nature03410. PubMed DOI
Harrison CJ, Langdale JA. Response to ‘The developmental pattern of shoot apices in Selaginella kraussiana (Kunze) A. Braun’. International Journal of Plant Sciences. 2010;171:690–692. doi: 10.1086/653134. DOI
Harrison CJ, Rezvani M, Langdale JA. Growth from two transient apical initials in the meristem of Selaginella kraussiana. Development. 2007;134:881–889. doi: 10.1242/dev.001008. PubMed DOI
Harrison CJ, Roeder AH, Meyerowitz EM, Langdale JA. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Current Biology. 2009;19:461–471. doi: 10.1016/j.cub.2009.02.050. PubMed DOI
Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D, Geisler M, Nam HG. Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. Journal of Biological Chemistry. 2010;285:23309–23317. doi: 10.1074/jbc.M110.105981. PubMed DOI PMC
Langdale JA, Harrison CJ. Developmental changes during the evolution of plant form. In: Fusco AMAG, editor. Evolving pathways: key themes in evolutionary developmental biology. Cambridge: Cambridge University Press; 2008. pp. 299–315.
Ligrone R, Duckett JG, Renzaglia KS. Major transitions in the evolution of early land plants: a bryological perspective. Annals of Botany. 2012;109:851–871. doi: 10.1093/aob/mcs017. PubMed DOI PMC
Ljung K, Bhalerao R, Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal. 2001;28:465–474. doi: 10.1046/j.1365-313X.2001.01173.x. PubMed DOI
Morris DA. Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.) : Some implications for polarity and apical dominance. Planta. 1997;136:91–96. doi: 10.1007/BF00387930. PubMed DOI
Müller B, Sheen J. Cytokinin and auxin interplay in root stem-cell specification during early embryogenesis. Nature. 2008;453:1094–1097. doi: 10.1038/nature06943. PubMed DOI PMC
Novák O, Hauserová E, Amakorová P, Dolezal K, Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry. 2008;69:2214–2224. doi: 10.1016/j.phytochem.2008.04.022. PubMed DOI
Nyman LP, Cutter EG. Auxin–cytokinin interaction in the inhibition, release, and morphology of gametophore buds of Plagiomnium cuspidatum from apical dominance. Canadian Journal of Botany. 1981;59:750–762. doi: 10.1139/b81-106. DOI
Perroud PF, Cove DJ, Quatrano RS, McDaniel SF. An experimental method to facilitate the identification of hybrid sporophytes in the moss Physcomitrella patens using fluorescent tagged lines. New Phytologist. 2011;191:301–306. doi: 10.1111/j.1469-8137.2011.03668.x. PubMed DOI PMC
Petrásek J, Friml J. Auxin transport routes in plant development. Development. 2009;136:2675–2688. doi: 10.1242/dev.030353. PubMed DOI
Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, Nogué F, Rameau C. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss. Physcomitrella patens. Development. 2011;138:1531–1539. doi: 10.1242/dev.058495. PubMed DOI
Prusinkiewicz P, Crawford S, Smith R, Ljung K, Bennett T, Ongaro V, Leyser O. Control of bud activation by an auxin transport switch. Proceedings of the National Academy of Sciences of USA. 2010;106:17431–17436. doi: 10.1073/pnas.0906696106. PubMed DOI PMC
Sanders HL, Langdale JA. Conserved transport mechanisms but distinct auxin responses govern shoot patterning in Selaginella kraussiana. New Phytologist. 2013;198:419–428. doi: 10.1111/nph.12183. PubMed DOI
Scotland R. Deep homology: a view from systematics. Bioessays. 2010;32:438–449. doi: 10.1002/bies.200900175. PubMed DOI
Shinohara N, Taylor C, Leyser O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLOS Biology. 2013;11:e1001474. doi: 10.1371/journal.pbio.1001474. PubMed DOI PMC
Sussex IM, Kerk NM. The evolution of plant architecture. Current Opinion in Plant Biology. 2001;4:33–37. doi: 10.1016/S1369-5266(00)00132-1. PubMed DOI
Taylor TN, Kerp H, Hass H. Life history biology of early land plants: Deciphering the gametophyte phase. Proceedings of the National Academy of Sciences of USA. 2005;102:5892–5897. doi: 10.1073/pnas.0501985102. PubMed DOI PMC
Thimann KV, Skoog F. Studies on the growth hormone of plants: III. The inhibiting action of the growth substance on bud development. Proceedings of the National Academy of Sciences of USA. 1933;19:714–716. doi: 10.1073/pnas.19.7.714. PubMed DOI PMC
Tomescu AM, Wyatt S, Hasebe M, Rothwell G. Early evolution of the vascular plant body plan- the missing mechanisms. Curent Opinion in Plant Biology. 2014;17:126–136. doi: 10.1016/j.pbi.2013.11.016. PubMed DOI
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455:195–200. doi: 10.1038/nature07272. PubMed DOI
Viaene T, Landberg K, Thelander M, Medvecka E, Pederson E, Feraru E, Cooper ED, Karimi M, Delwiche CF, Ljung K, Geisler M, Sundberg E, Friml J. Directional auxin transport mechanisms in early diverging land plants. Current Biology. 2014;24:2786–2791. doi: 10.1016/j.cub.2014.09.056. PubMed DOI
von Maltzahn KE. Interaction between kinetin and indoleacetic acid in the control of bud reactivation in Splachnum ampullaceum (L.) Hedw. Nature. 1959;183:60–61. doi: 10.1038/183060a0. DOI
von Schwartzenberg K, Núñez MF, Blaschke H, Dobrev PI, Novák O, Motyka V, Strnad M. Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distrbution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiology. 2007;145:786–800. doi: 10.1104/pp.107.103176. PubMed DOI PMC
Wang Q, Kohlen W, Rossmann S, Vernoux T, Theres K. Auxin depletion from the leaf axil conditions competence for axillary meristem formation in Arabidopsis and tomato. The Plant Cell. 2014a;26:2068–2079. doi: 10.1105/tpc.114.123059. PubMed DOI PMC
Wang Y, Wang J, Shi B, Yu T, Qi J, Meyerowitz EM, Jiao Y. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. The Plant Cell. 2014b;26:2055–2067. doi: 10.1105/tpc.114.123083. PubMed DOI PMC
Wickson M, Thimann KV. The antagonism of auxin and kinetin in apical dominance. Physiologica Plantarum. 1958;11:62–75. doi: 10.1111/j.1399-3054.1958.tb08426.x. DOI
Williams S. Correlation phenomena and hormones in Selaginella. Nature. 1937;139:966. doi: 10.1038/139966a0. DOI
Wochok ZS, Sussex IM. Morphogenesis in Selaginella: auxin transport in the stem. Plant Physiology. 1973;51:646–650. doi: 10.1104/pp.51.4.646. PubMed DOI PMC
Wochok ZS, Sussex IM. Morphogenesis in Selaginella III. Meristem determination and cell differentiation. Developmental Biology. 1975;47:376–383. doi: 10.1016/0012-1606(75)90291-2. PubMed DOI
Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J. D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature. 2013;504:406–410. doi: 10.1038/nature12878. PubMed DOI PMC